# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibbletime)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062309977 -0.0029357127 0.0366062228 0.052133319 4.992297e-02
## 2013-02-28 0.0058909609 -0.0231050020 -0.0129690026 0.016175342 1.267830e-02
## 2013-03-28 0.0009851048 -0.0102351130 0.0129690026 0.040258296 3.726812e-02
## 2013-04-30 0.0096391940 0.0120848926 0.0489678978 0.001222538 1.903004e-02
## 2013-05-31 -0.0202139843 -0.0494836395 -0.0306556819 0.041976381 2.333583e-02
## 2013-06-28 -0.0157786224 -0.0547282188 -0.0271444361 -0.001403395 -1.343501e-02
## 2013-07-31 0.0026879998 0.0131597970 0.0518603956 0.063541526 5.038594e-02
## 2013-08-30 -0.0082978778 -0.0257058995 -0.0197465144 -0.034743382 -3.045088e-02
## 2013-09-30 0.0111439308 0.0695889676 0.0753387871 0.063873526 3.115580e-02
## 2013-10-31 0.0082916040 0.0408611805 0.0320817367 0.034234167 4.526650e-02
## 2013-11-29 -0.0025097175 -0.0025938424 0.0054494356 0.041660909 2.920679e-02
## 2013-12-31 -0.0055832380 -0.0040743561 0.0215280892 0.012892298 2.559636e-02
## 2014-01-31 0.0152917863 -0.0903226541 -0.0534133526 -0.035775311 -3.588465e-02
## 2014-02-28 0.0037570354 0.0332204819 0.0595050079 0.045257347 4.451025e-02
## 2014-03-31 -0.0014819416 0.0380215189 -0.0046024936 0.013315313 8.261499e-03
## 2014-04-30 0.0081837411 0.0077730312 0.0165292653 -0.023184520 6.927455e-03
## 2014-05-30 0.0117215491 0.0290911888 0.0158287552 0.006205779 2.294097e-02
## 2014-06-30 -0.0005760294 0.0237337140 0.0091650314 0.037718411 2.043492e-02
## 2014-07-31 -0.0025124403 0.0135556888 -0.0263794244 -0.052009590 -1.352888e-02
## 2014-08-29 0.0114303447 0.0279048239 0.0018002409 0.043658274 3.870486e-02
## 2014-09-30 -0.0061661293 -0.0808571130 -0.0395984581 -0.061260389 -1.389246e-02
## 2014-10-31 0.0105836108 0.0140965746 -0.0026548517 0.068874558 2.327771e-02
## 2014-11-28 0.0065495480 -0.0155412100 0.0006253294 0.004773809 2.710185e-02
## 2014-12-31 0.0014750640 -0.0404424236 -0.0407466441 0.025296060 -2.540002e-03
## 2015-01-30 0.0203153489 -0.0068955139 0.0062263657 -0.054628515 -3.007700e-02
## 2015-02-27 -0.0089887550 0.0431362652 0.0614506677 0.056914852 5.468152e-02
## 2015-03-31 0.0037401676 -0.0150863009 -0.0143887121 0.010156390 -1.583015e-02
## 2015-04-30 -0.0032326856 0.0662812399 0.0358163424 -0.018417649 9.785875e-03
## 2015-05-29 -0.0043839023 -0.0419109266 0.0019527895 0.007509709 1.277442e-02
## 2015-06-30 -0.0108251372 -0.0297468259 -0.0316786818 0.004171665 -2.052141e-02
## 2015-07-31 0.0085844053 -0.0651780301 0.0201143349 -0.027375343 2.233793e-02
## 2015-08-31 -0.0033639692 -0.0925122687 -0.0771525898 -0.047268426 -6.288663e-02
## 2015-09-30 0.0080818984 -0.0318248859 -0.0451948535 -0.038464921 -2.584744e-02
## 2015-10-30 0.0006852694 0.0618082062 0.0640261675 0.063589691 8.163527e-02
## 2015-11-30 -0.0038985351 -0.0255604049 -0.0075559791 0.024415509 3.648421e-03
## 2015-12-31 -0.0019189009 -0.0389469911 -0.0235949659 -0.052157079 -1.743350e-02
## 2016-01-29 0.0123298390 -0.0516366924 -0.0567580600 -0.060306805 -5.106859e-02
## 2016-02-29 0.0088320416 -0.0082116913 -0.0339139315 0.020604699 -8.262435e-04
## 2016-03-31 0.0087090439 0.1218790281 0.0637458564 0.089910492 6.509989e-02
## 2016-04-29 0.0025462953 0.0040791728 0.0219751047 0.021044325 3.933689e-03
## 2016-05-31 0.0001352417 -0.0376286057 -0.0008560851 0.004397180 1.686850e-02
## 2016-06-30 0.0191667107 0.0445825661 -0.0244917047 0.008292399 3.469760e-03
## 2016-07-29 0.0054294192 0.0524424201 0.0390004193 0.049348136 3.582208e-02
## 2016-08-31 -0.0021560913 0.0087982769 0.0053270996 0.011261275 1.196647e-03
## 2016-09-30 0.0005160424 0.0248727925 0.0132789926 0.008614665 5.818891e-05
## 2016-10-31 -0.0082056292 -0.0083118887 -0.0224038355 -0.038134959 -1.748939e-02
## 2016-11-30 -0.0259896266 -0.0451623342 -0.0179744890 0.125246604 3.617608e-02
## 2016-12-30 0.0025381475 -0.0025297208 0.0267029049 0.031491863 2.006930e-02
## 2017-01-31 0.0021262171 0.0644312942 0.0323819966 -0.012144208 1.773640e-02
## 2017-02-28 0.0064384964 0.0172579598 0.0118364314 0.013428710 3.853925e-02
## 2017-03-31 -0.0005533960 0.0361889168 0.0318055923 -0.006532745 1.249122e-03
## 2017-04-28 0.0090292563 0.0168664096 0.0239523312 0.005107451 9.877155e-03
## 2017-05-31 0.0068474451 0.0280600145 0.0348102184 -0.022862424 1.401428e-02
## 2017-06-30 -0.0001823011 0.0092235499 0.0029559259 0.029152015 6.354939e-03
## 2017-07-31 0.0033338773 0.0565947503 0.0261878079 0.007481403 2.034558e-02
## 2017-08-31 0.0093695048 0.0232440208 -0.0004482150 -0.027564835 2.913498e-03
## 2017-09-29 -0.0057323504 -0.0004464641 0.0233428112 0.082321971 1.994907e-02
## 2017-10-31 0.0009780019 0.0322783985 0.0166536509 0.005915981 2.329095e-02
## 2017-11-30 -0.0014844967 -0.0038968199 0.0068700306 0.036913144 3.010808e-02
## 2017-12-29 0.0047405995 0.0369254159 0.0133980709 -0.003731191 1.205462e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398422e-05 0.0001042085 4.178121e-05 -7.812348e-05 -9.032554e-06
## EEM 1.042085e-04 0.0017547131 1.039019e-03 6.437722e-04 6.795420e-04
## EFA 4.178121e-05 0.0010390190 1.064239e-03 6.490312e-04 6.975414e-04
## IJS -7.812348e-05 0.0006437722 6.490312e-04 1.565453e-03 8.290265e-04
## SPY -9.032554e-06 0.0006795420 6.975414e-04 8.290265e-04 7.408297e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003873973 0.009257149 0.005815643 0.005684468 0.00233025
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062309977 -0.0029357127 0.0366062228 0.052133319 4.992297e-02
