# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309953 -0.0029354859  0.0366060287  0.052132987  4.992291e-02
## 2013-02-28  0.0058906695 -0.0231053479 -0.0129691922  0.016175774  1.267868e-02
## 2013-03-28  0.0009848159 -0.0102346459  0.0129691922  0.040257568  3.726720e-02
## 2013-04-30  0.0096393866  0.0120845418  0.0489678087  0.001223052  1.903041e-02
## 2013-05-31 -0.0202143735 -0.0494831579 -0.0306555009  0.041976283  2.333549e-02
## 2013-06-28 -0.0157783320 -0.0547284557 -0.0271445280 -0.001403100 -1.343408e-02
## 2013-07-31  0.0026878030  0.0131596683  0.0518604853  0.063541144  5.038571e-02
## 2013-08-30 -0.0082978803 -0.0257057691 -0.0197464212 -0.034743101 -3.045157e-02
## 2013-09-30  0.0111435409  0.0695888981  0.0753386042  0.063873430  3.115660e-02
## 2013-10-31  0.0082921946  0.0408612364  0.0320815724  0.034234341  4.526607e-02
## 2013-11-29 -0.0025093269 -0.0025940761  0.0054495999  0.041660819  2.920701e-02
## 2013-12-31 -0.0055832364 -0.0040743565  0.0215279293  0.012892297  2.559667e-02
## 2014-01-31  0.0152914915 -0.0903225366 -0.0534131084 -0.035775308 -3.588464e-02
## 2014-02-28  0.0037564569  0.0332204819  0.0595050030  0.045257425  4.450994e-02
## 2014-03-31 -0.0014812665  0.0380217584 -0.0046025730  0.013314989  8.261301e-03
## 2014-04-30  0.0081828782  0.0077726729  0.0165292653 -0.023184112  6.927556e-03
## 2014-05-30  0.0117224101  0.0290910768  0.0158286779  0.006205532  2.294165e-02
## 2014-06-30 -0.0005761241  0.0237340576  0.0091652618  0.037718490  2.043435e-02
## 2014-07-31 -0.0025120605  0.0135555761 -0.0263797347 -0.052009337 -1.352850e-02
## 2014-08-29  0.0114306220  0.0279043913  0.0018004766  0.043657863  3.870449e-02
## 2014-09-30 -0.0061669754 -0.0808563287 -0.0395986182 -0.061260479 -1.389227e-02
## 2014-10-31  0.0105842670  0.0140962229 -0.0026547701  0.068874805  2.327780e-02
## 2014-11-28  0.0065485235 -0.0155412100  0.0006252476  0.004773573  2.710132e-02
## 2014-12-31  0.0014754357 -0.0404419346 -0.0407464770  0.025295758 -2.539647e-03
## 2015-01-30  0.0203151709 -0.0068960029  0.0062261958 -0.054627813 -3.007710e-02
## 2015-02-27 -0.0089884833  0.0431361473  0.0614509116  0.056914610  5.468196e-02
## 2015-03-31  0.0037404419 -0.0150862429 -0.0143890329  0.010156466 -1.583014e-02
## 2015-04-30 -0.0032331431  0.0662814118  0.0358165820 -0.018417570  9.785784e-03
## 2015-05-29 -0.0043838115 -0.0419110386  0.0019526337  0.007509707  1.277399e-02
## 2015-06-30 -0.0108252322 -0.0297465852 -0.0316788449  0.004171284 -2.052097e-02
## 2015-07-31  0.0085846844 -0.0651781424  0.0201145758 -0.027375272  2.233758e-02
## 2015-08-31 -0.0033637841 -0.0925123972 -0.0771524198 -0.047268597 -6.288664e-02
## 2015-09-30  0.0080818051 -0.0318248132 -0.0451947567 -0.038464678 -2.584697e-02
## 2015-10-30  0.0006847189  0.0618080651  0.0640258172  0.063589936  8.163463e-02
