Install necessary packages and import appropriate data
pacman::p_load(tidyverse, readxl, raster, vegan, tigris, sf, sjPlot, sp, spOccupancy, ggrepel, lme4, lmerTest, MuMIn, brms, MCMCvis)
set.seed(97)
# Tree PCQ Data
tree_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Tree_PCQ")
# CWD Data
cwd_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "CWD")
# Soil Data
fuel_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Fuel_Sampling")
# Veg Data
Veg_Cover <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Veg_Cover")
# Shrub Cover Data
shrub_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Shrub_Cover")
# Site Data
CameraData <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraData.xlsx")
CameraLoc <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "CameraLocations")
# Add effort data
effort_matrix <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "Effort_Matrix_Full") %>%
pivot_longer(cols = matches("^202[4-5]-"), names_to = "week", values_to = "days") %>%
filter(days == "7") %>%
dplyr::select(Plot, week)
I moved this from a later section because the filtering process removed quadrats that did not capture any species. Rows labeled as “None” were removed, suggesting that the number of quadrats sampled per plot is not consistent across all plots.
# Count the total number of quadrats per plot
quadrat_count <- Veg_Cover %>%
group_by(Plot) %>%
summarize(total_quadrats = n_distinct(Quadrat), .groups = "drop")
#Filter tree data to only include trees with "tree" in the growth column
tree_data <- dplyr::filter(tree_data, Growth == "Tree")
#Filter Veg Cover to exclude Shrubs and Trees
Veg_Cover <- dplyr::filter(Veg_Cover, Growth != "Shrub" & Growth != "Tree")
#Filter Shrub Cover to only include Shrubs and Trees
shrub_data <- dplyr::filter(shrub_data, Growth == "Shrub" | Growth == "Tree")
This is not needed for non-ordination analysis. Moving the threshold down to 0% to keep the option, but to ensure it has no effect for now.
# Calculate the total number of sites
total_sites <- nrow(CameraLoc)
# Function to filter data by frequency
filter_by_frequency <- function(df) {
# Group data by species and calculate the frequency
freq <- df %>%
group_by(Species) %>%
summarise(Frequency = n_distinct(Plot) / nrow(CameraLoc) * 100) %>%
filter(Frequency >= 0)
# Filter the original data to include only species with frequency >= 3%
filtered_df <- df %>%
filter(Species %in% freq$Species)
return(filtered_df)
}
# Filter tree data by frequency
tree_data <- filter_by_frequency(tree_data)
# Filter Veg Cover data by frequency
Veg_Cover <- filter_by_frequency(Veg_Cover)
# Filter Shrub Cover data by frequency
shrub_data <- filter_by_frequency(shrub_data)
# Total length of Shrub cover at a site
shrub_cover <- shrub_data %>%
mutate(Cover = Line_End - Line_Start) %>%
group_by(Species_Name, Plot) %>%
summarise(Shrub_Total_Cover = sum(Cover, na.rm = TRUE), .groups = "drop") %>%
mutate(Shrub_Percent_Cover = Shrub_Total_Cover / 3000 * 100)
# Summed length of shrub over at a site
shrub_cover_summed <- shrub_cover %>%
group_by(Plot) %>%
summarize(total_shrub_cover = sum(Shrub_Total_Cover, na.rm = TRUE), .groups = "drop")
# Combine Plot and Quadrat columns
Veg_Cover <- Veg_Cover %>%
mutate(Plot_Quadrat = paste(Plot, Quadrat, sep = '_'))
# Join with CogonSites to get site information
Veg_Cover <- Veg_Cover %>%
left_join(CameraLoc, by = "Plot")
# Sum species cover across quadrats for each species at each plot
veg_cover_summed <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE), .groups = "drop")
# Calculate average herbaceous species cover
avg_species_cover <- veg_cover_summed %>%
left_join(quadrat_count, by = "Plot") %>%
mutate(avg_cover = total_cover / total_quadrats)
This species matrix includes herbaceous and shrub species
# Merge shrub cover with herbaceous average cover
combined_cover <- avg_species_cover %>%
full_join(
shrub_cover %>%
dplyr::select(Plot, Species_Name, Shrub_Percent_Cover),
by = c("Plot", "Species_Name")
) %>%
mutate(
overlap_flag = ifelse(!is.na(avg_cover) & !is.na(Shrub_Percent_Cover), TRUE, FALSE), # Flag overlaps
final_cover = case_when(
!is.na(avg_cover) & is.na(Shrub_Percent_Cover) ~ avg_cover, # Use herbaceous cover if no shrub data
is.na(avg_cover) & !is.na(Shrub_Percent_Cover) ~ Shrub_Percent_Cover, # Use shrub cover if no herbaceous data
TRUE ~ NA_real_ # Leave as NA where overlaps exist
)
)
# Species Matrix
species_matrix <- combined_cover %>%
dplyr::select(Plot, Species_Name, final_cover) %>%
pivot_wider(
names_from = Species_Name,
values_from = final_cover,
values_fill = 0
)
avg_cogongrass_cover <- species_matrix %>%
group_by(Plot) %>%
summarize(Avg_Cogongrass_Cover = sum(Imperata_cylindrica, na.rm = TRUE) / n(), .groups = "drop")
# Summarize species cover by site
site_species_cover <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'Plot'. You can override using the
## `.groups` argument.
## Remove all Imperata_cylindrica_Live and Imperata_cylindrica from species
site_species_cover <- site_species_cover %>%
filter(Species_Name != "Imperata_cylindrica_Live" & Species_Name != "Imperata_cylindrica")
# Calculate Shannon diversity per site
Veg_shannon_diversity <- site_species_cover %>%
group_by(Plot) %>%
mutate(proportion = total_cover / sum(total_cover)) %>%
summarize(Veg_shannon_index = -sum(proportion * log(proportion), na.rm = TRUE))
print(Veg_shannon_diversity)
## # A tibble: 206 × 2
## Plot Veg_shannon_index
## <chr> <dbl>
## 1 BI200 2.75
## 2 BI201 2.70
## 3 BI202 2.59
## 4 BI97 1.61
## 5 BI99 2.97
## 6 BN210 2.97
## 7 BN211 2.43
## 8 BN212 2.22
## 9 BN96 3.05
## 10 BN98 2.79
## # ℹ 196 more rows
if (!is.numeric(fuel_data$Height)) {
fuel_data$Height <- as.numeric(as.character(fuel_data$Height))
}
## Warning: NAs introduced by coercion
# Calculate average vegetation height per plot
veg_height <- fuel_data %>%
group_by(Plot) %>%
summarize(avg_veg_height = mean(Height, na.rm = TRUE), .groups = "drop")
# Tree density from point-centered quarter data
if (!is.numeric(tree_data$Distance)) {
tree_data$Distance <- as.numeric(as.character(tree_data$Distance))
}
tree_density_data <- tree_data %>%
group_by(Plot) %>%
summarize(Average_Distance = mean(Distance) / 100, # Convert to meters
Tree_Density = 10000 / (Average_Distance^2)) # Convert to trees per hectare
# Average canopy cover from vegetation quadrats
tree_canopy_data <- Veg_Cover %>%
distinct(Plot, Quadrat, .keep_all = TRUE) %>% # Ensure each quadrat counts once per plot
group_by(Plot) %>%
summarize(Avg_Canopy_Cover = mean(Canopy_Cover, na.rm = TRUE), .groups = "drop") # Calculate the average canopy cover per plot
cor(tree_density_data$Tree_Density, tree_canopy_data$Avg_Canopy_Cover)
## [1] 0.2742307
cwd_pa <- cwd_data %>%
group_by(Plot) %>%
summarise(
CWD_presence = as.integer(any(Line_Start > 0 & Line_End > 0)),
.groups = "drop"
)
CameraLoc <- CameraLoc %>%
left_join(cwd_pa, by = "Plot") %>%
left_join(Veg_shannon_diversity, by = "Plot") %>%
left_join(avg_cogongrass_cover, by = "Plot") %>%
left_join(shrub_cover_summed %>% dplyr::select(Plot, total_shrub_cover), by = "Plot") %>%
left_join(veg_height, by = "Plot") %>%
left_join(tree_density_data %>% dplyr::select(Plot, Tree_Density), by = "Plot") %>%
left_join(tree_canopy_data %>% dplyr::select(Plot, Avg_Canopy_Cover), by = "Plot") %>%
dplyr::select(-Authority)
# Group by Name and count the number of observations
species_counts <- CameraData %>%
filter((Class == "Mammalia" & Name != "Odocoileus_virginianus") | Name == "Meleagris_gallopavo") %>%
group_by(Name) %>%
summarize(count = n(), .groups = "drop")
# Filter for species with count greater than 10
species_subset <- species_counts %>%
filter(count > 10) %>%
pull(Name)
# Filter CameraData to only include species with count > 10
CameraData <- CameraData %>%
filter(Name %in% species_subset)
# Format Data Weekly
observations_weekly <- CameraData %>%
group_by(Plot, week = format(as.Date(Date), "%Y-%U"), Name) %>%
summarise(observations = n(), .groups = 'drop')
# Merge with Effort Matrix to include only valid weeks
observations_weekly <- effort_matrix %>%
left_join(observations_weekly, by = c("Plot" = "Plot", "week")) %>%
replace_na(list(observations = 0))
# Convert to wide format
observations_species <- observations_weekly %>%
pivot_wider(names_from = Name, values_from = observations, values_fill = list(observations = 0)) %>%
dplyr::select(-"NA")
# Create detection array
site_names <- sort(unique(observations_species$Plot))
species_names <- setdiff(colnames(observations_species), c("Plot", "week"))
num_sites <- length(site_names)
num_weeks <- length(unique(observations_species$week))
num_species <- length(species_names)
detection_array <- array(0, dim = c(num_sites, num_weeks, num_species))
dimnames(detection_array) <- list(site_names, unique(observations_species$week), species_names)
for (s in seq_along(species_names)) {
species_col <- species_names[s]
for (i in seq_along(site_names)) {
site <- site_names[i]
for (j in seq_along(unique(observations_species$week))) {
week <- unique(observations_species$week)[j]
detection_array[i, j, s] <- ifelse(
any(observations_species$Plot == site & observations_species$week == week & observations_species[[species_col]] > 0),
1, 0
)
}
}
}
dim(detection_array) # Should be num_sites x num_weeks x num_species
## [1] 32 36 8
# Duplicate CameraLoc to be used in Objective 2
CameraLoc_O2 <- CameraLoc
# Standardize the covariates
CameraLoc <- CameraLoc %>%
dplyr::select(-Plot, -Camera, -Lat, -Long, -Status, - Start_Date)
covariates_matrix <- as.matrix(CameraLoc)
rownames(covariates_matrix) <- site_names
# Standardizing covariates
covariates_matrix <- scale(covariates_matrix)
## Correlation
cor_mat <- cor(covariates_matrix)
# Create week matrix for covariate structure [site x week]
week_vals <- unique(observations_species$week)
week_matrix <- matrix(rep(week_vals, each = num_sites), nrow = num_sites, ncol = num_weeks, byrow = FALSE)
# Create detection covariate list
det.covs <- list(
shrub_cover = covariates_matrix[, "total_shrub_cover"],
veg_height = covariates_matrix[, "avg_veg_height"],
week = week_matrix
)
# Remove dash and convert to numeric
week_numeric <- as.numeric(gsub("-", "", det.covs$week))
## Scale and center week_numeric
week_numeric <- scale(week_numeric)
# Reshape into the original 32x36 matrix
det.covs$week <- matrix(week_numeric, nrow = 32, ncol = 36)
str(det.covs)
## List of 3
## $ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## $ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## $ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
This requires combining the presence data and the site covariate data into a single list. This also means that the presence data is in a 3-d format.
# Combine into a named list
data_list <- list(
y = detection_array,
occ.covs = covariates_matrix,
det.covs = det.covs
)
str(data_list)
## List of 3
## $ y : num [1:32, 1:36, 1:8] 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "dimnames")=List of 3
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:36] "2024-29" "2024-30" "2024-31" "2024-32" ...
## .. ..$ : chr [1:8] "Canis_latrans" "Procyon_lotor" "Dasypus_novemcinctus" "Lynx_rufus" ...
## $ occ.covs: num [1:32, 1:12] -0.237 -0.446 -0.337 -0.308 0.039 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:12] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## ..- attr(*, "scaled:center")= Named num [1:12] 458.388 21.875 0.898 2.844 16.188 ...
## .. ..- attr(*, "names")= chr [1:12] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## ..- attr(*, "scaled:scale")= Named num [1:12] 1027.633 6.871 1.232 0.808 0.397 ...
## .. ..- attr(*, "names")= chr [1:12] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## $ det.covs:List of 3
## ..$ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
I am unsure why I only had an issue with total shrub cover, but this should fix the “cannot find” issue.
# Convert occupancy and detection covariates to a dataframe
data_list[["occ.covs"]] <- as.data.frame(data_list[["occ.covs"]])
data_list[["occ.covs"]]$total_shrub_cover <- as.numeric(data_list[["occ.covs"]]$total_shrub_cover)
#data_list[["det.covs"]] <- as.data.frame(data_list[["det.covs"]])
#data_list[["det.covs"]]$total_shrub_cover <- as.numeric(data_list[["det.covs"]]$total_shrub_cover)
# Make species the first dimension
data_list$y <- aperm(data_list$y, c(3, 1, 2))
dimnames(data_list$y) <- list(species = dimnames(data_list$y)[[1]],
site = dimnames(data_list$y)[[2]],
week = dimnames(data_list$y)[[3]])
str(data_list)
## List of 3
## $ y : num [1:8, 1:32, 1:36] 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "dimnames")=List of 3
## .. ..$ species: chr [1:8] "Canis_latrans" "Procyon_lotor" "Dasypus_novemcinctus" "Lynx_rufus" ...
## .. ..$ site : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ week : chr [1:36] "2024-29" "2024-30" "2024-31" "2024-32" ...
## $ occ.covs:'data.frame': 32 obs. of 12 variables:
## ..$ Cogon_Patch_Size : num [1:32] -0.237 -0.446 -0.337 -0.308 0.039 ...
## ..$ VegetationDiversity : num [1:32] -0.273 0.455 1.619 -0.273 2.929 ...
## ..$ PostTreatmentDensities: num [1:32] 0.432 -0.729 0.432 2.169 1.13 ...
## ..$ Auth : num [1:32] -2.28 -2.28 -1.04 -1.04 -1.04 ...
## ..$ UTM_Zone : num [1:32] -0.473 -0.473 -0.473 -0.473 -0.473 ...
## ..$ CWD_presence : num [1:32] 1.86 -0.521 -0.521 -0.521 -0.521 ...
## ..$ Veg_shannon_index : num [1:32] 0.6829 0.0427 0.7279 -0.5991 1.1371 ...
## ..$ Avg_Cogongrass_Cover : num [1:32] -0.154 -0.708 0.308 2.045 1.121 ...
## ..$ total_shrub_cover : num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## ..$ avg_veg_height : num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## ..$ Tree_Density : num [1:32] -0.3629 -0.3564 -0.5111 3.5896 0.0958 ...
