myData <- read_csv("../00_data/myData.csv")
## Rows: 27 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): film, film_rating
## dbl (2): number, run_time
## date (1): release_date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
myData %>%
summarise(sum(str_detect(film,"^T")))
## # A tibble: 1 × 1
## `sum(str_detect(film, "^T"))`
## <int>
## 1 NA
str_detect(myData$film, "^T")
## [1] TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
## [13] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [25] TRUE FALSE NA
sum(str_detect(myData$film, "^T"))
## [1] NA
mean(str_detect(myData$film, "^T"))
## [1] NA
film_rating <- c("G")
rating_match <- str_c(film_rating, collapse = "|")
has_rating <- (str_subset(film_rating, rating_match))
str_extract(has_rating, rating_match)
## [1] "G"
myData%>% mutate(film_T= film%>% str_replace_all("[T,t]", "-"))
## # A tibble: 27 × 6
## number film release_date run_time film_rating film_T
## <dbl> <chr> <date> <dbl> <chr> <chr>
## 1 1 Toy Story 1995-11-22 81 G -oy S-ory
## 2 2 A Bug's Life 1998-11-25 95 G A Bug's Life
## 3 3 Toy Story 2 1999-11-24 92 G -oy S-ory 2
## 4 4 Monsters, Inc. 2001-11-02 92 G Mons-ers- Inc.
## 5 5 Finding Nemo 2003-05-30 100 G Finding Nemo
## 6 6 The Incredibles 2004-11-05 115 PG -he Incredibles
## 7 7 Cars 2006-06-09 117 G Cars
## 8 8 Ratatouille 2007-06-29 111 G Ra-a-ouille
## 9 9 WALL-E 2008-06-27 98 G WALL-E
## 10 10 Up 2009-05-29 96 PG Up
## # ℹ 17 more rows