## 2013-02-28 0.0058909609 -0.0231050020 -0.0129690026 0.016175342 1.267830e-02
## 2013-03-28 0.0009851048 -0.0102351130 0.0129690026 0.040258296 3.726812e-02
## 2013-04-30 0.0096391940 0.0120848926 0.0489678978 0.001222538 1.903004e-02
## 2013-05-31 -0.0202139843 -0.0494836395 -0.0306556819 0.041976381 2.333583e-02
## 2013-06-28 -0.0157786224 -0.0547282188 -0.0271444361 -0.001403395 -1.343501e-02
## 2013-07-31 0.0026879998 0.0131597970 0.0518603956 0.063541526 5.038594e-02
## 2013-08-30 -0.0082978778 -0.0257058995 -0.0197465144 -0.034743382 -3.045088e-02
## 2013-09-30 0.0111439308 0.0695889676 0.0753387871 0.063873526 3.115580e-02
## 2013-10-31 0.0082916040 0.0408611805 0.0320817367 0.034234167 4.526650e-02
## 2013-11-29 -0.0025097175 -0.0025938424 0.0054494356 0.041660909 2.920679e-02
## 2013-12-31 -0.0055832380 -0.0040743561 0.0215280892 0.012892298 2.559636e-02
## 2014-01-31 0.0152917863 -0.0903226541 -0.0534133526 -0.035775311 -3.588465e-02
## 2014-02-28 0.0037570354 0.0332204819 0.0595050079 0.045257347 4.451025e-02
## 2014-03-31 -0.0014819416 0.0380215189 -0.0046024936 0.013315313 8.261499e-03
## 2014-04-30 0.0081837411 0.0077730312 0.0165292653 -0.023184520 6.927455e-03
## 2014-05-30 0.0117215491 0.0290911888 0.0158287552 0.006205779 2.294097e-02
## 2014-06-30 -0.0005760294 0.0237337140 0.0091650314 0.037718411 2.043492e-02
## 2014-07-31 -0.0025124403 0.0135556888 -0.0263794244 -0.052009590 -1.352888e-02
## 2014-08-29 0.0114303447 0.0279048239 0.0018002409 0.043658274 3.870486e-02
## 2014-09-30 -0.0061661293 -0.0808571130 -0.0395984581 -0.061260389 -1.389246e-02
## 2014-10-31 0.0105836108 0.0140965746 -0.0026548517 0.068874558 2.327771e-02
## 2014-11-28 0.0065495480 -0.0155412100 0.0006253294 0.004773809 2.710185e-02
## 2014-12-31 0.0014750640 -0.0404424236 -0.0407466441 0.025296060 -2.540002e-03
## 2015-01-30 0.0203153489 -0.0068955139 0.0062263657 -0.054628515 -3.007700e-02
## 2015-02-27 -0.0089887550 0.0431362652 0.0614506677 0.056914852 5.468152e-02
## 2015-03-31 0.0037401676 -0.0150863009 -0.0143887121 0.010156390 -1.583015e-02
## 2015-04-30 -0.0032326856 0.0662812399 0.0358163424 -0.018417649 9.785875e-03
## 2015-05-29 -0.0043839023 -0.0419109266 0.0019527895 0.007509709 1.277442e-02
## 2015-06-30 -0.0108251372 -0.0297468259 -0.0316786818 0.004171665 -2.052141e-02
## 2015-07-31 0.0085844053 -0.0651780301 0.0201143349 -0.027375343 2.233793e-02
## 2015-08-31 -0.0033639692 -0.0925122687 -0.0771525898 -0.047268426 -6.288663e-02
## 2015-09-30 0.0080818984 -0.0318248859 -0.0451948535 -0.038464921 -2.584744e-02
## 2015-10-30 0.0006852694 0.0618082062 0.0640261675 0.063589691 8.163527e-02
## 2015-11-30 -0.0038985351 -0.0255604049 -0.0075559791 0.024415509 3.648421e-03
## 2015-12-31 -0.0019189009 -0.0389469911 -0.0235949659 -0.052157079 -1.743350e-02
## 2016-01-29 0.0123298390 -0.0516366924 -0.0567580600 -0.060306805 -5.106859e-02
## 2016-02-29 0.0088320416 -0.0082116913 -0.0339139315 0.020604699 -8.262435e-04
## 2016-03-31 0.0087090439 0.1218790281 0.0637458564 0.089910492 6.509989e-02
## 2016-04-29 0.0025462953 0.0040791728 0.0219751047 0.021044325 3.933689e-03
## 2016-05-31 0.0001352417 -0.0376286057 -0.0008560851 0.004397180 1.686850e-02
## 2016-06-30 0.0191667107 0.0445825661 -0.0244917047 0.008292399 3.469760e-03
## 2016-07-29 0.0054294192 0.0524424201 0.0390004193 0.049348136 3.582208e-02
## 2016-08-31 -0.0021560913 0.0087982769 0.0053270996 