## ..$ Avg_Canopy_Cover : num [1:32] 0.1362 -0.0252 -0.9132 0.782 -1.9627 ...
## $ det.covs:List of 3
## ..$ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
# Define detection formulas
det.null <- ~ 1
det.full <- ~ shrub_cover + veg_height + week
det.cover <- ~ shrub_cover + veg_height
det.week <- ~ week
det.week.quad <- ~ week + I(week^2)
det.full.quad <- ~ shrub_cover + veg_height + week + I(week^2)
# Define occupancy formulas
occ.null <- ~ 1
occ.full <- ~ Cogon_Patch_Size + Veg_shannon_index + total_shrub_cover + Avg_Cogongrass_Cover +
Tree_Density + Avg_Canopy_Cover + avg_veg_height + CWD_presence + (1 | Auth)
occ.full.quad <- ~ Cogon_Patch_Size + Veg_shannon_index + total_shrub_cover + Avg_Cogongrass_Cover +
Tree_Density + Avg_Canopy_Cover + I(Avg_Cogongrass_Cover^2) + avg_veg_height + CWD_presence + (1 | Auth)
occ.cover <- ~ Avg_Cogongrass_Cover + total_shrub_cover + avg_veg_height + CWD_presence + (1 | Auth)
occ.canopy <- ~ Tree_Density + Avg_Canopy_Cover + (1 | Auth)
occ.move <- ~ Cogon_Patch_Size + Avg_Cogongrass_Cover + total_shrub_cover + (1 | Auth)
occ.forage <- ~ Veg_shannon_index + Avg_Cogongrass_Cover + (1 | Auth)
occ.cogon <- ~ Avg_Cogongrass_Cover + (1 | Auth)
occ.cogon.quad <- ~ Avg_Cogongrass_Cover + I(Avg_Cogongrass_Cover^2) + (1 | Auth)
ms_null_null <- msPGOcc(
occ.formula = occ.null,
det.formula = det.null,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 2, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 4, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_null)
##
## Call:
## msPGOcc(occ.formula = occ.null, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 2,
## n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 0.6255
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.3865 0.3237 -1.0253 -0.3834 0.2527 1.0011 2709
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.684 0.6178 0.1112 0.5093 2.3113 1.0028 2410
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5599 0.2777 -3.099 -2.5659 -1.9973 1.0002 3665
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.5944 0.5369 0.1544 0.454 1.8946 1.0144 2884
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans 0.1523 0.3687 -0.5135 0.1422 0.9175 1.0007
## (Intercept)-Procyon_lotor 0.4832 0.3726 -0.2118 0.4730 1.2512 1.0047
## (Intercept)-Dasypus_novemcinctus -0.5923 0.3313 -1.2461 -0.5857 0.0342 1.0020
## (Intercept)-Lynx_rufus -0.1240 0.4681 -0.9801 -0.1533 0.9043 0.9998
## (Intercept)-Didelphis_virginiana -1.1401 0.4068 -1.9812 -1.1222 -0.3980 1.0028
## (Intercept)-Sylvilagus_floridanus -0.4112 0.4104 -1.2048 -0.4148 0.4158 1.0034
## (Intercept)-Meleagris_gallopavo -0.4131 0.4685 -1.2966 -0.4372 0.5868 1.0091
## (Intercept)-Sciurus_carolinensis -1.1183 0.4142 -1.9775 -1.0951 -0.3591 1.0060
## ESS
## (Intercept)-Canis_latrans 2848
## (Intercept)-Procyon_lotor 2939
## (Intercept)-Dasypus_novemcinctus 4000
## (Intercept)-Lynx_rufus 1427
## (Intercept)-Didelphis_virginiana 2833
## (Intercept)-Sylvilagus_floridanus 2035
## (Intercept)-Meleagris_gallopavo 1267
## (Intercept)-Sciurus_carolinensis 2347
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.6097 0.1690 -2.9518 -2.6019 -2.2971 1.0015
## (Intercept)-Procyon_lotor -2.2650 0.1257 -2.5147 -2.2641 -2.0275 1.0080
## (Intercept)-Dasypus_novemcinctus -1.6074 0.1361 -1.8782 -1.6093 -1.3472 1.0012
## (Intercept)-Lynx_rufus -3.3510 0.2845 -3.9394 -3.3444 -2.8257 1.0023
## (Intercept)-Didelphis_virginiana -2.3537 0.2470 -2.8728 -2.3430 -1.8994 1.0069
## (Intercept)-Sylvilagus_floridanus -3.0954 0.2716 -3.6346 -3.0880 -2.5753 1.0086
## (Intercept)-Meleagris_gallopavo -3.2829 0.3107 -3.9214 -3.2715 -2.7111 1.0158
## (Intercept)-Sciurus_carolinensis -2.4601 0.2628 -3.0237 -2.4428 -1.9753 1.0064
## ESS
## (Intercept)-Canis_latrans 1338
## (Intercept)-Procyon_lotor 1933
## (Intercept)-Dasypus_novemcinctus 3215
## (Intercept)-Lynx_rufus 646
## (Intercept)-Didelphis_virginiana 1752
## (Intercept)-Sylvilagus_floridanus 827
## (Intercept)-Meleagris_gallopavo 651
## (Intercept)-Sciurus_carolinensis 1612
# Includes all covariates of detection and occupancy
ms_full_full <- msPGOcc(
occ.formula = occ.full,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_full)
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 2,
## n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 0.9718
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.8227 0.7083 -2.2078 -0.8293 0.5759 1.0368 391
## Cogon_Patch_Size -0.3890 0.7037 -1.7427 -0.4033 1.0400 1.0054 522
## Veg_shannon_index 1.0885 0.5241 0.1200 1.0690 2.1758 1.0113 369
## total_shrub_cover -0.9705 0.7093 -2.5280 -0.9297 0.3639 1.0039 653
## Avg_Cogongrass_Cover 1.9905 0.8191 0.4329 1.9664 3.6264 1.0132 290
## Tree_Density -1.9527 0.9000 -3.7029 -1.9614 -0.1231 1.0107 716
## Avg_Canopy_Cover 1.9832 0.7943 0.4171 1.9609 3.6272 1.0031 971
## avg_veg_height -0.4036 0.5164 -1.4137 -0.4085 0.6197 1.0574 439
## CWD_presence -0.0926 0.4255 -0.9318 -0.0966 0.7767 1.0049 709
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.7082 4.5125 0.0777 1.4364 13.1197 1.0843 460
## Cogon_Patch_Size 2.6894 4.3531 0.0888 1.3256 13.6177 1.0666 311
## Veg_shannon_index 0.7926 1.2467 0.0486 0.4118 3.8096 1.0179 927
## total_shrub_cover 2.8749 4.2378 0.1182 1.5099 13.4853 1.0582 210
## Avg_Cogongrass_Cover 1.5012 2.8177 0.0611 0.6161 8.1092 1.0594 486
## Tree_Density 5.9698 13.1571 0.1045 2.6839 30.1154 1.0934 289
## Avg_Canopy_Cover 5.0981 7.2356 0.3026 2.9727 22.8484 1.0160 490
## avg_veg_height 0.5710 0.9319 0.0416 0.2840 2.7261 1.0160 733
## CWD_presence 0.6134 0.9638 0.0422 0.3236 2.8797 1.0512 598
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 3.6226 3.4609 0.1007 2.7202 12.486 1.0347 131
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7758 0.3045 -3.3632 -2.7823 -2.1330 1.0129 2510
## shrub_cover 0.4130 0.3166 -0.2105 0.4077 1.0467 1.0017 1736
## veg_height 0.1008 0.2065 -0.3336 0.1053 0.5032 1.0106 1346
## week -0.1000 0.1357 -0.3788 -0.0962 0.1588 1.0080 1946
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6809 0.6346 0.1587 0.5118 2.1764 1.0116 1746
## shrub_cover 0.7105 0.6626 0.1470 0.5444 2.3107 1.0151 1533
## veg_height 0.2719 0.2461 0.0613 0.2032 0.8974 1.0204 2215
## week 0.1071 0.0998 0.0242 0.0780 0.3667 1.0138 2079
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.1732 1.1394 -1.7974 0.0991
## (Intercept)-Procyon_lotor 0.0632 1.0998 -2.0551 0.0440
## (Intercept)-Dasypus_novemcinctus -1.3181 0.9498 -3.4425 -1.2306
## (Intercept)-Lynx_rufus -0.2049 1.5647 -2.6496 -0.4378
## (Intercept)-Didelphis_virginiana -1.9982 1.1963 -4.7159 -1.8838
## (Intercept)-Sylvilagus_floridanus -0.9591 1.0807 -3.1582 -0.9404
## (Intercept)-Meleagris_gallopavo -1.1165 1.1932 -3.6604 -1.0915
## (Intercept)-Sciurus_carolinensis -1.8982 1.2334 -4.7184 -1.7474
## Cogon_Patch_Size-Canis_latrans 0.5935 1.1215 -1.1628 0.4294
## Cogon_Patch_Size-Procyon_lotor -0.9583 0.8404 -2.7404 -0.9273
## Cogon_Patch_Size-Dasypus_novemcinctus -0.3816 0.8956 -2.0854 -0.4172
## Cogon_Patch_Size-Lynx_rufus -0.7527 1.3409 -3.4439 -0.7290
## Cogon_Patch_Size-Didelphis_virginiana 0.9130 1.0859 -0.8006 0.7643
## Cogon_Patch_Size-Sylvilagus_floridanus -1.4812 1.4917 -5.0047 -1.2451
## Cogon_Patch_Size-Meleagris_gallopavo -0.1374 1.2944 -2.1699 -0.3039
## Cogon_Patch_Size-Sciurus_carolinensis -1.2854 1.3307 -4.2920 -1.1355
## Veg_shannon_index-Canis_latrans 1.4081 0.7167 0.1712 1.3431
## Veg_shannon_index-Procyon_lotor 1.4657 0.6876 0.2332 1.4167
## Veg_shannon_index-Dasypus_novemcinctus 0.7352 0.6216 -0.5485 0.7590
## Veg_shannon_index-Lynx_rufus 0.9830 0.8760 -0.7693 0.9806
## Veg_shannon_index-Didelphis_virginiana 1.3021 0.7452 0.0378 1.2364
## Veg_shannon_index-Sylvilagus_floridanus 1.2242 0.7671 -0.2202 1.1870
## Veg_shannon_index-Meleagris_gallopavo 1.3925 0.8388 -0.0138 1.3050
## Veg_shannon_index-Sciurus_carolinensis 0.4210 0.8568 -1.4673 0.5004
## total_shrub_cover-Canis_latrans 0.6816 1.1586 -1.0604 0.4923
## total_shrub_cover-Procyon_lotor -1.2590 0.7068 -2.7836 -1.1857
## total_shrub_cover-Dasypus_novemcinctus -0.4625 0.9313 -2.6026 -0.3947
## total_shrub_cover-Lynx_rufus -1.7836 1.4101 -5.2093 -1.5541
## total_shrub_cover-Didelphis_virginiana -1.3494 1.2480 -4.2375 -1.1889
## total_shrub_cover-Sylvilagus_floridanus -1.1613 1.4418 -4.4669 -0.9605
## total_shrub_cover-Meleagris_gallopavo -2.4829 1.5496 -6.1079 -2.2296
## total_shrub_cover-Sciurus_carolinensis -1.1033 1.2919 -4.0982 -0.9596
## Avg_Cogongrass_Cover-Canis_latrans 2.4520 1.0487 0.6542 2.3615
## Avg_Cogongrass_Cover-Procyon_lotor 2.1582 0.9961 0.3017 2.1124
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 2.6479 1.0955 0.8015 2.5631
## Avg_Cogongrass_Cover-Lynx_rufus 2.3967 1.1095 0.5192 2.2952
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.1127 1.0081 0.2305 2.0736
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.3163 1.2353 -1.3656 1.3909
## Avg_Cogongrass_Cover-Meleagris_gallopavo 1.4884 1.4358 -1.9621 1.6530
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.2883 1.0724 0.3511 2.2079
## Tree_Density-Canis_latrans -3.1438 1.7303 -7.3920 -2.8159
## Tree_Density-Procyon_lotor -1.6368 0.8700 -3.3933 -1.6310
## Tree_Density-Dasypus_novemcinctus -4.4154 2.2482 -10.0432 -3.9245
## Tree_Density-Lynx_rufus -0.0876 1.6658 -2.6282 -0.2819
## Tree_Density-Didelphis_virginiana -2.3217 1.4481 -5.4695 -2.2330
## Tree_Density-Sylvilagus_floridanus -2.7943 1.8250 -7.0797 -2.5965
## Tree_Density-Meleagris_gallopavo -2.3477 1.6276 -5.7638 -2.2806
## Tree_Density-Sciurus_carolinensis -2.2668 1.6951 -5.9798 -2.1534
## Avg_Canopy_Cover-Canis_latrans 0.1528 0.6966 -1.2859 0.1553
## Avg_Canopy_Cover-Procyon_lotor 1.8426 0.8454 0.3039 1.7866
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.5069 0.9354 0.9739 2.3984
## Avg_Canopy_Cover-Lynx_rufus 0.8304 1.2799 -1.6511 0.7842
## Avg_Canopy_Cover-Didelphis_virginiana 3.5101 1.4698 1.3668 3.2598
## Avg_Canopy_Cover-Sylvilagus_floridanus 4.3849 2.0056 1.5114 4.0388
## Avg_Canopy_Cover-Meleagris_gallopavo 2.7522 1.4985 0.5004 2.4923
## Avg_Canopy_Cover-Sciurus_carolinensis 3.2917 1.5477 1.1600 2.9640
## avg_veg_height-Canis_latrans -0.4620 0.6354 -1.7564 -0.4425
## avg_veg_height-Procyon_lotor -0.3852 0.6144 -1.5567 -0.3916
## avg_veg_height-Dasypus_novemcinctus -0.1761 0.6341 -1.3546 -0.2049
## avg_veg_height-Lynx_rufus -0.5822 0.8002 -2.2891 -0.5505
## avg_veg_height-Didelphis_virginiana -0.6118 0.7212 -2.1512 -0.5710
## avg_veg_height-Sylvilagus_floridanus -0.6096 0.7404 -2.1844 -0.5766
## avg_veg_height-Meleagris_gallopavo -0.4562 0.8626 -2.2236 -0.4303
## avg_veg_height-Sciurus_carolinensis -0.0248 0.7531 -1.3111 -0.0679
## CWD_presence-Canis_latrans 0.4286 0.6636 -0.6453 0.3544
## CWD_presence-Procyon_lotor -0.3303 0.5609 -1.5219 -0.3111
## CWD_presence-Dasypus_novemcinctus -0.1445 0.5252 -1.2517 -0.1376
## CWD_presence-Lynx_rufus 0.2125 0.6827 -1.0272 0.1634
## CWD_presence-Didelphis_virginiana -0.1372 0.6597 -1.4570 -0.1237
## CWD_presence-Sylvilagus_floridanus -0.4994 0.7120 -2.1801 -0.4290
## CWD_presence-Meleagris_gallopavo -0.2291 0.7618 -1.7102 -0.2271
## CWD_presence-Sciurus_carolinensis -0.0784 0.6433 -1.4000 -0.0729
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 2.6677 1.0610 264
## (Intercept)-Procyon_lotor 2.2665 1.0820 275
## (Intercept)-Dasypus_novemcinctus 0.3335 1.0064 555
## (Intercept)-Lynx_rufus 3.5998 1.1523 177
## (Intercept)-Didelphis_virginiana 0.0350 1.0663 490
## (Intercept)-Sylvilagus_floridanus 1.2510 1.0051 487
## (Intercept)-Meleagris_gallopavo 1.3122 1.0117 307
## (Intercept)-Sciurus_carolinensis 0.2192 1.0256 366
## Cogon_Patch_Size-Canis_latrans 3.2033 1.0068 589
## Cogon_Patch_Size-Procyon_lotor 0.5547 1.0149 379
## Cogon_Patch_Size-Dasypus_novemcinctus 1.4814 1.0068 781
## Cogon_Patch_Size-Lynx_rufus 1.8423 1.0197 340
## Cogon_Patch_Size-Didelphis_virginiana 3.3890 1.0146 453
## Cogon_Patch_Size-Sylvilagus_floridanus 0.8396 1.0319 285
## Cogon_Patch_Size-Meleagris_gallopavo 2.7801 1.0505 342
## Cogon_Patch_Size-Sciurus_carolinensis 0.8960 1.0076 300
## Veg_shannon_index-Canis_latrans 2.9797 1.0216 451
## Veg_shannon_index-Procyon_lotor 2.9730 1.0093 335
## Veg_shannon_index-Dasypus_novemcinctus 1.8863 1.0045 915
## Veg_shannon_index-Lynx_rufus 2.7097 1.0111 482
## Veg_shannon_index-Didelphis_virginiana 2.9836 1.0069 409
## Veg_shannon_index-Sylvilagus_floridanus 2.8646 1.0097 604
## Veg_shannon_index-Meleagris_gallopavo 3.3534 1.0060 778
## Veg_shannon_index-Sciurus_carolinensis 1.8967 1.0076 654
## total_shrub_cover-Canis_latrans 3.3906 1.0506 246
## total_shrub_cover-Procyon_lotor -0.0648 1.0024 1030
## total_shrub_cover-Dasypus_novemcinctus 1.1985 1.0301 455
## total_shrub_cover-Lynx_rufus 0.4675 1.0347 231
## total_shrub_cover-Didelphis_virginiana 0.5031 1.0598 316
## total_shrub_cover-Sylvilagus_floridanus 1.1386 1.0237 295
## total_shrub_cover-Meleagris_gallopavo -0.1829 1.0089 193
## total_shrub_cover-Sciurus_carolinensis 1.0654 1.0169 315
## Avg_Cogongrass_Cover-Canis_latrans 4.7950 1.0259 350
## Avg_Cogongrass_Cover-Procyon_lotor 4.3047 1.0305 359
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 5.0236 1.0420 305
## Avg_Cogongrass_Cover-Lynx_rufus 4.8706 1.0147 428
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.2443 1.0180 437
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 3.5369 1.0050 366
## Avg_Cogongrass_Cover-Meleagris_gallopavo 3.9195 1.0008 278
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.6132 1.0417 311