## 2015-11-30 -0.0038978000 -0.0255603366 -0.0075558116  0.024415193  3.648595e-03
## 2015-12-31 -0.0019192695 -0.0389470640 -0.0235951360 -0.052157006 -1.743341e-02
## 2016-01-29  0.0123303870 -0.0516366963 -0.0567577917 -0.060306898 -5.106832e-02
## 2016-02-29  0.0088315859 -0.0082116920 -0.0339140194  0.020605472 -8.268924e-04
## 2016-03-31  0.0087087752  0.1218792426  0.0637458506  0.089910362  6.510026e-02
## 2016-04-29  0.0025459387  0.0040788992  0.0219751893  0.021044162  3.933689e-03
## 2016-05-31  0.0001358671 -0.0376282565 -0.0008562580  0.004397027  1.686842e-02
## 2016-06-30  0.0191664478  0.0445822857 -0.0244914386  0.008292020  3.469676e-03
## 2016-07-29  0.0054295078  0.0524422306  0.0390003238  0.049348579  3.582208e-02
## 2016-08-31 -0.0021561790  0.0087985342  0.0053266743  0.011261130  1.196811e-03
## 2016-09-30  0.0005160425  0.0248727925  0.0132791635  0.008614382  5.786201e-05
## 2016-10-31 -0.0082046632 -0.0083118887 -0.0224036661 -0.038134674 -1.748881e-02
## 2016-11-30 -0.0259899694 -0.0451619406 -0.0179744003  0.125246337  3.617599e-02
## 2016-12-30  0.0025378763 -0.0025301145  0.0267029003  0.031491932  2.006890e-02
## 2017-01-31  0.0021261270  0.0644314792  0.0323817445 -0.012143893  1.773672e-02
## 2017-02-28  0.0064380497  0.0172577748  0.0118365136  0.013428395  3.853940e-02
## 2017-03-31 -0.0005526811  0.0361890338  0.0318057497 -0.006532683  1.248825e-03
## 2017-04-28  0.0090288995  0.0168664077  0.0239521738  0.005107827  9.877377e-03
## 2017-05-31  0.0068470938  0.0280598995  0.0348102184 -0.022862993  1.401413e-02
## 2017-06-30 -0.0001822132  0.0092237714  0.0029558519  0.029152396  6.355011e-03
## 2017-07-31  0.0033341415  0.0565945288  0.0261879539  0.007481340  2.034558e-02
## 2017-08-31  0.0093694187  0.0232438163 -0.0004483592 -0.027564897  2.913498e-03
## 2017-09-29 -0.0057325262 -0.0004464642  0.0233428833  0.082321854  1.994907e-02
## 2017-10-31  0.0009781768  0.0322786031  0.0166535816  0.005915865  2.329054e-02
## 2017-11-30 -0.0014837101 -0.0038969193  0.0068699622  0.036913377  3.010822e-02
## 2017-12-29  0.0047399875  0.0369255154  0.0133983443 -0.003731303  1.205495e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398373e-05 0.0001042068 4.177928e-05 -7.812354e-05 -9.034215e-06
## EEM  1.042068e-04 0.0017547089 1.039016e-03  6.437728e-04  6.795419e-04
## EFA  4.177928e-05 0.0010390164 1.064238e-03  6.490312e-04  6.975399e-04
## IJS -7.812354e-05 0.0006437728 6.490312e-04  1.565448e-03  8.290228e-04
## SPY -9.034215e-06 0.0006795419 6.975399e-04  8.290228e-04  7.408253e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347487
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003873862 0.009257142 0.005815637 0.005684464 0.002330245
rowSums(component_contribution)
## [1] 0.02347487
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {

    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)

    # Component contribution
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)

}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

# Figure 10.1 Contribution to Standard Deviation ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%

    ggplot(aes(asset, contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    
    labs(title = "Percent Contribution to Portfolio Standard Deviation",
         y = "Percent Contribution to Risk",
         x = NULL)

# Figure 10.2 Weight versus Contribution ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%

    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme_tq() +
    scale_fill_tq() +

    labs(title = "Percent Contribution to Volatility",
         y = "percent",
         x = "asset") 

6 Rolling Component Contribution

calculate_comp_contrib_by_window <- function(asset_returns_wide_tbl,
                                             start = 1,
                                             window = 24,
                                             weights) {

    # 1 Define start date
    start_date <- rownames(asset_returns_wide_tbl)[start]

    # 2 Define end date
    end_date <- rownames(asset_returns_wide_tbl)[start + window]

    # 3 Subset df
    df_subset <- asset_returns_wide_tbl %>%

        rownames_to_column(var = "date") %>%

        filter(date >= start_date & date < end_date) %>%

        column_to_rownames(var = "date")

    # 4 Calculate component contribution
    component_percentages <-df_subset %>%
        calculate_component_contribution(w = weights)

    # 5 Add end date to df
    component_percentages %>%

        mutate(date = ymd(end_date)) %>%
        select(date, everything())

}


# Check the custom function
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 1, window = 24,
                                                            w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
##   date         AGG   EEM   EFA   IJS   SPY
##   <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-01-30 0.039 0.372 0.256 0.245 0.088
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 2, window = 24,
                                                            w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
##   date         AGG   EEM   EFA   IJS   SPY
##   <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-02-27 0.036 0.374 0.249 0.252 0.089
dump(list = c("calculate_component_contribution",
              "calculate_comp_contrib_by_window"),
     file = "../00_scripts/calculate_comp_contrib_to_portfolio_volatility.R")
# Iterate the custom function
w <- c(0.25,0.25,0.2,0.2,0.1)
window <- 24

rolling_comp_contrib_tbl <- 1:(nrow(asset_returns_wide_tbl) - window) %>%

    map_df(.x = ., .f = ~calculate_comp_contrib_by_window(asset_returns_wide_tbl,
                                                          start = .x,
                                                          weights = w,
                                                          window = window))
rolling_comp_contrib_tbl
## # A tibble: 36 × 6
##    date         AGG   EEM   EFA   IJS   SPY
##    <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2015-01-30 0.039 0.372 0.256 0.245 0.088
##  2 2015-02-27 0.036 0.374 0.249 0.252 0.089
##  3 2015-03-31 0.027 0.37  0.255 0.255 0.092
##  4 2015-04-30 0.027 0.372 0.256 0.252 0.093
##  5 2015-05-29 0.024 0.385 0.254 0.246 0.092
##  6 2015-06-30 0.018 0.383 0.248 0.257 0.094
##  7 2015-07-31 0.014 0.375 0.253 0.261 0.097
##  8 2015-08-31 0.013 0.404 0.237 0.257 0.09 
##  9 2015-09-30 0.012 0.407 0.248 0.238 0.094
## 10 2015-10-30 0.003 0.405 0.244 0.243 0.105
## # ℹ 26 more rows
# Figure 10.3 Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%

    # Transform data to long form
    pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%

    # Plot
    ggplot(aes(date, contribution, color = asset)) +
    geom_line() +

    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
    scale_y_continuous(labels = scales::percent_format()) +

    annotate(geom = "text",
             x = as.Date("2016-07-01"),
             y = 0.03,
             color = "red", size = 5,
             label = str_glue("AGG dips below zero sometimes, indicating
                              it reduces the portfolio volatility."))

# Figure 10.4 Stacked Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%

    # Transform data to long form
    pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%

    # Plot
    ggplot(aes(date, contribution, fill = asset)) +
    geom_area() +

    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
    scale_y_continuous(labels = scales::percent_format()) +

    annotate(geom = "text",
             x = as.Date("2016-07-01"),
             y = 0.08,
             color = "red", size = 5,
             label = str_glue("AGG dips below zero sometimes, indicating
                              it reduces the portfolio volatility."))