0.011261275 1.196647e-03
## 2016-09-30 0.0005160424 0.0248727925 0.0132789926 0.008614665 5.818891e-05
## 2016-10-31 -0.0082056292 -0.0083118887 -0.0224038355 -0.038134959 -1.748939e-02
## 2016-11-30 -0.0259896266 -0.0451623342 -0.0179744890 0.125246604 3.617608e-02
## 2016-12-30 0.0025381475 -0.0025297208 0.0267029049 0.031491863 2.006930e-02
## 2017-01-31 0.0021262171 0.0644312942 0.0323819966 -0.012144208 1.773640e-02
## 2017-02-28 0.0064384964 0.0172579598 0.0118364314 0.013428710 3.853925e-02
## 2017-03-31 -0.0005533960 0.0361889168 0.0318055923 -0.006532745 1.249122e-03
## 2017-04-28 0.0090292563 0.0168664096 0.0239523312 0.005107451 9.877155e-03
## 2017-05-31 0.0068474451 0.0280600145 0.0348102184 -0.022862424 1.401428e-02
## 2017-06-30 -0.0001823011 0.0092235499 0.0029559259 0.029152015 6.354939e-03
## 2017-07-31 0.0033338773 0.0565947503 0.0261878079 0.007481403 2.034558e-02
## 2017-08-31 0.0093695048 0.0232440208 -0.0004482150 -0.027564835 2.913498e-03
## 2017-09-29 -0.0057323504 -0.0004464641 0.0233428112 0.082321971 1.994907e-02
## 2017-10-31 0.0009780019 0.0322783985 0.0166536509 0.005915981 2.329095e-02
## 2017-11-30 -0.0014844967 -0.0038968199 0.0068700306 0.036913144 3.010808e-02
## 2017-12-29 0.0047405995 0.0369254159 0.0133980709 -0.003731191 1.205462e-02
calculate_component_contributions <- function(.data, w) {
# Covariance of asset returns
covariance_matrix <- cov(.data)
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
rowSums(component_contribution)
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contributions(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
Column Chart of Component Contribution
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contributions(w = c(.25, .25, .2, .2, .1)) %>%
# Transform to long form
pivot_longer(cols = everything(),names_to = "Asset", values_to = "Contribution")
plot_data %>%
ggplot(aes(x = Asset, y = Contribution)) +
geom_col(fill = "cornflowerblue") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Percent Contribution to Portfolio Volatility")
Column Chart of Component Contribution and weight
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contributions(w = c(.25, .25, .2, .2, .1)) %>%
# Transform to long form
pivot_longer(cols = everything(),names_to = "Asset", values_to = "Contribution") %>%
# Add weights
add_column(weight = c(.25, .25, .2, .2, .1)) %>%
# Transform to long
pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
plot_data
## # A tibble: 10 × 3
## Asset type value
## <chr> <chr> <dbl>
## 1 AGG Contribution 0.017
## 2 AGG weight 0.25
## 3 EEM Contribution 0.394
## 4 EEM weight 0.25
## 5 EFA Contribution 0.248
## 6 EFA weight 0.2
## 7 IJS Contribution 0.242
## 8 IJS weight 0.2
## 9 SPY Contribution 0.099
## 10 SPY weight 0.1
plot_data %>%
ggplot(aes(x = Asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5)) +
theme_tq() +
labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent", x = NULL)
## 6 Rolling Component Contribution