## Tree_Density-Canis_latrans -0.7962 1.0304 254
## Tree_Density-Procyon_lotor 0.1121 1.0123 836
## Tree_Density-Dasypus_novemcinctus -1.4241 1.0389 171
## Tree_Density-Lynx_rufus 3.5472 1.0622 241
## Tree_Density-Didelphis_virginiana 0.5061 1.0802 552
## Tree_Density-Sylvilagus_floridanus 0.3907 1.0158 257
## Tree_Density-Meleagris_gallopavo 0.9654 1.0116 447
## Tree_Density-Sciurus_carolinensis 0.9808 1.0214 412
## Avg_Canopy_Cover-Canis_latrans 1.5072 1.0157 767
## Avg_Canopy_Cover-Procyon_lotor 3.6709 1.0032 1026
## Avg_Canopy_Cover-Dasypus_novemcinctus 4.6403 1.0060 432
## Avg_Canopy_Cover-Lynx_rufus 3.4978 1.0127 347
## Avg_Canopy_Cover-Didelphis_virginiana 6.9435 1.0069 309
## Avg_Canopy_Cover-Sylvilagus_floridanus 9.2746 1.0084 314
## Avg_Canopy_Cover-Meleagris_gallopavo 6.3391 1.0115 385
## Avg_Canopy_Cover-Sciurus_carolinensis 7.1333 1.0162 251
## avg_veg_height-Canis_latrans 0.7926 1.0298 613
## avg_veg_height-Procyon_lotor 0.8452 1.0297 668
## avg_veg_height-Dasypus_novemcinctus 1.1436 1.0319 675
## avg_veg_height-Lynx_rufus 0.9379 1.0285 483
## avg_veg_height-Didelphis_virginiana 0.7226 1.0210 547
## avg_veg_height-Sylvilagus_floridanus 0.8082 1.0320 762
## avg_veg_height-Meleagris_gallopavo 1.2088 1.0180 591
## avg_veg_height-Sciurus_carolinensis 1.6258 1.0305 733
## CWD_presence-Canis_latrans 2.0237 1.0152 837
## CWD_presence-Procyon_lotor 0.7412 1.0098 1067
## CWD_presence-Dasypus_novemcinctus 0.8797 1.0007 1495
## CWD_presence-Lynx_rufus 1.6829 1.0171 787
## CWD_presence-Didelphis_virginiana 1.1871 1.0007 1062
## CWD_presence-Sylvilagus_floridanus 0.7215 1.0073 731
## CWD_presence-Meleagris_gallopavo 1.2870 1.0036 836
## CWD_presence-Sciurus_carolinensis 1.2011 1.0074 908
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7615 0.1843 -3.1332 -2.7543 -2.4173 1.0113
## (Intercept)-Procyon_lotor -2.3132 0.1404 -2.5969 -2.3110 -2.0453 1.0147
## (Intercept)-Dasypus_novemcinctus -1.8400 0.1717 -2.1869 -1.8407 -1.5145 1.0062
## (Intercept)-Lynx_rufus -3.5608 0.3536 -4.3079 -3.5459 -2.9167 1.0473
## (Intercept)-Didelphis_virginiana -2.6792 0.2920 -3.2653 -2.6786 -2.1155 1.0149
## (Intercept)-Sylvilagus_floridanus -3.1975 0.2523 -3.7053 -3.1937 -2.7174 1.0126
## (Intercept)-Meleagris_gallopavo -3.6788 0.4470 -4.5937 -3.6673 -2.8442 1.0111
## (Intercept)-Sciurus_carolinensis -2.8359 0.3243 -3.5002 -2.8284 -2.2098 1.0027
## shrub_cover-Canis_latrans -0.3723 0.2224 -0.8014 -0.3761 0.0668 1.0085
## shrub_cover-Procyon_lotor 0.2849 0.1612 -0.0324 0.2874 0.5961 1.0029
## shrub_cover-Dasypus_novemcinctus 1.0175 0.3223 0.3980 1.0204 1.6577 1.0050
## shrub_cover-Lynx_rufus 0.0779 0.3850 -0.7228 0.0889 0.7862 1.0512
## shrub_cover-Didelphis_virginiana 1.0797 0.3795 0.3682 1.0678 1.8363 1.0414
## shrub_cover-Sylvilagus_floridanus 0.6227 0.4152 -0.2015 0.6336 1.4384 1.0069
## shrub_cover-Meleagris_gallopavo -0.3978 0.4376 -1.2609 -0.3957 0.4556 1.0121
## shrub_cover-Sciurus_carolinensis 1.1022 0.4175 0.2869 1.0950 1.9592 1.0047
## veg_height-Canis_latrans -0.5941 0.1898 -0.9870 -0.5885 -0.2388 1.0036
## veg_height-Procyon_lotor 0.3570 0.1250 0.1180 0.3552 0.6084 1.0034
## veg_height-Dasypus_novemcinctus 0.2844 0.1374 0.0162 0.2880 0.5484 1.0017
## veg_height-Lynx_rufus 0.1082 0.2466 -0.3803 0.1101 0.5775 1.0148
## veg_height-Didelphis_virginiana 0.4991 0.2418 0.0470 0.4921 0.9846 1.0074
## veg_height-Sylvilagus_floridanus 0.1663 0.2509 -0.3498 0.1742 0.6475 1.0011
## veg_height-Meleagris_gallopavo -0.1858 0.3784 -0.9431 -0.1839 0.5956 1.0144
## veg_height-Sciurus_carolinensis 0.1687 0.2267 -0.2525 0.1629 0.6228 1.0035
## week-Canis_latrans 0.0601 0.1336 -0.2023 0.0641 0.3183 1.0003
## week-Procyon_lotor -0.0644 0.1236 -0.3171 -0.0602 0.1657 1.0075
## week-Dasypus_novemcinctus -0.1781 0.1394 -0.4686 -0.1723 0.0787 1.0012
## week-Lynx_rufus -0.0520 0.1947 -0.4435 -0.0506 0.3187 1.0075
## week-Didelphis_virginiana -0.2284 0.2200 -0.7093 -0.2082 0.1651 1.0047
## week-Sylvilagus_floridanus -0.1768 0.2023 -0.6104 -0.1677 0.1854 1.0014
## week-Meleagris_gallopavo -0.2830 0.2435 -0.8364 -0.2622 0.1409 1.0006
## week-Sciurus_carolinensis 0.1096 0.1838 -0.2564 0.1099 0.4629 1.0032
## ESS
## (Intercept)-Canis_latrans 764
## (Intercept)-Procyon_lotor 1782
## (Intercept)-Dasypus_novemcinctus 1072
## (Intercept)-Lynx_rufus 256
## (Intercept)-Didelphis_virginiana 689
## (Intercept)-Sylvilagus_floridanus 893
## (Intercept)-Meleagris_gallopavo 396
## (Intercept)-Sciurus_carolinensis 528
## shrub_cover-Canis_latrans 822
## shrub_cover-Procyon_lotor 1924
## shrub_cover-Dasypus_novemcinctus 707
## shrub_cover-Lynx_rufus 332
## shrub_cover-Didelphis_virginiana 519
## shrub_cover-Sylvilagus_floridanus 551
## shrub_cover-Meleagris_gallopavo 523
## shrub_cover-Sciurus_carolinensis 482
## veg_height-Canis_latrans 896
## veg_height-Procyon_lotor 2187
## veg_height-Dasypus_novemcinctus 2452
## veg_height-Lynx_rufus 841
## veg_height-Didelphis_virginiana 1118
## veg_height-Sylvilagus_floridanus 1078
## veg_height-Meleagris_gallopavo 475
## veg_height-Sciurus_carolinensis 819
## week-Canis_latrans 1997
## week-Procyon_lotor 2143
## week-Dasypus_novemcinctus 2462
## week-Lynx_rufus 1153
## week-Didelphis_virginiana 1632
## week-Sylvilagus_floridanus 1372
## week-Meleagris_gallopavo 985
## week-Sciurus_carolinensis 2063
#Includes cover for detection and only foraging for occupancy
ms_cover_forage <- msPGOcc(
occ.formula = occ.forage,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 2,
## n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 0.6863
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.3400 0.3908 -1.0897 -0.3447 0.4722 1.0086 616
## Veg_shannon_index 0.3547 0.2752 -0.1816 0.3526 0.9035 1.0088 1329
## Avg_Cogongrass_Cover 0.3505 0.2970 -0.2258 0.3545 0.9308 1.0062 1186
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6522 0.8283 0.0555 0.4121 2.6672 1.0399 934
## Veg_shannon_index 0.2869 0.3675 0.0390 0.1798 1.1311 1.0307 1739
## Avg_Cogongrass_Cover 0.3574 0.4664 0.0401 0.2191 1.5674 1.0099 1336
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.7178 0.6914 0.059 0.5122 2.6321 1.0111 320
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7366 0.3227 -3.3587 -2.7452 -2.0983 1.0015 2604
## shrub_cover 0.2476 0.3151 -0.3986 0.2501 0.8617 1.0033 1952
## veg_height 0.0644 0.1960 -0.3256 0.0628 0.4400 1.0071 1969
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7724 0.6784 0.1703 0.5834 2.5673 1.0043 1491
## shrub_cover 0.6991 0.7406 0.1239 0.5205 2.2482 1.0156 1163
## veg_height 0.2451 0.2123 0.0567 0.1908 0.7725 1.0316 2231
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.0671 0.5384 -0.9448 0.0572
## (Intercept)-Procyon_lotor 0.1817 0.5719 -0.9379 0.1706
## (Intercept)-Dasypus_novemcinctus -0.5353 0.4683 -1.4921 -0.5163
## (Intercept)-Lynx_rufus -0.1784 0.6451 -1.2978 -0.2275
## (Intercept)-Didelphis_virginiana -0.9019 0.5465 -2.0566 -0.8839
## (Intercept)-Sylvilagus_floridanus -0.4094 0.5399 -1.4612 -0.4305
## (Intercept)-Meleagris_gallopavo -0.0855 0.7643 -1.3776 -0.1725
## (Intercept)-Sciurus_carolinensis -0.9134 0.5442 -2.0472 -0.8861
## Veg_shannon_index-Canis_latrans 0.6355 0.3932 -0.0740 0.6032
## Veg_shannon_index-Procyon_lotor 0.4488 0.3667 -0.2329 0.4442
## Veg_shannon_index-Dasypus_novemcinctus 0.1868 0.3494 -0.5515 0.2046
## Veg_shannon_index-Lynx_rufus 0.2197 0.4871 -0.8177 0.2418
## Veg_shannon_index-Didelphis_virginiana 0.4675 0.3830 -0.2637 0.4553
## Veg_shannon_index-Sylvilagus_floridanus 0.4343 0.3986 -0.3252 0.4200
## Veg_shannon_index-Meleagris_gallopavo 0.5221 0.4901 -0.3680 0.4811
## Veg_shannon_index-Sciurus_carolinensis -0.0059 0.4096 -0.9090 0.0256
## Avg_Cogongrass_Cover-Canis_latrans 0.6238 0.4099 -0.1275 0.5942
## Avg_Cogongrass_Cover-Procyon_lotor 0.3874 0.3824 -0.3306 0.3759
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4543 0.3510 -0.2352 0.4440
## Avg_Cogongrass_Cover-Lynx_rufus 0.5960 0.4484 -0.1828 0.5490
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.4656 0.3887 -0.2806 0.4551
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0857 0.4642 -1.0870 -0.0565
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.0324 0.6132 -1.4074 0.0146
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4340 0.3717 -0.2807 0.4329
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.1731 1.0059 692
## (Intercept)-Procyon_lotor 1.3406 1.0131 587
## (Intercept)-Dasypus_novemcinctus 0.3641 1.0031 1441
## (Intercept)-Lynx_rufus 1.2422 1.0120 555
## (Intercept)-Didelphis_virginiana 0.0876 1.0011 1144
## (Intercept)-Sylvilagus_floridanus 0.6969 1.0051 1034
## (Intercept)-Meleagris_gallopavo 1.6438 1.0439 403
## (Intercept)-Sciurus_carolinensis 0.0667 1.0037 1212
## Veg_shannon_index-Canis_latrans 1.5071 1.0008 1851
## Veg_shannon_index-Procyon_lotor 1.2101 1.0043 1758
## Veg_shannon_index-Dasypus_novemcinctus 0.8484 1.0041 2490
## Veg_shannon_index-Lynx_rufus 1.1292 1.0020 1261
## Veg_shannon_index-Didelphis_virginiana 1.2576 1.0031 2335
## Veg_shannon_index-Sylvilagus_floridanus 1.2898 1.0041 2009
## Veg_shannon_index-Meleagris_gallopavo 1.6081 1.0050 1478
## Veg_shannon_index-Sciurus_carolinensis 0.7212 1.0068 1754
## Avg_Cogongrass_Cover-Canis_latrans 1.5491 1.0026 1908
## Avg_Cogongrass_Cover-Procyon_lotor 1.2041 1.0048 2343
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1702 1.0045 2697
## Avg_Cogongrass_Cover-Lynx_rufus 1.6186 1.0053 1745
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.2549 1.0001 1874
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.7297 1.0060 1434
## Avg_Cogongrass_Cover-Meleagris_gallopavo 1.0596 1.0135 797
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.1939 1.0015 2040
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7262 0.1808 -3.0977 -2.7185 -2.3895 1.0193
## (Intercept)-Procyon_lotor -2.3021 0.1441 -2.6036 -2.2956 -2.0409 1.0066
## (Intercept)-Dasypus_novemcinctus -1.7640 0.1600 -2.0765 -1.7617 -1.4558 1.0016
## (Intercept)-Lynx_rufus -3.5494 0.3491 -4.2870 -3.5344 -2.9241 1.0297
## (Intercept)-Didelphis_virginiana -2.5913 0.2829 -3.1815 -2.5818 -2.0563 1.0061
## (Intercept)-Sylvilagus_floridanus -3.1625 0.2902 -3.7807 -3.1439 -2.6434 1.0113
## (Intercept)-Meleagris_gallopavo -3.8506 0.4511 -4.7116 -3.8613 -2.9117 1.0052
## (Intercept)-Sciurus_carolinensis -2.6633 0.3132 -3.3122 -2.6485 -2.0907 1.0003
## shrub_cover-Canis_latrans -0.2829 0.2176 -0.7059 -0.2843 0.1372 1.0011
## shrub_cover-Procyon_lotor 0.2431 0.1728 -0.1227 0.2481 0.5659 1.0026
## shrub_cover-Dasypus_novemcinctus 0.8617 0.2961 0.2922 0.8600 1.4441 1.0038
## shrub_cover-Lynx_rufus -0.2225 0.3669 -0.9624 -0.2243 0.4817 1.0286
## shrub_cover-Didelphis_virginiana 1.0004 0.3765 0.3174 0.9792 1.8084 1.0110
## shrub_cover-Sylvilagus_floridanus 0.2583 0.4219 -0.5381 0.2378 1.1132 1.0059
## shrub_cover-Meleagris_gallopavo -0.6549 0.3965 -1.3991 -0.6558 0.1414 1.0089
## shrub_cover-Sciurus_carolinensis 0.8709 0.4198 0.0816 0.8611 1.7115 1.0012
## veg_height-Canis_latrans -0.5769 0.1841 -0.9538 -0.5732 -0.2313 1.0165
## veg_height-Procyon_lotor 0.3416 0.1232 0.1014 0.3410 0.5859 1.0087
## veg_height-Dasypus_novemcinctus 0.2575 0.1390 -0.0141 0.2553 0.5366 1.0016
## veg_height-Lynx_rufus -0.0069 0.2493 -0.5166 0.0027 0.4731 1.0130
## veg_height-Didelphis_virginiana 0.4373 0.2493 -0.0165 0.4268 0.9528 1.0029
## veg_height-Sylvilagus_floridanus 0.1431 0.2479 -0.3573 0.1431 0.6176 1.0022
## veg_height-Meleagris_gallopavo -0.1975 0.3815 -0.9649 -0.2004 0.5523 1.0324
## veg_height-Sciurus_carolinensis 0.0903 0.2132 -0.3176 0.0878 0.5220 1.0041
## ESS
## (Intercept)-Canis_latrans 1030
## (Intercept)-Procyon_lotor 1763
## (Intercept)-Dasypus_novemcinctus 2184
## (Intercept)-Lynx_rufus 405
## (Intercept)-Didelphis_virginiana 1182
## (Intercept)-Sylvilagus_floridanus 716
## (Intercept)-Meleagris_gallopavo 256
## (Intercept)-Sciurus_carolinensis 987
## shrub_cover-Canis_latrans 1252
## shrub_cover-Procyon_lotor 1690
## shrub_cover-Dasypus_novemcinctus 1440
## shrub_cover-Lynx_rufus 547
## shrub_cover-Didelphis_virginiana 891
## shrub_cover-Sylvilagus_floridanus 635
## shrub_cover-Meleagris_gallopavo 318
## shrub_cover-Sciurus_carolinensis 900
## veg_height-Canis_latrans 960
## veg_height-Procyon_lotor 2048
## veg_height-Dasypus_novemcinctus 2230
## veg_height-Lynx_rufus 975
## veg_height-Didelphis_virginiana 1319
## veg_height-Sylvilagus_floridanus 1050
## veg_height-Meleagris_gallopavo 571
## veg_height-Sciurus_carolinensis 1772
# Includes movement covariates of occupancy and cover for detection
ms_cover_move <- msPGOcc(
occ.formula = occ.move,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_move)
##
## Call:
## msPGOcc(occ.formula = occ.move, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 2,
## n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 0.7283
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2274 0.4479 -1.1007 -0.2375 0.6687 1.0025 574
## Cogon_Patch_Size 0.0280 0.3992 -0.7548 0.0284 0.8198 1.0027 1210
## Avg_Cogongrass_Cover 0.1097 0.3570 -0.6147 0.1115 0.8136 1.0069 747
## total_shrub_cover -0.8907 0.4702 -1.9030 -0.8561 -0.0469 1.0210 343
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7173 0.9647 0.0571 0.4332 3.1123 1.0151 674
## Cogon_Patch_Size 0.7574 1.1858 0.0546 0.4066 3.5666 1.0499 741
## Avg_Cogongrass_Cover 0.4222 0.5609 0.0394 0.2547 1.8649 1.0104 1240
## total_shrub_cover 0.8416 1.1609 0.0624 0.4809 3.6435 1.0413 803
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.2095 1.0887 0.0986 0.9275 4.0046 1.2185 278
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7508 0.2902 -3.3118 -2.7516 -2.1691 1.0022 1393
## shrub_cover 0.4964 0.3236 -0.1613 0.4960 1.1274 1.0015 1060
## veg_height 0.0752 0.1988 -0.3537 0.0852 0.4592 1.0072 1487
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6067 0.7565 0.1281 0.4350 1.9833 1.0695 1597
## shrub_cover 0.7135 0.6647 0.1213 0.5352 2.3791 1.0096 1037
## veg_height 0.2557 0.2296 0.0574 0.1923 0.8249 1.0112 1933
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.2294 0.6247 -0.8883 0.1958
## (Intercept)-Procyon_lotor 0.3399 0.6525 -0.8275 0.3084
## (Intercept)-Dasypus_novemcinctus -0.3446 0.5790 -1.5317 -0.3451
## (Intercept)-Lynx_rufus -0.2094 0.6535 -1.5032 -0.2160
## (Intercept)-Didelphis_virginiana -0.6798 0.6627 -2.0851 -0.6395
## (Intercept)-Sylvilagus_floridanus -0.1154 0.6860 -1.4400 -0.1418
## (Intercept)-Meleagris_gallopavo -0.4014 0.7873 -1.8835 -0.4275
## (Intercept)-Sciurus_carolinensis -0.6799 0.7005 -2.1492 -0.6352
## Cogon_Patch_Size-Canis_latrans 0.6666 0.6582 -0.3631 0.5745
## Cogon_Patch_Size-Procyon_lotor -0.1166 0.4546 -1.0251 -0.1108
## Cogon_Patch_Size-Dasypus_novemcinctus 0.0405 0.4549 -0.8635 0.0362
## Cogon_Patch_Size-Lynx_rufus -0.0217 0.6992 -1.3887 -0.0515
## Cogon_Patch_Size-Didelphis_virginiana 0.5883 0.5072 -0.3225 0.5502
## Cogon_Patch_Size-Sylvilagus_floridanus -0.5863 0.7999 -2.4720 -0.4488
## Cogon_Patch_Size-Meleagris_gallopavo 0.0632 0.6265 -1.1789 0.0443
## Cogon_Patch_Size-Sciurus_carolinensis -0.4777 0.6704 -2.0649 -0.3824
## Avg_Cogongrass_Cover-Canis_latrans 0.2858 0.4443 -0.5285 0.2649
## Avg_Cogongrass_Cover-Procyon_lotor 0.0607 0.4462 -0.8142 0.0712
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3023 0.4235 -0.4692 0.2886
## Avg_Cogongrass_Cover-Lynx_rufus 0.4552 0.5166 -0.4363 0.4053
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.0755 0.4785 -0.9161 0.0964
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.2365 0.5764 -1.4726 -0.2093
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.3905 0.6968 -1.9298 -0.3425
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3149 0.4721 -0.5516 0.3046
## total_shrub_cover-Canis_latrans -0.0218 0.6363 -1.1466 -0.0781
## total_shrub_cover-Procyon_lotor -1.1823 0.5700 -2.4932 -1.1326
## total_shrub_cover-Dasypus_novemcinctus -0.5715 0.6360 -1.9832 -0.5061
## total_shrub_cover-Lynx_rufus -1.2975 0.7960 -3.1242 -1.2011
## total_shrub_cover-Didelphis_virginiana -0.9274 0.6548 -2.4546 -0.8604
## total_shrub_cover-Sylvilagus_floridanus -1.1282 0.7967 -2.8570 -1.0565
## total_shrub_cover-Meleagris_gallopavo -1.4217 0.7512 -3.1202 -1.3392
## total_shrub_cover-Sciurus_carolinensis -0.8806 0.6853 -2.4434 -0.8164
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.5673 1.0156 776
## (Intercept)-Procyon_lotor 1.7234 1.0338 719
## (Intercept)-Dasypus_novemcinctus 0.7808 1.0174 690
## (Intercept)-Lynx_rufus 1.1380 1.0034 673
## (Intercept)-Didelphis_virginiana 0.5002 1.0283 529
## (Intercept)-Sylvilagus_floridanus 1.3626 1.0183 564
## (Intercept)-Meleagris_gallopavo 1.1300 1.0345 443
## (Intercept)-Sciurus_carolinensis 0.6088 1.0054 565
## Cogon_Patch_Size-Canis_latrans 2.2660 1.0070 1125
## Cogon_Patch_Size-Procyon_lotor 0.7620 1.0001 1880
## Cogon_Patch_Size-Dasypus_novemcinctus 0.9444 1.0065 1518
## Cogon_Patch_Size-Lynx_rufus 1.4529 1.0021 1073
## Cogon_Patch_Size-Didelphis_virginiana 1.6879 1.0023 1342
## Cogon_Patch_Size-Sylvilagus_floridanus 0.6342 1.0204 754
## Cogon_Patch_Size-Meleagris_gallopavo 1.3426 1.0039 1215
## Cogon_Patch_Size-Sciurus_carolinensis 0.5735 1.0173 1128
## Avg_Cogongrass_Cover-Canis_latrans 1.2383 1.0192 1451
## Avg_Cogongrass_Cover-Procyon_lotor 0.9616 1.0039 1497
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1610 1.0151 1857
## Avg_Cogongrass_Cover-Lynx_rufus 1.6076 1.0089 1672
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0025 1.0046 1444
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.8363 1.0080 761
## Avg_Cogongrass_Cover-Meleagris_gallopavo 0.8531 1.0072 508
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.2897 1.0166 1150
## total_shrub_cover-Canis_latrans 1.4186 1.0172 722
## total_shrub_cover-Procyon_lotor -0.2028 1.0191 856
## total_shrub_cover-Dasypus_novemcinctus 0.4681 1.0360 511
## total_shrub_cover-Lynx_rufus -0.0304 1.0244 452
## total_shrub_cover-Didelphis_virginiana 0.1550 1.0159 517
## total_shrub_cover-Sylvilagus_floridanus 0.2452 1.0309 298
## total_shrub_cover-Meleagris_gallopavo -0.1251 1.0241 591
## total_shrub_cover-Sciurus_carolinensis 0.3184 1.0063 476
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7475 0.1854 -3.1393 -2.7410 -2.4060 1.0144
## (Intercept)-Procyon_lotor -2.3085 0.1364 -2.5782 -2.3049 -2.0544 1.0071
## (Intercept)-Dasypus_novemcinctus -1.8508 0.1830 -2.2235 -1.8460 -1.5041 1.0125
## (Intercept)-Lynx_rufus -3.4014 0.3082 -4.0599 -3.3834 -2.8346 1.0144
## (Intercept)-Didelphis_virginiana -2.6806 0.3013 -3.2927 -2.6774 -2.1215 1.0004
## (Intercept)-Sylvilagus_floridanus -3.2412 0.2698 -3.7799 -3.2384 -2.7244 1.0252
## (Intercept)-Meleagris_gallopavo -3.4861 0.5309 -4.6409 -3.4564 -2.5410 1.0232
## (Intercept)-Sciurus_carolinensis -2.8528 0.3261 -3.5194 -2.8334 -2.2677 1.0110
## shrub_cover-Canis_latrans -0.2627 0.2385 -0.7260 -0.2617 0.2283 1.0055
## shrub_cover-Procyon_lotor 0.3173 0.1592 -0.0046 0.3179 0.6270 1.0089
## shrub_cover-Dasypus_novemcinctus 1.0827 0.3570 0.4114 1.0784 1.7991 1.0140
## shrub_cover-Lynx_rufus 0.1884 0.3666 -0.5436 0.2134 0.8419 1.0055
## shrub_cover-Didelphis_virginiana 1.1909 0.4093 0.4430 1.1752 2.0341 1.0075
## shrub_cover-Sylvilagus_floridanus 0.7296 0.4216 -0.1792 0.7527 1.5022 1.0198
## shrub_cover-Meleagris_gallopavo -0.2866 0.4868 -1.3264 -0.2657 0.6014 1.0217
## shrub_cover-Sciurus_carolinensis 1.1765 0.4260 0.3614 1.1703 2.0148 1.0030
## veg_height-Canis_latrans -0.5693 0.1880 -0.9449 -0.5655 -0.2097 1.0147
## veg_height-Procyon_lotor 0.3461 0.1228 0.1039 0.3462 0.5881 1.0061
## veg_height-Dasypus_novemcinctus 0.2847 0.1429 0.0076 0.2826 0.5636 1.0026
## veg_height-Lynx_rufus 0.0635 0.2365 -0.4195 0.0699 0.4962 1.0014
## veg_height-Didelphis_virginiana 0.4445 0.2470 -0.0347 0.4419 0.9352 1.0041
## veg_height-Sylvilagus_floridanus 0.0850 0.2405 -0.3727 0.0823 0.5622 1.0210
## veg_height-Meleagris_gallopavo -0.1426 0.4423 -1.0276 -0.1446 0.7151 1.0041
## veg_height-Sciurus_carolinensis 0.1408 0.2284 -0.2972 0.1368 0.6134 1.0041
## ESS
## (Intercept)-Canis_latrans 1026
## (Intercept)-Procyon_lotor 1980
## (Intercept)-Dasypus_novemcinctus 626
## (Intercept)-Lynx_rufus 631
## (Intercept)-Didelphis_virginiana 594
## (Intercept)-Sylvilagus_floridanus 561
## (Intercept)-Meleagris_gallopavo 276
## (Intercept)-Sciurus_carolinensis 521
## shrub_cover-Canis_latrans 766
## shrub_cover-Procyon_lotor 1983
## shrub_cover-Dasypus_novemcinctus 513
## shrub_cover-Lynx_rufus 488
## shrub_cover-Didelphis_virginiana 417
## shrub_cover-Sylvilagus_floridanus 300
## shrub_cover-Meleagris_gallopavo 372
## shrub_cover-Sciurus_carolinensis 490
## veg_height-Canis_latrans 859
## veg_height-Procyon_lotor 1814
## veg_height-Dasypus_novemcinctus 2083
## veg_height-Lynx_rufus 1057
## veg_height-Didelphis_virginiana 1196
## veg_height-Sylvilagus_floridanus 899
## veg_height-Meleagris_gallopavo 438
## veg_height-Sciurus_carolinensis 785
#Includes cover covariate of detection and only canopy for occupancy
ms_cover_canopy <- msPGOcc(
occ.formula = occ.canopy,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_canopy)
##
## Call:
## msPGOcc(occ.formula = occ.canopy, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 2,
## n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 0.7008
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.4275 0.4794 -1.3745 -0.4263 0.5598 1.0079 649
## Tree_Density -0.8043 0.4639 -1.7994 -0.7749 0.0685 1.0111 1141
## Avg_Canopy_Cover 1.1603 0.4758 0.2720 1.1405 2.1530 1.0082 1215
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.1784 1.3329 0.0785 0.7749 4.7037 1.0213 600
## Tree_Density 1.1143 1.7919 0.0522 0.5700 5.4543 1.0183 754
## Avg_Canopy_Cover 1.2880 1.5884 0.1113 0.8738 5.1011 1.0105 1134
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.6792 0.799 0.0434 0.4058 2.8976 1.0439 233
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7544 0.3243 -3.3742 -2.7646 -2.0838 1.0020 3512
## shrub_cover 0.2795 0.3255 -0.3641 0.2798 0.9432 1.0061 1843
## veg_height 0.0989 0.2044 -0.3024 0.0994 0.5063 1.0040 2774
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7907 0.7831 0.1814 0.5977 2.6047 1.0338 1644
## shrub_cover 0.7474 0.7030 0.1532 0.5597 2.4359 1.0219 1674
## veg_height 0.2644 0.2201 0.0581 0.2022 0.8637 1.0050 2203
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Canis_latrans 0.0897 0.6158 -1.1115 0.0720 1.3425
## (Intercept)-Procyon_lotor 0.3624 0.6541 -0.9544 0.3839 1.6021
## (Intercept)-Dasypus_novemcinctus -0.8233 0.5696 -2.0108 -0.7932 0.2179
## (Intercept)-Lynx_rufus 0.1568 0.9508 -1.3151 0.0256 2.4774
## (Intercept)-Didelphis_virginiana -1.2684 0.6828 -2.7495 -1.2171 -0.0137
## (Intercept)-Sylvilagus_floridanus -0.6116 0.6100 -1.8742 -0.6045 0.5708
## (Intercept)-Meleagris_gallopavo -0.2046 0.7823 -1.5743 -0.2829 1.5537
## (Intercept)-Sciurus_carolinensis -1.3025 0.7095 -2.8114 -1.2609 -0.0296
## Tree_Density-Canis_latrans -1.0205 0.6277 -2.5932 -0.9435 -0.0325
## Tree_Density-Procyon_lotor -0.4920 0.4222 -1.3046 -0.4959 0.3845
## Tree_Density-Dasypus_novemcinctus -1.4837 0.9125 -3.7590 -1.3005 -0.2216
## Tree_Density-Lynx_rufus 0.2411 0.8065 -0.9484 0.1175 2.2324
## Tree_Density-Didelphis_virginiana -1.0149 0.7654 -2.8887 -0.8878 0.1647
## Tree_Density-Sylvilagus_floridanus -1.1342 0.8346 -3.2051 -0.9999 0.1856
## Tree_Density-Meleagris_gallopavo -1.0614 0.8631 -3.0750 -0.9557 0.3494
## Tree_Density-Sciurus_carolinensis -0.8749 0.7559 -2.6395 -0.7978 0.4424
## Avg_Canopy_Cover-Canis_latrans -0.0854 0.4706 -1.0232 -0.0902 0.8376
## Avg_Canopy_Cover-Procyon_lotor 1.0392 0.4990 0.1367 1.0096 2.0942
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.1302 0.4987 0.2491 1.0909 2.2279
## Avg_Canopy_Cover-Lynx_rufus 0.7672 0.7912 -0.6629 0.7168 2.4624
## Avg_Canopy_Cover-Didelphis_virginiana 1.6218 0.7144 0.4912 1.5226 3.2748
## Avg_Canopy_Cover-Sylvilagus_floridanus 2.2230 0.9859 0.7237 2.0801 4.5496
## Avg_Canopy_Cover-Meleagris_gallopavo 1.6068 0.8098 0.2677 1.5132 3.4545
## Avg_Canopy_Cover-Sciurus_carolinensis 1.5307 0.6798 0.4183 1.4647 3.0602
## Rhat ESS
## (Intercept)-Canis_latrans 1.0241 676
## (Intercept)-Procyon_lotor 1.0414 416
## (Intercept)-Dasypus_novemcinctus 1.0017 1213
## (Intercept)-Lynx_rufus 1.0313 301
## (Intercept)-Didelphis_virginiana 1.0154 918
## (Intercept)-Sylvilagus_floridanus 1.0043 1056
## (Intercept)-Meleagris_gallopavo 1.0173 651
## (Intercept)-Sciurus_carolinensis 1.0123 865
## Tree_Density-Canis_latrans 1.0086 1620
## Tree_Density-Procyon_lotor 1.0001 2754
## Tree_Density-Dasypus_novemcinctus 1.0166 670
## Tree_Density-Lynx_rufus 1.0126 744
## Tree_Density-Didelphis_virginiana 1.0214 1049
## Tree_Density-Sylvilagus_floridanus 1.0028 891
## Tree_Density-Meleagris_gallopavo 1.0277 798
## Tree_Density-Sciurus_carolinensis 1.0081 1054
## Avg_Canopy_Cover-Canis_latrans 1.0041 1608
## Avg_Canopy_Cover-Procyon_lotor 1.0005 2194
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0006 1891
## Avg_Canopy_Cover-Lynx_rufus 1.0194 670
## Avg_Canopy_Cover-Didelphis_virginiana 1.0297 892
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0213 635
## Avg_Canopy_Cover-Meleagris_gallopavo 1.0068 912
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0055 1126
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7487 0.1845 -3.1247 -2.7412 -2.4076 1.0031
## (Intercept)-Procyon_lotor -2.3053 0.1422 -2.5998 -2.2996 -2.0340 1.0044
## (Intercept)-Dasypus_novemcinctus -1.7776 0.1627 -2.1171 -1.7722 -1.4694 1.0117
## (Intercept)-Lynx_rufus -3.6766 0.3407 -4.3197 -3.6771 -2.9996 1.0357
## (Intercept)-Didelphis_virginiana -2.6609 0.2984 -3.2864 -2.6505 -2.1039 1.0150
## (Intercept)-Sylvilagus_floridanus -3.0999 0.2564 -3.6201 -3.0865 -2.6227 1.0102
## (Intercept)-Meleagris_gallopavo -3.8295 0.4430 -4.7182 -3.8101 -2.9958 1.0385
## (Intercept)-Sciurus_carolinensis -2.7297 0.3179 -3.3868 -2.7166 -2.1335 1.0111
## shrub_cover-Canis_latrans -0.3016 0.2283 -0.7393 -0.3059 0.1534 1.0032
## shrub_cover-Procyon_lotor 0.2577 0.1625 -0.0758 0.2611 0.5757 1.0019
## shrub_cover-Dasypus_novemcinctus 0.9013 0.3092 0.3189 0.8963 1.5420 1.0053
## shrub_cover-Lynx_rufus -0.3069 0.3529 -1.0247 -0.3017 0.3720 1.0186
## shrub_cover-Didelphis_virginiana 1.0427 0.3731 0.3730 1.0192 1.8271 1.0212
## shrub_cover-Sylvilagus_floridanus 0.4228 0.3927 -0.3322 0.4194 1.2158 1.0215
## shrub_cover-Meleagris_gallopavo -0.6271 0.3985 -1.4291 -0.6208 0.1229 1.0361
## shrub_cover-Sciurus_carolinensis 0.9558 0.4104 0.1794 0.9517 1.7722 1.0026
## veg_height-Canis_latrans -0.5876 0.1863 -0.9594 -0.5844 -0.2350 1.0008
## veg_height-Procyon_lotor 0.3545 0.1248 0.1138 0.3519 0.6024 1.0019
## veg_height-Dasypus_novemcinctus 0.2670 0.1378 0.0027 0.2619 0.5421 1.0032
## veg_height-Lynx_rufus 0.0849 0.2426 -0.3983 0.0951 0.5583 1.0077
## veg_height-Didelphis_virginiana 0.5281 0.2553 0.0584 0.5174 1.0524 1.0034
## veg_height-Sylvilagus_floridanus 0.1796 0.2381 -0.2899 0.1811 0.6403 1.0091
## veg_height-Meleagris_gallopavo -0.1809 0.3585 -0.9352 -0.1662 0.5048 1.0085
## veg_height-Sciurus_carolinensis 0.1439 0.2190 -0.2654 0.1381 0.5971 1.0035
## ESS
## (Intercept)-Canis_latrans 946
## (Intercept)-Procyon_lotor 1654
## (Intercept)-Dasypus_novemcinctus 1770
## (Intercept)-Lynx_rufus 308
## (Intercept)-Didelphis_virginiana 668
## (Intercept)-Sylvilagus_floridanus 886
## (Intercept)-Meleagris_gallopavo 343
## (Intercept)-Sciurus_carolinensis 768
## shrub_cover-Canis_latrans 1147
## shrub_cover-Procyon_lotor 2092
## shrub_cover-Dasypus_novemcinctus 1319
## shrub_cover-Lynx_rufus 460
## shrub_cover-Didelphis_virginiana 669
## shrub_cover-Sylvilagus_floridanus 831
## shrub_cover-Meleagris_gallopavo 367
## shrub_cover-Sciurus_carolinensis 839
## veg_height-Canis_latrans 1102
## veg_height-Procyon_lotor 2266
## veg_height-Dasypus_novemcinctus 2248
## veg_height-Lynx_rufus 908
## veg_height-Didelphis_virginiana 1153
## veg_height-Sylvilagus_floridanus 1296
## veg_height-Meleagris_gallopavo 861
## veg_height-Sciurus_carolinensis 1244
# Includes quadratic week covariate of detection and quadratic cogon for occupancy
ms_weekQ_cogonQ<- msPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_cogonQ)
##
## Call:
## msPGOcc(occ.formula = occ.cogon.quad, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 0.8377
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.1489 0.3996 -1.9580 -1.1461 -0.3559 1.0187 775
## Avg_Cogongrass_Cover -0.5533 0.3573 -1.2525 -0.5530 0.1522 1.0137 808
## I(Avg_Cogongrass_Cover^2) 0.7796 0.3778 0.1188 0.7498 1.6191 1.0030 878
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.5878 0.7031 0.0529 0.3724 2.3659 1.0081 1639
## Avg_Cogongrass_Cover 0.3770 0.5412 0.0406 0.2249 1.5989 1.0090 1462
## I(Avg_Cogongrass_Cover^2) 0.6696 1.4368 0.0459 0.3263 3.0720 1.0593 760
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4766 0.46 0.0459 0.3268 1.7104 1.0799 252
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4283 0.2750 -2.9612 -2.4301 -1.8553 1.0045 3649
## week 0.1877 0.2037 -0.2062 0.1889 0.5797 1.0131 1840
## I(week^2) -0.2199 0.1235 -0.4823 -0.2145 0.0045 1.0033 1151
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.5659 0.5441 0.1371 0.4272 1.8055 1.0116 2091
## week 0.2004 0.2212 0.0348 0.1374 0.7601 1.0034 1775
## I(week^2) 0.0810 0.0746 0.0190 0.0598 0.2729 1.0097 957
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans -0.8059 0.5522 -1.8810 -0.8120
## (Intercept)-Procyon_lotor -0.5928 0.5695 -1.6505 -0.6126
## (Intercept)-Dasypus_novemcinctus -1.2611 0.5054 -2.2981 -1.2508
## (Intercept)-Lynx_rufus -1.2476 0.5838 -2.4465 -1.2301
## (Intercept)-Didelphis_virginiana -1.5691 0.5532 -2.7552 -1.5393
## (Intercept)-Sylvilagus_floridanus -1.1252 0.5481 -2.2601 -1.1192
## (Intercept)-Meleagris_gallopavo -0.9822 0.5740 -2.0616 -0.9930
## (Intercept)-Sciurus_carolinensis -1.8107 0.6240 -3.2060 -1.7565
## Avg_Cogongrass_Cover-Canis_latrans -0.4031 0.4896 -1.3317 -0.4231
## Avg_Cogongrass_Cover-Procyon_lotor -0.5384 0.4955 -1.5291 -0.5468
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.4327 0.4595 -1.3081 -0.4409
## Avg_Cogongrass_Cover-Lynx_rufus -0.4821 0.5278 -1.5182 -0.4831
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.2762 0.5173 -1.2360 -0.3019
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.9813 0.5725 -2.2420 -0.9346
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.8234 0.5638 -2.0263 -0.7808
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.5748 0.5079 -1.6095 -0.5714
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.3719 0.8544 0.2631 1.1561
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.2559 0.7828 0.2619 1.0861
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.6371 0.3395 0.0095 0.6246
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.1472 0.5483 0.3109 1.0757
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.4155 0.3819 -0.3256 0.4158
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.6715 0.4854 -0.1385 0.6253
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 0.1869 0.5997 -1.0403 0.1980
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 0.7869 0.3805 0.1095 0.7625
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 0.2811 1.0121 911
## (Intercept)-Procyon_lotor 0.5373 1.0090 870
## (Intercept)-Dasypus_novemcinctus -0.2989 1.0004 1330
## (Intercept)-Lynx_rufus -0.1186 1.0184 973
## (Intercept)-Didelphis_virginiana -0.5874 1.0075 1346
## (Intercept)-Sylvilagus_floridanus -0.0633 1.0062 1387
## (Intercept)-Meleagris_gallopavo 0.1873 1.0130 920
## (Intercept)-Sciurus_carolinensis -0.7421 1.0032 1137
## Avg_Cogongrass_Cover-Canis_latrans 0.6091 1.0030 1498
## Avg_Cogongrass_Cover-Procyon_lotor 0.4668 1.0074 1692
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.5014 1.0040 1571
## Avg_Cogongrass_Cover-Lynx_rufus 0.5875 1.0107 1105
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.8392 1.0030 1305
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0048 1.0051 1150
## Avg_Cogongrass_Cover-Meleagris_gallopavo 0.1920 1.0073 1039
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4570 1.0032 1489
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 3.6747 1.0091 378
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 3.3985 1.0102 442
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.3338 1.0014 1634
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.4587 1.0085 733
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.1988 0.9996 1325
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.7700 1.0195 857
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 1.3477 1.0061 522
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6246 1.0119 1333
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.4734 0.1836 -2.8436 -2.4648 -2.1234 1.0069
## (Intercept)-Procyon_lotor -2.1815 0.1457 -2.4823 -2.1781 -1.9041 0.9998
## (Intercept)-Dasypus_novemcinctus -1.4979 0.1595 -1.8148 -1.4919 -1.1997 1.0025
## (Intercept)-Lynx_rufus -3.1464 0.2940 -3.7692 -3.1379 -2.6019 1.0169
## (Intercept)-Didelphis_virginiana -2.1906 0.2692 -2.7410 -2.1813 -1.6964 1.0031
## (Intercept)-Sylvilagus_floridanus -2.9891 0.2938 -3.6107 -2.9757 -2.4503 1.0245
## (Intercept)-Meleagris_gallopavo -3.1022 0.3349 -3.8087 -3.0860 -2.4909 1.0049
## (Intercept)-Sciurus_carolinensis -2.3407 0.2803 -2.9162 -2.3289 -1.8213 1.0121
## week-Canis_latrans 0.4468 0.2408 -0.0056 0.4401 0.9391 1.0108
## week-Procyon_lotor 0.1591 0.1995 -0.2446 0.1610 0.5454 1.0014
## week-Dasypus_novemcinctus 0.0589 0.2147 -0.3649 0.0565 0.4632 1.0022
## week-Lynx_rufus 0.2773 0.2955 -0.2832 0.2693 0.8880 1.0137
## week-Didelphis_virginiana 0.0370 0.3161 -0.6218 0.0544 0.6079 1.0031
## week-Sylvilagus_floridanus 0.0556 0.2966 -0.5657 0.0679 0.6118 1.0056
## week-Meleagris_gallopavo -0.1027 0.3436 -0.8446 -0.0754 0.5081 1.0147
## week-Sciurus_carolinensis 0.5340 0.3332 -0.0534 0.5071 1.2452 1.0053
## I(week^2)-Canis_latrans -0.1908 0.1038 -0.3992 -0.1874 0.0028 1.0110
## I(week^2)-Procyon_lotor -0.1101 0.0866 -0.2816 -0.1109 0.0583 1.0059
## I(week^2)-Dasypus_novemcinctus -0.1479 0.1014 -0.3544 -0.1454 0.0461 1.0028
## I(week^2)-Lynx_rufus -0.2098 0.1437 -0.5107 -0.2038 0.0539 1.0175
## I(week^2)-Didelphis_virginiana -0.3678 0.2175 -0.8775 -0.3366 -0.0214 1.0098
## I(week^2)-Sylvilagus_floridanus -0.1717 0.1520 -0.4958 -0.1637 0.1069 1.0126
## I(week^2)-Meleagris_gallopavo -0.3806 0.2363 -0.9125 -0.3479 0.0014 1.0129
## I(week^2)-Sciurus_carolinensis -0.1929 0.1398 -0.4869 -0.1877 0.0629 1.0094
## ESS
## (Intercept)-Canis_latrans 1417
## (Intercept)-Procyon_lotor 2202
## (Intercept)-Dasypus_novemcinctus 3189
## (Intercept)-Lynx_rufus 748
## (Intercept)-Didelphis_virginiana 1713
## (Intercept)-Sylvilagus_floridanus 816
## (Intercept)-Meleagris_gallopavo 550
## (Intercept)-Sciurus_carolinensis 1677
## week-Canis_latrans 1563
## week-Procyon_lotor 2173
## week-Dasypus_novemcinctus 3013
## week-Lynx_rufus 1427
## week-Didelphis_virginiana 1693
## week-Sylvilagus_floridanus 1591
## week-Meleagris_gallopavo 969
## week-Sciurus_carolinensis 1525
## I(week^2)-Canis_latrans 1684
## I(week^2)-Procyon_lotor 1867
## I(week^2)-Dasypus_novemcinctus 2306
## I(week^2)-Lynx_rufus 1119
## I(week^2)-Didelphis_virginiana 672
## I(week^2)-Sylvilagus_floridanus 857
## I(week^2)-Meleagris_gallopavo 315
## I(week^2)-Sciurus_carolinensis 1710
# Includes quadratic week and full covariates of detection and all covariates and coverage for occupancy
ms_fullQ_cover<- msPGOcc(
occ.formula = occ.cover,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_cover)
##
## Call:
## msPGOcc(occ.formula = occ.cover, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 1.0367
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1218 0.4784 -1.0141 -0.1378 0.9110 1.0334 350
## Avg_Cogongrass_Cover -0.0102 0.4087 -0.8259 -0.0087 0.7449 1.0053 726
## total_shrub_cover -0.9875 0.5366 -2.2284 -0.9385 -0.0749 1.0404 277
## avg_veg_height 0.1547 0.4217 -0.6365 0.1364 1.0318 1.0185 392
## CWD_presence -0.0878 0.3049 -0.6490 -0.0996 0.5348 1.0017 1095
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6415 0.8763 0.0466 0.3600 2.9436 1.0199 970
## Avg_Cogongrass_Cover 0.5603 0.7542 0.0445 0.3147 2.5421 1.0106 737
## total_shrub_cover 1.1558 1.5673 0.0742 0.6918 5.1659 1.0172 243
## avg_veg_height 0.4541 0.6584 0.0413 0.2438 2.2764 1.0117 947
## CWD_presence 0.3377 0.4680 0.0394 0.1992 1.4627 1.0218 1276
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.2963 1.3004 0.0786 0.8971 4.7232 1.0637 136
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6626 0.2894 -3.2226 -2.6589 -2.1023 1.0016 1411
## shrub_cover 0.5364 0.3409 -0.1592 0.5382 1.2160 1.0202 1419
## veg_height 0.0906 0.2101 -0.3194 0.0881 0.5005 1.0035 1531
## week 0.1941 0.2022 -0.1975 0.1952 0.6024 1.0154 1457
## I(week^2) -0.2267 0.1242 -0.4857 -0.2219 0.0058 1.0115 1085
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.5561 0.5063 0.1190 0.4171 1.7704 1.0159 1434
## shrub_cover 0.8044 0.7006 0.1649 0.6171 2.6414 1.0001 921
## veg_height 0.2706 0.2631 0.0594 0.2050 0.8670 1.0290 1667
## week 0.2063 0.2410 0.0343 0.1406 0.7356 1.0402 1503
## I(week^2) 0.0845 0.0794 0.0200 0.0615 0.2909 1.0472 1202
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.2608 0.6257 -0.8451 0.2037
## (Intercept)-Procyon_lotor 0.4039 0.6523 -0.7585 0.3528
## (Intercept)-Dasypus_novemcinctus -0.2317 0.6404 -1.4573 -0.2528
## (Intercept)-Lynx_rufus -0.0819 0.6802 -1.3637 -0.1060
## (Intercept)-Didelphis_virginiana -0.4957 0.7084 -1.9597 -0.4840
## (Intercept)-Sylvilagus_floridanus 0.0149 0.6682 -1.1976 -0.0313
## (Intercept)-Meleagris_gallopavo -0.3070 0.7095 -1.7411 -0.3143
## (Intercept)-Sciurus_carolinensis -0.4912 0.7073 -1.9319 -0.4664
## Avg_Cogongrass_Cover-Canis_latrans 0.3605 0.5343 -0.5846 0.3284
## Avg_Cogongrass_Cover-Procyon_lotor -0.1184 0.5010 -1.1541 -0.1050
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.1449 0.4990 -0.8440 0.1339
## Avg_Cogongrass_Cover-Lynx_rufus 0.4100 0.6030 -0.6318 0.3594
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1418 0.5465 -0.8771 0.1238
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.4787 0.6579 -1.9943 -0.4057
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.5173 0.7394 -2.1714 -0.4386
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.0016 0.5370 -1.0951 0.0145
## total_shrub_cover-Canis_latrans 0.1627 0.6975 -1.0785 0.0958
## total_shrub_cover-Procyon_lotor -1.3130 0.6525 -2.8089 -1.2197
## total_shrub_cover-Dasypus_novemcinctus -0.6635 0.8004 -2.7398 -0.5389
## total_shrub_cover-Lynx_rufus -1.4340 0.8479 -3.3929 -1.3416
## total_shrub_cover-Didelphis_virginiana -1.0400 0.8203 -3.0028 -0.9151
## total_shrub_cover-Sylvilagus_floridanus -1.4082 0.9906 -3.7050 -1.2755
## total_shrub_cover-Meleagris_gallopavo -1.5753 0.8567 -3.5764 -1.4699
## total_shrub_cover-Sciurus_carolinensis -1.1067 0.8564 -3.0111 -1.0102
## avg_veg_height-Canis_latrans 0.1495 0.5226 -0.8515 0.1313
## avg_veg_height-Procyon_lotor 0.1653 0.5036 -0.7801 0.1475
## avg_veg_height-Dasypus_novemcinctus 0.4268 0.5519 -0.5217 0.3768
## avg_veg_height-Lynx_rufus 0.0646 0.6267 -1.1834 0.0594
## avg_veg_height-Didelphis_virginiana 0.0258 0.5576 -1.0869 0.0215
## avg_veg_height-Sylvilagus_floridanus 0.0473 0.5748 -1.0745 0.0305
## avg_veg_height-Meleagris_gallopavo -0.1816 0.7874 -1.9973 -0.1269
## avg_veg_height-Sciurus_carolinensis 0.5474 0.5889 -0.4442 0.5029
## CWD_presence-Canis_latrans 0.3016 0.4636 -0.4730 0.2523
## CWD_presence-Procyon_lotor -0.2921 0.4014 -1.1345 -0.2745
## CWD_presence-Dasypus_novemcinctus -0.0710 0.3895 -0.8165 -0.0790
## CWD_presence-Lynx_rufus 0.0081 0.4812 -0.8792 -0.0269
## CWD_presence-Didelphis_virginiana -0.0103 0.4700 -0.9161 -0.0302
## CWD_presence-Sylvilagus_floridanus -0.3647 0.4734 -1.4044 -0.3366
## CWD_presence-Meleagris_gallopavo -0.1937 0.5051 -1.2135 -0.1921
## CWD_presence-Sciurus_carolinensis -0.1282 0.4451 -1.0312 -0.1271
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.6416 1.0072 505
## (Intercept)-Procyon_lotor 1.7829 1.0140 594
## (Intercept)-Dasypus_novemcinctus 1.1802 1.0141 322
## (Intercept)-Lynx_rufus 1.4111 1.0124 696
## (Intercept)-Didelphis_virginiana 0.9397 1.0110 442
## (Intercept)-Sylvilagus_floridanus 1.5089 1.0401 463
## (Intercept)-Meleagris_gallopavo 1.2053 1.0113 523
## (Intercept)-Sciurus_carolinensis 0.8523 1.0259 392
## Avg_Cogongrass_Cover-Canis_latrans 1.5339 1.0053 1237
## Avg_Cogongrass_Cover-Procyon_lotor 0.8474 1.0002 1054
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1755 1.0035 1347
## Avg_Cogongrass_Cover-Lynx_rufus 1.8043 1.0105 1250
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.2960 1.0044 1187
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6146 1.0008 708
## Avg_Cogongrass_Cover-Meleagris_gallopavo 0.7056 1.0132 503
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0097 1.0040 1144
## total_shrub_cover-Canis_latrans 1.7581 1.0176 540
## total_shrub_cover-Procyon_lotor -0.2736 1.0218 472
## total_shrub_cover-Dasypus_novemcinctus 0.5504 1.0153 255
## total_shrub_cover-Lynx_rufus -0.0123 1.0628 385
## total_shrub_cover-Didelphis_virginiana 0.1987 1.0101 333
## total_shrub_cover-Sylvilagus_floridanus 0.1372 1.0603 202
## total_shrub_cover-Meleagris_gallopavo -0.1867 1.0173 558
## total_shrub_cover-Sciurus_carolinensis 0.2931 1.0549 422
## avg_veg_height-Canis_latrans 1.2347 1.0095 809
## avg_veg_height-Procyon_lotor 1.2461 1.0093 963
## avg_veg_height-Dasypus_novemcinctus 1.6736 1.0158 530
## avg_veg_height-Lynx_rufus 1.2978 1.0132 700
## avg_veg_height-Didelphis_virginiana 1.1122 1.0076 664
## avg_veg_height-Sylvilagus_floridanus 1.2286 1.0213 461
## avg_veg_height-Meleagris_gallopavo 1.2382 1.0036 364
## avg_veg_height-Sciurus_carolinensis 1.8464 1.0084 761
## CWD_presence-Canis_latrans 1.3655 1.0056 1301
## CWD_presence-Procyon_lotor 0.4808 1.0013 2431
## CWD_presence-Dasypus_novemcinctus 0.7433 1.0105 1816
## CWD_presence-Lynx_rufus 1.0555 1.0062 1213
## CWD_presence-Didelphis_virginiana 0.9746 1.0042 1082
## CWD_presence-Sylvilagus_floridanus 0.4884 1.0051 1599
## CWD_presence-Meleagris_gallopavo 0.8011 1.0052 1162
## CWD_presence-Sciurus_carolinensis 0.7373 1.0008 1421
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.6255 0.2072 -3.0539 -2.6241 -2.2302 1.0072
## (Intercept)-Procyon_lotor -2.2271 0.1547 -2.5306 -2.2267 -1.9302 1.0066
## (Intercept)-Dasypus_novemcinctus -1.7708 0.2007 -2.1751 -1.7698 -1.3901 1.0050
## (Intercept)-Lynx_rufus -3.2885 0.3244 -3.9435 -3.2764 -2.6841 1.0150
## (Intercept)-Didelphis_virginiana -2.6024 0.3202 -3.2325 -2.6038 -1.9966 1.0151
## (Intercept)-Sylvilagus_floridanus -3.1450 0.2786 -3.7212 -3.1364 -2.6095 1.0151
## (Intercept)-Meleagris_gallopavo -3.3614 0.4943 -4.3570 -3.3555 -2.4336 1.0163
## (Intercept)-Sciurus_carolinensis -2.7566 0.3446 -3.4473 -2.7477 -2.1136 1.0306
## shrub_cover-Canis_latrans -0.3057 0.2467 -0.7800 -0.3058 0.1811 1.0045
## shrub_cover-Procyon_lotor 0.3336 0.1609 0.0069 0.3360 0.6437 1.0084
## shrub_cover-Dasypus_novemcinctus 1.1834 0.3670 0.4700 1.1837 1.8688 1.0132
## shrub_cover-Lynx_rufus 0.1892 0.3623 -0.5508 0.2040 0.8465 1.0707
## shrub_cover-Didelphis_virginiana 1.3021 0.4179 0.5194 1.2945 2.1580 1.0020
## shrub_cover-Sylvilagus_floridanus 0.7932 0.4185 -0.1029 0.8154 1.5680 1.0741
## shrub_cover-Meleagris_gallopavo -0.2880 0.4574 -1.1821 -0.2869 0.5930 1.0104
## shrub_cover-Sciurus_carolinensis 1.2801 0.4329 0.4132 1.2796 2.1046 1.0244
## veg_height-Canis_latrans -0.6002 0.1913 -0.9988 -0.5916 -0.2385 1.0047
## veg_height-Procyon_lotor 0.3531 0.1259 0.1092 0.3521 0.5990 1.0013
## veg_height-Dasypus_novemcinctus 0.2919 0.1415 0.0150 0.2893 0.5794 1.0028
## veg_height-Lynx_rufus 0.0576 0.2456 -0.4373 0.0647 0.5232 1.0070
## veg_height-Didelphis_virginiana 0.4712 0.2666 -0.0182 0.4673 1.0299 1.0158
## veg_height-Sylvilagus_floridanus 0.0672 0.2521 -0.4185 0.0591 0.5796 1.0314
## veg_height-Meleagris_gallopavo -0.0656 0.4676 -0.9876 -0.0643 0.8701 1.0166
## veg_height-Sciurus_carolinensis 0.1393 0.2338 -0.3182 0.1348 0.6161 1.0214
## week-Canis_latrans 0.4622 0.2471 0.0042 0.4537 0.9695 1.0008
## week-Procyon_lotor 0.1525 0.1966 -0.2300 0.1584 0.5377 1.0071
## week-Dasypus_novemcinctus 0.0623 0.2093 -0.3518 0.0628 0.4786 1.0029
## week-Lynx_rufus 0.2691 0.3056 -0.3184 0.2589 0.9102 1.0051
## week-Didelphis_virginiana 0.0404 0.3197 -0.6265 0.0507 0.6517 1.0032
## week-Sylvilagus_floridanus 0.0673 0.2973 -0.5549 0.0744 0.6319 1.0018
## week-Meleagris_gallopavo -0.0917 0.3433 -0.8289 -0.0709 0.5219 1.0026
## week-Sciurus_carolinensis 0.5423 0.3361 -0.0550 0.5173 1.2673 1.0158
## I(week^2)-Canis_latrans -0.1980 0.1035 -0.4041 -0.1947 -0.0002 1.0030
## I(week^2)-Procyon_lotor -0.1062 0.0873 -0.2804 -0.1051 0.0656 1.0089
## I(week^2)-Dasypus_novemcinctus -0.1545 0.1007 -0.3532 -0.1534 0.0408 1.0061
## I(week^2)-Lynx_rufus -0.2142 0.1517 -0.5338 -0.2074 0.0617 1.0032
## I(week^2)-Didelphis_virginiana -0.3993 0.2375 -0.9743 -0.3642 -0.0269 1.0302
## I(week^2)-Sylvilagus_floridanus -0.1718 0.1493 -0.4966 -0.1648 0.1049 1.0040
## I(week^2)-Meleagris_gallopavo -0.3779 0.2370 -0.9231 -0.3488 -0.0020 1.0110
## I(week^2)-Sciurus_carolinensis -0.2009 0.1385 -0.4786 -0.1964 0.0507 1.0080
## ESS
## (Intercept)-Canis_latrans 886
## (Intercept)-Procyon_lotor 1911
## (Intercept)-Dasypus_novemcinctus 685
## (Intercept)-Lynx_rufus 772
## (Intercept)-Didelphis_virginiana 657
## (Intercept)-Sylvilagus_floridanus 652
## (Intercept)-Meleagris_gallopavo 414
## (Intercept)-Sciurus_carolinensis 454
## shrub_cover-Canis_latrans 627
## shrub_cover-Procyon_lotor 1842
## shrub_cover-Dasypus_novemcinctus 349
## shrub_cover-Lynx_rufus 676
## shrub_cover-Didelphis_virginiana 411
## shrub_cover-Sylvilagus_floridanus 351
## shrub_cover-Meleagris_gallopavo 451
## shrub_cover-Sciurus_carolinensis 356
## veg_height-Canis_latrans 813
## veg_height-Procyon_lotor 1979
## veg_height-Dasypus_novemcinctus 2364
## veg_height-Lynx_rufus 845
## veg_height-Didelphis_virginiana 629
## veg_height-Sylvilagus_floridanus 737
## veg_height-Meleagris_gallopavo 377
## veg_height-Sciurus_carolinensis 1017
## week-Canis_latrans 1473
## week-Procyon_lotor 2330
## week-Dasypus_novemcinctus 2544
## week-Lynx_rufus 1280
## week-Didelphis_virginiana 1437
## week-Sylvilagus_floridanus 1320
## week-Meleagris_gallopavo 843
## week-Sciurus_carolinensis 1043
## I(week^2)-Canis_latrans 1522
## I(week^2)-Procyon_lotor 2143
## I(week^2)-Dasypus_novemcinctus 1962
## I(week^2)-Lynx_rufus 830
## I(week^2)-Didelphis_virginiana 385
## I(week^2)-Sylvilagus_floridanus 760
## I(week^2)-Meleagris_gallopavo 390
## I(week^2)-Sciurus_carolinensis 1291
#Includes quadratic week and full covariates of detection and only foraging for occupancy
ms_fullQ_forage<- msPGOcc(
occ.formula = occ.forage,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 0.965
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.3622 0.3852 -1.1267 -0.3628 0.4220 1.0058 1056
## Veg_shannon_index 0.3620 0.2975 -0.1837 0.3541 0.9473 1.0069 1185
## Avg_Cogongrass_Cover 0.3355 0.3000 -0.2660 0.3329 0.9227 1.0099 1419
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6293 0.7438 0.0568 0.4129 2.5789 1.0073 1216
## Veg_shannon_index 0.3037 0.3829 0.0387 0.1925 1.2135 1.0103 1666
## Avg_Cogongrass_Cover 0.3681 0.4877 0.0406 0.2176 1.5948 1.0129 1411
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.7579 0.722 0.0671 0.5316 2.8082 1.0183 323
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5911 0.3269 -3.2122 -2.5994 -1.9000 1.0019 2299
## shrub_cover 0.2620 0.3175 -0.3535 0.2572 0.8994 1.0004 2431
## veg_height 0.0629 0.1965 -0.3384 0.0652 0.4316 1.0004 2214
## week 0.1860 0.2077 -0.2364 0.1860 0.6053 1.0022 1542
## I(week^2) -0.2200 0.1257 -0.4808 -0.2148 0.0127 1.0137 650
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7807 0.7322 0.1574 0.5856 2.6501 1.0047 1247
## shrub_cover 0.7151 0.6652 0.1334 0.5396 2.4035 1.0119 1176
## veg_height 0.2543 0.2382 0.0567 0.1912 0.8148 1.0083 2104
## week 0.2112 0.2279 0.0346 0.1450 0.7819 1.0069 1722
## I(week^2) 0.0841 0.1184 0.0196 0.0593 0.2738 1.3148 236
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.0537 0.5430 -0.9840 0.0358
## (Intercept)-Procyon_lotor 0.1775 0.5568 -0.9064 0.1793
## (Intercept)-Dasypus_novemcinctus -0.5495 0.4704 -1.5205 -0.5310
## (Intercept)-Lynx_rufus -0.2383 0.6187 -1.3554 -0.2772
## (Intercept)-Didelphis_virginiana -0.9200 0.5473 -2.0712 -0.8917
## (Intercept)-Sylvilagus_floridanus -0.4223 0.5337 -1.4223 -0.4284
## (Intercept)-Meleagris_gallopavo -0.1677 0.6890 -1.3879 -0.2235
## (Intercept)-Sciurus_carolinensis -0.9243 0.5511 -2.0979 -0.8925
## Veg_shannon_index-Canis_latrans 0.6454 0.4025 -0.0712 0.6179
## Veg_shannon_index-Procyon_lotor 0.4623 0.3795 -0.2628 0.4501
## Veg_shannon_index-Dasypus_novemcinctus 0.1872 0.3489 -0.5162 0.1926
## Veg_shannon_index-Lynx_rufus 0.2055 0.4985 -0.8491 0.2249
## Veg_shannon_index-Didelphis_virginiana 0.4894 0.3937 -0.2333 0.4759
## Veg_shannon_index-Sylvilagus_floridanus 0.4336 0.4222 -0.3652 0.4134
## Veg_shannon_index-Meleagris_gallopavo 0.5287 0.4792 -0.3231 0.4928
## Veg_shannon_index-Sciurus_carolinensis -0.0167 0.4187 -0.9142 0.0087
## Avg_Cogongrass_Cover-Canis_latrans 0.6131 0.4083 -0.1066 0.5744
## Avg_Cogongrass_Cover-Procyon_lotor 0.3725 0.3818 -0.3570 0.3628
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4493 0.3480 -0.2061 0.4345
## Avg_Cogongrass_Cover-Lynx_rufus 0.6036 0.4534 -0.1911 0.5638
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.4581 0.3878 -0.2852 0.4564
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0991 0.4620 -1.1179 -0.0640
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.0687 0.6091 -1.4237 -0.0049
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4159 0.3803 -0.3113 0.4106
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.2089 1.0010 937
## (Intercept)-Procyon_lotor 1.2978 1.0058 850
## (Intercept)-Dasypus_novemcinctus 0.3593 1.0036 1647
## (Intercept)-Lynx_rufus 1.0736 1.0132 788
## (Intercept)-Didelphis_virginiana 0.0953 1.0033 1274
## (Intercept)-Sylvilagus_floridanus 0.6878 1.0013 1064
## (Intercept)-Meleagris_gallopavo 1.3275 1.0208 536
## (Intercept)-Sciurus_carolinensis 0.0856 1.0037 1138
## Veg_shannon_index-Canis_latrans 1.5364 1.0136 1609
## Veg_shannon_index-Procyon_lotor 1.2607 1.0070 1539
## Veg_shannon_index-Dasypus_novemcinctus 0.8658 1.0028 2339
## Veg_shannon_index-Lynx_rufus 1.1297 1.0029 1404
## Veg_shannon_index-Didelphis_virginiana 1.3223 1.0017 2104
## Veg_shannon_index-Sylvilagus_floridanus 1.3143 1.0036 1856
## Veg_shannon_index-Meleagris_gallopavo 1.5811 1.0111 1479
## Veg_shannon_index-Sciurus_carolinensis 0.7133 1.0073 1856
## Avg_Cogongrass_Cover-Canis_latrans 1.4842 1.0017 1996
## Avg_Cogongrass_Cover-Procyon_lotor 1.1773 1.0061 2017
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1666 0.9999 2798
## Avg_Cogongrass_Cover-Lynx_rufus 1.5953 1.0037 1390
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.2381 1.0033 1906
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6944 1.0027 1277
## Avg_Cogongrass_Cover-Meleagris_gallopavo 0.9736 1.0104 803
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.2430 1.0072 2282
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5774 0.1931 -2.9702 -2.5684 -2.2140 1.0012
## (Intercept)-Procyon_lotor -2.2061 0.1590 -2.5323 -2.2026 -1.9055 1.0012
## (Intercept)-Dasypus_novemcinctus -1.6443 0.1791 -1.9994 -1.6397 -1.3119 1.0035
## (Intercept)-Lynx_rufus -3.3860 0.3522 -4.1226 -3.3794 -2.7321 1.0100
## (Intercept)-Didelphis_virginiana -2.4135 0.2945 -3.0156 -2.4098 -1.8508 1.0069
## (Intercept)-Sylvilagus_floridanus -3.0484 0.3056 -3.6697 -3.0395 -2.5003 1.0054
## (Intercept)-Meleagris_gallopavo -3.7029 0.4937 -4.6535 -3.6954 -2.7010 1.0346
## (Intercept)-Sciurus_carolinensis -2.5298 0.3211 -3.2015 -2.5185 -1.9362 1.0205
## shrub_cover-Canis_latrans -0.2938 0.2122 -0.7395 -0.2892 0.1050 1.0135
## shrub_cover-Procyon_lotor 0.2468 0.1723 -0.0979 0.2495 0.5671 1.0003
## shrub_cover-Dasypus_novemcinctus 0.8715 0.3008 0.2918 0.8635 1.4784 1.0088
## shrub_cover-Lynx_rufus -0.2064 0.3674 -0.9379 -0.2033 0.5119 1.0098
## shrub_cover-Didelphis_virginiana 1.0018 0.3754 0.3352 0.9857 1.7943 1.0098
## shrub_cover-Sylvilagus_floridanus 0.2794 0.4306 -0.5243 0.2719 1.1528 1.0334
## shrub_cover-Meleagris_gallopavo -0.6582 0.4307 -1.5439 -0.6490 0.1749 1.0194
## shrub_cover-Sciurus_carolinensis 0.9068 0.4249 0.0825 0.8955 1.7510 1.0200
## veg_height-Canis_latrans -0.5834 0.1833 -0.9558 -0.5783 -0.2390 1.0026
## veg_height-Procyon_lotor 0.3394 0.1216 0.1078 0.3398 0.5745 1.0034
## veg_height-Dasypus_novemcinctus 0.2528 0.1360 -0.0023 0.2519 0.5218 1.0010
## veg_height-Lynx_rufus 0.0066 0.2405 -0.4749 0.0062 0.4873 1.0026
## veg_height-Didelphis_virginiana 0.4520 0.2468 -0.0149 0.4450 0.9552 1.0024
## veg_height-Sylvilagus_floridanus 0.1569 0.2451 -0.3283 0.1600 0.6255 1.0016
## veg_height-Meleagris_gallopavo -0.1758 0.3945 -0.9737 -0.1627 0.5701 1.0075
## veg_height-Sciurus_carolinensis 0.0938 0.2193 -0.3268 0.0952 0.5312 1.0039
## week-Canis_latrans 0.4612 0.2527 -0.0132 0.4534 0.9902 1.0030
## week-Procyon_lotor 0.1605 0.1986 -0.2253 0.1638 0.5481 1.0033
## week-Dasypus_novemcinctus 0.0680 0.2167 -0.3634 0.0692 0.4845 0.9999
## week-Lynx_rufus 0.2846 0.3110 -0.3078 0.2766 0.9235 1.0061
## week-Didelphis_virginiana 0.0435 0.3249 -0.6250 0.0560 0.6547 1.0136
## week-Sylvilagus_floridanus 0.0513 0.3002 -0.5703 0.0617 0.6257 1.0031
## week-Meleagris_gallopavo -0.0964 0.3503 -0.8509 -0.0759 0.5473 1.0055
## week-Sciurus_carolinensis 0.5487 0.3367 -0.0545 0.5262 1.2793 1.0009
## I(week^2)-Canis_latrans -0.1978 0.1055 -0.4097 -0.1966 0.0067 1.0015
## I(week^2)-Procyon_lotor -0.1139 0.0869 -0.2823 -0.1136 0.0534 1.0079
## I(week^2)-Dasypus_novemcinctus -0.1568 0.1016 -0.3562 -0.1546 0.0366 1.0023
## I(week^2)-Lynx_rufus -0.2088 0.1487 -0.5197 -0.2038 0.0660 1.0023
## I(week^2)-Didelphis_virginiana -0.3753 0.2550 -0.9314 -0.3409 -0.0239 1.1139
## I(week^2)-Sylvilagus_floridanus -0.1513 0.1474 -0.4466 -0.1479 0.1303 1.0104
## I(week^2)-Meleagris_gallopavo -0.3690 0.2354 -0.9271 -0.3360 -0.0052 1.0339
## I(week^2)-Sciurus_carolinensis -0.1979 0.1401 -0.4853 -0.1918 0.0499 1.0030
## ESS
## (Intercept)-Canis_latrans 1411
## (Intercept)-Procyon_lotor 1969
## (Intercept)-Dasypus_novemcinctus 2124
## (Intercept)-Lynx_rufus 527
## (Intercept)-Didelphis_virginiana 1001
## (Intercept)-Sylvilagus_floridanus 723
## (Intercept)-Meleagris_gallopavo 270
## (Intercept)-Sciurus_carolinensis 1108
## shrub_cover-Canis_latrans 1263
## shrub_cover-Procyon_lotor 1776
## shrub_cover-Dasypus_novemcinctus 1881
## shrub_cover-Lynx_rufus 519
## shrub_cover-Didelphis_virginiana 1019
## shrub_cover-Sylvilagus_floridanus 644
## shrub_cover-Meleagris_gallopavo 322
## shrub_cover-Sciurus_carolinensis 890
## veg_height-Canis_latrans 1116
## veg_height-Procyon_lotor 2223
## veg_height-Dasypus_novemcinctus 2681
## veg_height-Lynx_rufus 1084
## veg_height-Didelphis_virginiana 1437
## veg_height-Sylvilagus_floridanus 1161
## veg_height-Meleagris_gallopavo 563
## veg_height-Sciurus_carolinensis 1526
## week-Canis_latrans 1383
## week-Procyon_lotor 2040
## week-Dasypus_novemcinctus 2798
## week-Lynx_rufus 1165
## week-Didelphis_virginiana 1605
## week-Sylvilagus_floridanus 1468
## week-Meleagris_gallopavo 672
## week-Sciurus_carolinensis 1545
## I(week^2)-Canis_latrans 1491
## I(week^2)-Procyon_lotor 1995
## I(week^2)-Dasypus_novemcinctus 2181
## I(week^2)-Lynx_rufus 889
## I(week^2)-Didelphis_virginiana 190
## I(week^2)-Sylvilagus_floridanus 1226
## I(week^2)-Meleagris_gallopavo 311
## I(week^2)-Sciurus_carolinensis 1848
# Includes quadratic week and full covariates of detection and all covariates and quadratic cogon for occupancy
ms_fullQ_fullQ<- msPGOcc(
occ.formula = occ.full.quad,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 2,
n.burn = 3000,
n.chains = 4,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_fullQ)
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 1.0163
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.8514 0.8121 -3.4919 -1.8477 -0.2943 1.0637 301
## Cogon_Patch_Size 0.1768 0.7714 -1.3996 0.2011 1.6597 1.0326 561
## Veg_shannon_index 1.0501 0.5888 -0.0256 1.0189 2.2562 1.0163 328
## total_shrub_cover -1.2684 0.7409 -2.9159 -1.2132 0.1031 1.0217 459
## Avg_Cogongrass_Cover -0.0043 1.0806 -2.0015 -0.0055 2.1706 1.0314 182
## Tree_Density -2.3169 1.0734 -4.4275 -2.3159 -0.1533 1.0155 280
## Avg_Canopy_Cover 1.9824 0.8800 0.2835 1.9474 3.7783 1.0060 620
## I(Avg_Cogongrass_Cover^2) 1.4475 0.8156 -0.1665 1.4516 3.1328 1.0104 356
## avg_veg_height -0.0415 0.6330 -1.2614 -0.0531 1.2993 1.0259 270
## CWD_presence -0.0858 0.4655 -1.0101 -0.0847 0.8577 1.0010 875
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.5290 5.1113 0.0586 0.9443 15.6248 1.0998 264
## Cogon_Patch_Size 3.7615 7.6181 0.0845 1.5554 21.9914 1.0779 322
## Veg_shannon_index 1.0371 2.0866 0.0515 0.4567 5.5222 1.0726 423
## total_shrub_cover 3.5520 5.7067 0.1062 1.7916 17.8547 1.0066 174
## Avg_Cogongrass_Cover 1.6950 3.5559 0.0533 0.6020 9.8154 1.0453 218
## Tree_Density 7.6907 25.8166 0.0750 1.9728 54.6315 1.1951 213
## Avg_Canopy_Cover 6.9780 10.4791 0.3030 3.5269 36.4636 1.0073 166
## I(Avg_Cogongrass_Cover^2) 7.0629 35.1218 0.0912 1.7463 41.2268 2.0894 99
## avg_veg_height 0.9225 1.7482 0.0451 0.3823 5.2734 1.0331 295
## CWD_presence 0.8078 1.2768 0.0455 0.4027 4.0202 1.0437 295
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 2.5955 3.9334 0.0688 1.122 13.9372 1.1096 83
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6441 0.3098 -3.2435 -2.6500 -1.9936 1.0037 1708
## shrub_cover 0.4455 0.3326 -0.2390 0.4517 1.1001 1.0124 1334
## veg_height 0.1344 0.1983 -0.2668 0.1364 0.5384 1.0014 1748
## week 0.1836 0.2046 -0.2287 0.1848 0.5902 1.0048 1809
## I(week^2) -0.2241 0.1210 -0.4726 -0.2183 0.0060 1.0153 958
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6496 0.6308 0.1337 0.4820 2.1934 1.0114 1834
## shrub_cover 0.7275 0.6190 0.1420 0.5571 2.3888 1.0181 918
## veg_height 0.2585 0.2194 0.0604 0.2003 0.8324 1.0115 2161
## week 0.2109 0.2397 0.0337 0.1400 0.8016 1.0176 1738
## I(week^2) 0.0798 0.0803 0.0200 0.0583 0.2743 1.0272 1144
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans -1.4494 1.1983 -3.7321 -1.4672
## (Intercept)-Procyon_lotor -1.1993 1.1654 -3.4022 -1.2268
## (Intercept)-Dasypus_novemcinctus -2.3250 1.2444 -5.1825 -2.1631
## (Intercept)-Lynx_rufus -1.4987 1.4610 -4.1599 -1.6236
## (Intercept)-Didelphis_virginiana -2.9072 1.4122 -6.3534 -2.6853
## (Intercept)-Sylvilagus_floridanus -2.0109 1.2257 -4.7121 -1.9378
## (Intercept)-Meleagris_gallopavo -1.9095 1.2402 -4.3373 -1.9254
## (Intercept)-Sciurus_carolinensis -3.0470 1.5682 -6.8812 -2.7984
## Cogon_Patch_Size-Canis_latrans 1.5980 1.4892 -0.4730 1.3222
## Cogon_Patch_Size-Procyon_lotor -0.4597 0.9913 -2.6166 -0.3576
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2751 1.0252 -1.6305 0.2300
## Cogon_Patch_Size-Lynx_rufus -0.1100 1.6671 -3.6190 -0.0028
## Cogon_Patch_Size-Didelphis_virginiana 1.6330 1.2916 -0.3366 1.4194
## Cogon_Patch_Size-Sylvilagus_floridanus -1.0368 1.6821 -5.1526 -0.7226
## Cogon_Patch_Size-Meleagris_gallopavo 0.4382 1.4195 -1.9606 0.3414
## Cogon_Patch_Size-Sciurus_carolinensis -0.7301 1.6181 -4.5143 -0.4989
## Veg_shannon_index-Canis_latrans 1.4076 0.8222 0.1077 1.3022
## Veg_shannon_index-Procyon_lotor 1.3859 0.7954 0.0838 1.3063
## Veg_shannon_index-Dasypus_novemcinctus 0.6465 0.6877 -0.7428 0.6509
## Veg_shannon_index-Lynx_rufus 1.0801 1.0799 -0.8876 1.0084
## Veg_shannon_index-Didelphis_virginiana 1.2864 0.8531 -0.1233 1.1834
## Veg_shannon_index-Sylvilagus_floridanus 1.1398 0.8364 -0.3524 1.0712
## Veg_shannon_index-Meleagris_gallopavo 1.4299 0.9879 -0.0901 1.2853
## Veg_shannon_index-Sciurus_carolinensis 0.3805 0.9633 -1.8080 0.4779
## total_shrub_cover-Canis_latrans 0.4363 1.1960 -1.4362 0.2544
## total_shrub_cover-Procyon_lotor -1.6333 0.8168 -3.4711 -1.5488
## total_shrub_cover-Dasypus_novemcinctus -0.8055 1.2396 -3.8219 -0.6702
## total_shrub_cover-Lynx_rufus -2.3324 1.7022 -6.3976 -2.0090
## total_shrub_cover-Didelphis_virginiana -1.6495 1.2296 -4.6706 -1.4797
## total_shrub_cover-Sylvilagus_floridanus -1.3283 1.2768 -4.3621 -1.1941
## total_shrub_cover-Meleagris_gallopavo -2.8933 1.6402 -6.6503 -2.6523
## total_shrub_cover-Sciurus_carolinensis -1.4777 1.6142 -5.2914 -1.2357
## Avg_Cogongrass_Cover-Canis_latrans 0.1377 1.3588 -2.3529 0.0872
## Avg_Cogongrass_Cover-Procyon_lotor -0.1396 1.3966 -2.8296 -0.1513
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.6520 1.4460 -1.8676 0.5302
## Avg_Cogongrass_Cover-Lynx_rufus 0.0155 1.5712 -3.0532 0.0211
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2004 1.4318 -2.5208 0.1635
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.6605 1.5262 -4.0146 -0.5829
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.2775 1.6114 -3.7333 -0.2490
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.0475 1.4512 -2.8119 0.0277
## Tree_Density-Canis_latrans -3.4932 1.7786 -7.9404 -3.1676
## Tree_Density-Procyon_lotor -2.6010 1.3499 -5.5921 -2.4799
## Tree_Density-Dasypus_novemcinctus -4.9566 3.1773 -13.6525 -4.0859
## Tree_Density-Lynx_rufus -0.8850 2.2887 -4.2735 -1.2378
## Tree_Density-Didelphis_virginiana -2.5125 1.6086 -6.2153 -2.4006
## Tree_Density-Sylvilagus_floridanus -3.0319 1.7782 -7.0404 -2.8560
## Tree_Density-Meleagris_gallopavo -2.5945 1.6629 -6.0979 -2.5539
## Tree_Density-Sciurus_carolinensis -2.7121 1.9577 -6.9339 -2.5578
## Avg_Canopy_Cover-Canis_latrans 0.0584 0.7385 -1.4888 0.0641
## Avg_Canopy_Cover-Procyon_lotor 1.8003 1.0500 0.0680 1.6890
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.6217 1.2363 0.8870 2.3928
## Avg_Canopy_Cover-Lynx_rufus 1.1552 1.8031 -1.9360 0.9836
## Avg_Canopy_Cover-Didelphis_virginiana 3.7173 1.8763 1.2194 3.3100
## Avg_Canopy_Cover-Sylvilagus_floridanus 4.8289 2.6734 1.3955 4.2321
## Avg_Canopy_Cover-Meleagris_gallopavo 2.8136 1.7320 0.4695 2.4417
## Avg_Canopy_Cover-Sciurus_carolinensis 3.6137 1.9469 1.0506 3.2045
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.9184 2.0230 0.7691 2.4784
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.9902 2.8641 0.7463 2.4138
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4975 0.9254 -0.0398 1.3935
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 3.3583 2.8737 0.7825 2.7500
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.8163 0.8728 -0.8052 0.7841
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.0849 1.0851 -0.7920 1.0028
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 0.4402 3.1639 -3.9056 0.2245
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6231 0.9824 -0.0090 1.5445
## avg_veg_height-Canis_latrans -0.2053 0.7575 -1.7268 -0.1863
## avg_veg_height-Procyon_lotor 0.0328 0.7806 -1.4941 0.0203
## avg_veg_height-Dasypus_novemcinctus 0.3403 0.8174 -1.1333 0.2959
## avg_veg_height-Lynx_rufus -0.4445 1.0705 -2.9830 -0.3303
## avg_veg_height-Didelphis_virginiana -0.2955 0.8891 -2.1686 -0.2448
## avg_veg_height-Sylvilagus_floridanus -0.2306 0.8697 -2.1412 -0.2023
## avg_veg_height-Meleagris_gallopavo -0.0671 1.0534 -2.1377 -0.0723
## avg_veg_height-Sciurus_carolinensis 0.4451 0.9763 -1.2112 0.3397
## CWD_presence-Canis_latrans 0.5782 0.7953 -0.5990 0.4427
## CWD_presence-Procyon_lotor -0.3955 0.6747 -1.7775 -0.3478
## CWD_presence-Dasypus_novemcinctus -0.1576 0.5849 -1.4051 -0.1475
## CWD_presence-Lynx_rufus 0.2714 0.8152 -1.1132 0.1980
## CWD_presence-Didelphis_virginiana -0.1484 0.7662 -1.7679 -0.1281
## CWD_presence-Sylvilagus_floridanus -0.4925 0.7756 -2.2339 -0.4185
## CWD_presence-Meleagris_gallopavo -0.3011 0.7824 -1.9300 -0.2689
## CWD_presence-Sciurus_carolinensis -0.0444 0.6949 -1.4593 -0.0539
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 0.9590 1.0737 327
## (Intercept)-Procyon_lotor 1.1466 1.0238 302
## (Intercept)-Dasypus_novemcinctus -0.4755 1.1109 217
## (Intercept)-Lynx_rufus 1.8438 1.0552 274
## (Intercept)-Didelphis_virginiana -0.8142 1.0448 290
## (Intercept)-Sylvilagus_floridanus 0.2992 1.0594 376
## (Intercept)-Meleagris_gallopavo 0.5192 1.0242 394
## (Intercept)-Sciurus_carolinensis -0.7274 1.0927 233
## Cogon_Patch_Size-Canis_latrans 5.5103 1.0275 164
## Cogon_Patch_Size-Procyon_lotor 1.2329 1.0509 231
## Cogon_Patch_Size-Dasypus_novemcinctus 2.5549 1.0149 505
## Cogon_Patch_Size-Lynx_rufus 3.0073 1.0558 250
## Cogon_Patch_Size-Didelphis_virginiana 4.7493 1.0242 308
## Cogon_Patch_Size-Sylvilagus_floridanus 1.3422 1.0313 318
## Cogon_Patch_Size-Meleagris_gallopavo 3.6010 1.0173 349
## Cogon_Patch_Size-Sciurus_carolinensis 1.7248 1.1358 280
## Veg_shannon_index-Canis_latrans 3.3843 1.0118 434
## Veg_shannon_index-Procyon_lotor 3.1669 1.0302 222
## Veg_shannon_index-Dasypus_novemcinctus 1.9788 1.0045 617
## Veg_shannon_index-Lynx_rufus 3.4598 1.0290 421
## Veg_shannon_index-Didelphis_virginiana 3.3144 1.0196 428
## Veg_shannon_index-Sylvilagus_floridanus 3.0188 1.0114 350
## Veg_shannon_index-Meleagris_gallopavo 3.7965 1.0248 522
## Veg_shannon_index-Sciurus_carolinensis 2.0544 1.0081 473
## total_shrub_cover-Canis_latrans 3.4543 1.0127 179
## total_shrub_cover-Procyon_lotor -0.3011 1.0092 583
## total_shrub_cover-Dasypus_novemcinctus 1.0920 1.0525 298
## total_shrub_cover-Lynx_rufus 0.2120 1.0121 153
## total_shrub_cover-Didelphis_virginiana 0.3881 1.0202 305
## total_shrub_cover-Sylvilagus_floridanus 0.8840 1.0274 387
## total_shrub_cover-Meleagris_gallopavo -0.4900 1.0141 192
## total_shrub_cover-Sciurus_carolinensis 0.8722 1.0652 185
## Avg_Cogongrass_Cover-Canis_latrans 2.9375 1.0365 233
## Avg_Cogongrass_Cover-Procyon_lotor 2.6397 1.0345 280
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.7311 1.0283 270
## Avg_Cogongrass_Cover-Lynx_rufus 3.0138 1.0138 320
## Avg_Cogongrass_Cover-Didelphis_virginiana 3.1123 1.0173 324
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.1411 1.0164 308
## Avg_Cogongrass_Cover-Meleagris_gallopavo 2.6157 1.0541 266
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.9545 1.0192 311
## Tree_Density-Canis_latrans -1.0152 1.0710 268
## Tree_Density-Procyon_lotor -0.3188 1.0581 299
## Tree_Density-Dasypus_novemcinctus -1.6415 1.1037 101
## Tree_Density-Lynx_rufus 4.8954 1.0961 117
## Tree_Density-Didelphis_virginiana 0.5920 1.0782 212
## Tree_Density-Sylvilagus_floridanus 0.0971 1.0652 380
## Tree_Density-Meleagris_gallopavo 0.5883 1.0187 448
## Tree_Density-Sciurus_carolinensis 0.7727 1.0713 272
## Avg_Canopy_Cover-Canis_latrans 1.4686 1.0051 618
## Avg_Canopy_Cover-Procyon_lotor 4.2780 1.0315 172
## Avg_Canopy_Cover-Dasypus_novemcinctus 5.8434 1.0215 148
## Avg_Canopy_Cover-Lynx_rufus 5.3483 1.0696 276
## Avg_Canopy_Cover-Didelphis_virginiana 8.1048 1.0291 149
## Avg_Canopy_Cover-Sylvilagus_floridanus 11.8663 1.0214 123
## Avg_Canopy_Cover-Meleagris_gallopavo 7.3227 1.0117 201
## Avg_Canopy_Cover-Sciurus_carolinensis 8.7614 1.0328 204
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 7.2585 1.2779 74
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 11.4501 1.7038 47
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 3.5687 1.0324 305
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 10.5751 1.6135 42
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 2.6448 1.0104 395
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 3.5724 1.0304 280
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 6.0932 1.6405 51
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 3.8507 1.0200 529
## avg_veg_height-Canis_latrans 1.2831 1.0160 570
## avg_veg_height-Procyon_lotor 1.6765 1.0275 440
## avg_veg_height-Dasypus_novemcinctus 2.1064 1.0236 302
## avg_veg_height-Lynx_rufus 1.4046 1.0147 354
## avg_veg_height-Didelphis_virginiana 1.3673 1.0169 476
## avg_veg_height-Sylvilagus_floridanus 1.4248 1.0235 497
## avg_veg_height-Meleagris_gallopavo 2.1080 1.0024 340
## avg_veg_height-Sciurus_carolinensis 2.7352 1.0180 329
## CWD_presence-Canis_latrans 2.5169 1.0125 356
## CWD_presence-Procyon_lotor 0.8826 1.0103 543
## CWD_presence-Dasypus_novemcinctus 0.9923 1.0013 1302
## CWD_presence-Lynx_rufus 2.1500 1.0126 677
## CWD_presence-Didelphis_virginiana 1.4050 1.0109 854
## CWD_presence-Sylvilagus_floridanus 0.8816 1.0123 1049
## CWD_presence-Meleagris_gallopavo 1.2043 1.0066 1015
## CWD_presence-Sciurus_carolinensis 1.3505 1.0007 1059
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5724 0.1900 -2.9627 -2.5653 -2.2172 1.0107
## (Intercept)-Procyon_lotor -2.2357 0.1619 -2.5634 -2.2326 -1.9265 1.0291
## (Intercept)-Dasypus_novemcinctus -1.7346 0.1938 -2.1151 -1.7302 -1.3546 1.0120
## (Intercept)-Lynx_rufus -3.4594 0.3494 -4.1869 -3.4454 -2.8128 1.0171
## (Intercept)-Didelphis_virginiana -2.5177 0.3056 -3.1468 -2.5159 -1.9382 1.0240
## (Intercept)-Sylvilagus_floridanus -3.0661 0.2690 -3.6440 -3.0568 -2.5623 1.0046
## (Intercept)-Meleagris_gallopavo -3.4524 0.5178 -4.5519 -3.4329 -2.4961 1.0196
## (Intercept)-Sciurus_carolinensis -2.7589 0.3344 -3.4527 -2.7416 -2.1279 1.0059
## shrub_cover-Canis_latrans -0.3080 0.2340 -0.7648 -0.3130 0.1472 1.0306
## shrub_cover-Procyon_lotor 0.2862 0.1657 -0.0527 0.2879 0.6079 1.0113
## shrub_cover-Dasypus_novemcinctus 1.0757 0.3244 0.4352 1.0747 1.6921 1.0101
## shrub_cover-Lynx_rufus 0.0801 0.3778 -0.6981 0.0970 0.7682 1.0306
## shrub_cover-Didelphis_virginiana 1.1604 0.3912 0.4434 1.1435 2.0021 1.0395
## shrub_cover-Sylvilagus_floridanus 0.6340 0.3887 -0.1244 0.6295 1.4329 1.0170
## shrub_cover-Meleagris_gallopavo -0.3755 0.4638 -1.3196 -0.3761 0.5234 1.0264
## shrub_cover-Sciurus_carolinensis 1.1743 0.4020 0.3625 1.1774 1.9596 1.0210
## veg_height-Canis_latrans -0.5596 0.1871 -0.9296 -0.5583 -0.1979 1.0098
## veg_height-Procyon_lotor 0.3770 0.1226 0.1331 0.3777 0.6150 1.0119
## veg_height-Dasypus_novemcinctus 0.3036 0.1425 0.0263 0.3020 0.5888 1.0038
## veg_height-Lynx_rufus 0.1590 0.2441 -0.3269 0.1686 0.6161 1.0176
## veg_height-Didelphis_virginiana 0.5197 0.2452 0.0566 0.5107 1.0160 1.0058
## veg_height-Sylvilagus_floridanus 0.1815 0.2445 -0.2932 0.1839 0.6618 1.0012
## veg_height-Meleagris_gallopavo -0.1175 0.4120 -0.9231 -0.1098 0.6990 1.0148
## veg_height-Sciurus_carolinensis 0.2014 0.2353 -0.2393 0.1952 0.6795 1.0033
## week-Canis_latrans 0.4542 0.2499 -0.0087 0.4446 0.9783 1.0098
## week-Procyon_lotor 0.1594 0.2006 -0.2339 0.1598 0.5658 1.0018
## week-Dasypus_novemcinctus 0.0635 0.2146 -0.3560 0.0630 0.4837 1.0012
## week-Lynx_rufus 0.2761 0.3016 -0.3170 0.2738 0.8783 1.0112
## week-Didelphis_virginiana 0.0411 0.3112 -0.5949 0.0520 0.6212 1.0007
## week-Sylvilagus_floridanus 0.0505 0.2955 -0.5431 0.0524 0.6247 1.0107
## week-Meleagris_gallopavo -0.1119 0.3619 -0.9186 -0.0793 0.5259 1.0133
## week-Sciurus_carolinensis 0.5540 0.3364 -0.0357 0.5324 1.2988 1.0008
## I(week^2)-Canis_latrans -0.1923 0.1067 -0.4090 -0.1903 0.0062 1.0089
## I(week^2)-Procyon_lotor -0.1123 0.0870 -0.2872 -0.1118 0.0544 1.0038
## I(week^2)-Dasypus_novemcinctus -0.1572 0.1013 -0.3675 -0.1534 0.0357 1.0059
## I(week^2)-Lynx_rufus -0.2111 0.1456 -0.5078 -0.2100 0.0600 1.0010
## I(week^2)-Didelphis_virginiana -0.3648 0.2079 -0.8340 -0.3437 -0.0144 1.0117
## I(week^2)-Sylvilagus_floridanus -0.1638 0.1545 -0.4855 -0.1583 0.1213 1.0033
## I(week^2)-Meleagris_gallopavo -0.3780 0.2402 -0.9364 -0.3408 -0.0072 1.0447
## I(week^2)-Sciurus_carolinensis -0.2001 0.1404 -0.4974 -0.1930 0.0539 1.0008
## ESS
## (Intercept)-Canis_latrans 1430
## (Intercept)-Procyon_lotor 740
## (Intercept)-Dasypus_novemcinctus 938
## (Intercept)-Lynx_rufus 341
## (Intercept)-Didelphis_virginiana 786
## (Intercept)-Sylvilagus_floridanus 803
## (Intercept)-Meleagris_gallopavo 255
## (Intercept)-Sciurus_carolinensis 545
## shrub_cover-Canis_latrans 619
## shrub_cover-Procyon_lotor 1245
## shrub_cover-Dasypus_novemcinctus 517
## shrub_cover-Lynx_rufus 281
## shrub_cover-Didelphis_virginiana 619
## shrub_cover-Sylvilagus_floridanus 587
## shrub_cover-Meleagris_gallopavo 280
## shrub_cover-Sciurus_carolinensis 448
## veg_height-Canis_latrans 964
## veg_height-Procyon_lotor 1878
## veg_height-Dasypus_novemcinctus 1777
## veg_height-Lynx_rufus 774
## veg_height-Didelphis_virginiana 1169
## veg_height-Sylvilagus_floridanus 941
## veg_height-Meleagris_gallopavo 339
## veg_height-Sciurus_carolinensis 956
## week-Canis_latrans 1521
## week-Procyon_lotor 2113
## week-Dasypus_novemcinctus 2467
## week-Lynx_rufus 1144
## week-Didelphis_virginiana 1509
## week-Sylvilagus_floridanus 1468
## week-Meleagris_gallopavo 833
## week-Sciurus_carolinensis 1413
## I(week^2)-Canis_latrans 1576
## I(week^2)-Procyon_lotor 1969
## I(week^2)-Dasypus_novemcinctus 2320
## I(week^2)-Lynx_rufus 959
## I(week^2)-Didelphis_virginiana 637
## I(week^2)-Sylvilagus_floridanus 932
## I(week^2)-Meleagris_gallopavo 304
## I(week^2)-Sciurus_carolinensis 1557
waicOcc(ms_full_full, by.sp = FALSE)
## elpd pD WAIC
## -961.3818 103.6293 2130.0223
waicOcc(ms_null_null, by.sp = FALSE)
## elpd pD WAIC
## -1066.4908 27.5828 2188.1471
waicOcc(ms_cover_forage, by.sp = FALSE)
## elpd pD WAIC
## -1016.4708 75.6129 2184.1674
waicOcc(ms_cover_move, by.sp = FALSE)
## elpd pD WAIC
## -1006.0536 86.2799 2184.6669
waicOcc(ms_cover_canopy, by.sp = FALSE)
## elpd pD WAIC
## -1000.08745 74.62514 2149.42518
waicOcc(ms_weekQ_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1038.30596 56.72895 2190.06982
waicOcc(ms_fullQ_cover, by.sp = FALSE)
## elpd pD WAIC
## -995.2246 106.3141 2203.0773
waicOcc(ms_fullQ_forage, by.sp = FALSE)
## elpd pD WAIC
## -1005.47395 90.00836 2190.96462
waicOcc(ms_fullQ_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -951.4201 113.2168 2129.2738
This test explains how well the model fits that data at the community and species level. I believe 0.5 is the target p-value, though how far from this number is considered adequate, I do not know yet. I believe this is a good place to check when thinking about which species we include in the model (currently set at mammals with > 2 occurences).
ppc.ms_fullQ_fullQ <- ppcOcc(ms_fullQ_fullQ, fit.stat = "freeman-tukey", group = 1)
## Currently on species 1 out of 8
## Currently on species 2 out of 8
## Currently on species 3 out of 8
## Currently on species 4 out of 8
## Currently on species 5 out of 8
## Currently on species 6 out of 8
## Currently on species 7 out of 8
## Currently on species 8 out of 8
summary(ppc.ms_fullQ_fullQ)
##
## Call:
## ppcOcc(object = ms_fullQ_fullQ, fit.stat = "freeman-tukey", group = 1)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Bayesian p-value: 0.3341
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Canis_latrans Bayesian p-value: 0.6288
## Procyon_lotor Bayesian p-value: 0.0628
## Dasypus_novemcinctus Bayesian p-value: 0
## Lynx_rufus Bayesian p-value: 0.3425
## Didelphis_virginiana Bayesian p-value: 0.3787
## Sylvilagus_floridanus Bayesian p-value: 0.4015
## Meleagris_gallopavo Bayesian p-value: 0.5988
## Sciurus_carolinensis Bayesian p-value: 0.26
## Fit statistic: freeman-tukey
summary(ms_fullQ_fullQ) # Summary of parameter estimates
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 1.0163
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.8514 0.8121 -3.4919 -1.8477 -0.2943 1.0637 301
## Cogon_Patch_Size 0.1768 0.7714 -1.3996 0.2011 1.6597 1.0326 561
## Veg_shannon_index 1.0501 0.5888 -0.0256 1.0189 2.2562 1.0163 328
## total_shrub_cover -1.2684 0.7409 -2.9159 -1.2132 0.1031 1.0217 459
## Avg_Cogongrass_Cover -0.0043 1.0806 -2.0015 -0.0055 2.1706 1.0314 182
## Tree_Density -2.3169 1.0734 -4.4275 -2.3159 -0.1533 1.0155 280
## Avg_Canopy_Cover 1.9824 0.8800 0.2835 1.9474 3.7783 1.0060 620
## I(Avg_Cogongrass_Cover^2) 1.4475 0.8156 -0.1665 1.4516 3.1328 1.0104 356
## avg_veg_height -0.0415 0.6330 -1.2614 -0.0531 1.2993 1.0259 270
## CWD_presence -0.0858 0.4655 -1.0101 -0.0847 0.8577 1.0010 875
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.5290 5.1113 0.0586 0.9443 15.6248 1.0998 264
## Cogon_Patch_Size 3.7615 7.6181 0.0845 1.5554 21.9914 1.0779 322
## Veg_shannon_index 1.0371 2.0866 0.0515 0.4567 5.5222 1.0726 423
## total_shrub_cover 3.5520 5.7067 0.1062 1.7916 17.8547 1.0066 174
## Avg_Cogongrass_Cover 1.6950 3.5559 0.0533 0.6020 9.8154 1.0453 218
## Tree_Density 7.6907 25.8166 0.0750 1.9728 54.6315 1.1951 213
## Avg_Canopy_Cover 6.9780 10.4791 0.3030 3.5269 36.4636 1.0073 166
## I(Avg_Cogongrass_Cover^2) 7.0629 35.1218 0.0912 1.7463 41.2268 2.0894 99
## avg_veg_height 0.9225 1.7482 0.0451 0.3823 5.2734 1.0331 295
## CWD_presence 0.8078 1.2768 0.0455 0.4027 4.0202 1.0437 295
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 2.5955 3.9334 0.0688 1.122 13.9372 1.1096 83
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6441 0.3098 -3.2435 -2.6500 -1.9936 1.0037 1708
## shrub_cover 0.4455 0.3326 -0.2390 0.4517 1.1001 1.0124 1334
## veg_height 0.1344 0.1983 -0.2668 0.1364 0.5384 1.0014 1748
## week 0.1836 0.2046 -0.2287 0.1848 0.5902 1.0048 1809
## I(week^2) -0.2241 0.1210 -0.4726 -0.2183 0.0060 1.0153 958
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6496 0.6308 0.1337 0.4820 2.1934 1.0114 1834
## shrub_cover 0.7275 0.6190 0.1420 0.5571 2.3888 1.0181 918
## veg_height 0.2585 0.2194 0.0604 0.2003 0.8324 1.0115 2161
## week 0.2109 0.2397 0.0337 0.1400 0.8016 1.0176 1738
## I(week^2) 0.0798 0.0803 0.0200 0.0583 0.2743 1.0272 1144
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans -1.4494 1.1983 -3.7321 -1.4672
## (Intercept)-Procyon_lotor -1.1993 1.1654 -3.4022 -1.2268
## (Intercept)-Dasypus_novemcinctus -2.3250 1.2444 -5.1825 -2.1631
## (Intercept)-Lynx_rufus -1.4987 1.4610 -4.1599 -1.6236
## (Intercept)-Didelphis_virginiana -2.9072 1.4122 -6.3534 -2.6853
## (Intercept)-Sylvilagus_floridanus -2.0109 1.2257 -4.7121 -1.9378
## (Intercept)-Meleagris_gallopavo -1.9095 1.2402 -4.3373 -1.9254
## (Intercept)-Sciurus_carolinensis -3.0470 1.5682 -6.8812 -2.7984
## Cogon_Patch_Size-Canis_latrans 1.5980 1.4892 -0.4730 1.3222
## Cogon_Patch_Size-Procyon_lotor -0.4597 0.9913 -2.6166 -0.3576
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2751 1.0252 -1.6305 0.2300
## Cogon_Patch_Size-Lynx_rufus -0.1100 1.6671 -3.6190 -0.0028
## Cogon_Patch_Size-Didelphis_virginiana 1.6330 1.2916 -0.3366 1.4194
## Cogon_Patch_Size-Sylvilagus_floridanus -1.0368 1.6821 -5.1526 -0.7226
## Cogon_Patch_Size-Meleagris_gallopavo 0.4382 1.4195 -1.9606 0.3414
## Cogon_Patch_Size-Sciurus_carolinensis -0.7301 1.6181 -4.5143 -0.4989
## Veg_shannon_index-Canis_latrans 1.4076 0.8222 0.1077 1.3022
## Veg_shannon_index-Procyon_lotor 1.3859 0.7954 0.0838 1.3063
## Veg_shannon_index-Dasypus_novemcinctus 0.6465 0.6877 -0.7428 0.6509
## Veg_shannon_index-Lynx_rufus 1.0801 1.0799 -0.8876 1.0084
## Veg_shannon_index-Didelphis_virginiana 1.2864 0.8531 -0.1233 1.1834
## Veg_shannon_index-Sylvilagus_floridanus 1.1398 0.8364 -0.3524 1.0712
## Veg_shannon_index-Meleagris_gallopavo 1.4299 0.9879 -0.0901 1.2853
## Veg_shannon_index-Sciurus_carolinensis 0.3805 0.9633 -1.8080 0.4779
## total_shrub_cover-Canis_latrans 0.4363 1.1960 -1.4362 0.2544
## total_shrub_cover-Procyon_lotor -1.6333 0.8168 -3.4711 -1.5488
## total_shrub_cover-Dasypus_novemcinctus -0.8055 1.2396 -3.8219 -0.6702
## total_shrub_cover-Lynx_rufus -2.3324 1.7022 -6.3976 -2.0090
## total_shrub_cover-Didelphis_virginiana -1.6495 1.2296 -4.6706 -1.4797
## total_shrub_cover-Sylvilagus_floridanus -1.3283 1.2768 -4.3621 -1.1941
## total_shrub_cover-Meleagris_gallopavo -2.8933 1.6402 -6.6503 -2.6523
## total_shrub_cover-Sciurus_carolinensis -1.4777 1.6142 -5.2914 -1.2357
## Avg_Cogongrass_Cover-Canis_latrans 0.1377 1.3588 -2.3529 0.0872
## Avg_Cogongrass_Cover-Procyon_lotor -0.1396 1.3966 -2.8296 -0.1513
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.6520 1.4460 -1.8676 0.5302
## Avg_Cogongrass_Cover-Lynx_rufus 0.0155 1.5712 -3.0532 0.0211
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2004 1.4318 -2.5208 0.1635
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.6605 1.5262 -4.0146 -0.5829
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.2775 1.6114 -3.7333 -0.2490
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.0475 1.4512 -2.8119 0.0277
## Tree_Density-Canis_latrans -3.4932 1.7786 -7.9404 -3.1676
## Tree_Density-Procyon_lotor -2.6010 1.3499 -5.5921 -2.4799
## Tree_Density-Dasypus_novemcinctus -4.9566 3.1773 -13.6525 -4.0859
## Tree_Density-Lynx_rufus -0.8850 2.2887 -4.2735 -1.2378
## Tree_Density-Didelphis_virginiana -2.5125 1.6086 -6.2153 -2.4006
## Tree_Density-Sylvilagus_floridanus -3.0319 1.7782 -7.0404 -2.8560
## Tree_Density-Meleagris_gallopavo -2.5945 1.6629 -6.0979 -2.5539
## Tree_Density-Sciurus_carolinensis -2.7121 1.9577 -6.9339 -2.5578
## Avg_Canopy_Cover-Canis_latrans 0.0584 0.7385 -1.4888 0.0641
## Avg_Canopy_Cover-Procyon_lotor 1.8003 1.0500 0.0680 1.6890
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.6217 1.2363 0.8870 2.3928
## Avg_Canopy_Cover-Lynx_rufus 1.1552 1.8031 -1.9360 0.9836
## Avg_Canopy_Cover-Didelphis_virginiana 3.7173 1.8763 1.2194 3.3100
## Avg_Canopy_Cover-Sylvilagus_floridanus 4.8289 2.6734 1.3955 4.2321
## Avg_Canopy_Cover-Meleagris_gallopavo 2.8136 1.7320 0.4695 2.4417
## Avg_Canopy_Cover-Sciurus_carolinensis 3.6137 1.9469 1.0506 3.2045
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.9184 2.0230 0.7691 2.4784
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.9902 2.8641 0.7463 2.4138
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4975 0.9254 -0.0398 1.3935
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 3.3583 2.8737 0.7825 2.7500
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.8163 0.8728 -0.8052 0.7841
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.0849 1.0851 -0.7920 1.0028
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 0.4402 3.1639 -3.9056 0.2245
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6231 0.9824 -0.0090 1.5445
## avg_veg_height-Canis_latrans -0.2053 0.7575 -1.7268 -0.1863
## avg_veg_height-Procyon_lotor 0.0328 0.7806 -1.4941 0.0203
## avg_veg_height-Dasypus_novemcinctus 0.3403 0.8174 -1.1333 0.2959
## avg_veg_height-Lynx_rufus -0.4445 1.0705 -2.9830 -0.3303
## avg_veg_height-Didelphis_virginiana -0.2955 0.8891 -2.1686 -0.2448
## avg_veg_height-Sylvilagus_floridanus -0.2306 0.8697 -2.1412 -0.2023
## avg_veg_height-Meleagris_gallopavo -0.0671 1.0534 -2.1377 -0.0723
## avg_veg_height-Sciurus_carolinensis 0.4451 0.9763 -1.2112 0.3397
## CWD_presence-Canis_latrans 0.5782 0.7953 -0.5990 0.4427
## CWD_presence-Procyon_lotor -0.3955 0.6747 -1.7775 -0.3478
## CWD_presence-Dasypus_novemcinctus -0.1576 0.5849 -1.4051 -0.1475
## CWD_presence-Lynx_rufus 0.2714 0.8152 -1.1132 0.1980
## CWD_presence-Didelphis_virginiana -0.1484 0.7662 -1.7679 -0.1281
## CWD_presence-Sylvilagus_floridanus -0.4925 0.7756 -2.2339 -0.4185
## CWD_presence-Meleagris_gallopavo -0.3011 0.7824 -1.9300 -0.2689
## CWD_presence-Sciurus_carolinensis -0.0444 0.6949 -1.4593 -0.0539
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 0.9590 1.0737 327
## (Intercept)-Procyon_lotor 1.1466 1.0238 302
## (Intercept)-Dasypus_novemcinctus -0.4755 1.1109 217
## (Intercept)-Lynx_rufus 1.8438 1.0552 274
## (Intercept)-Didelphis_virginiana -0.8142 1.0448 290
## (Intercept)-Sylvilagus_floridanus 0.2992 1.0594 376
## (Intercept)-Meleagris_gallopavo 0.5192 1.0242 394
## (Intercept)-Sciurus_carolinensis -0.7274 1.0927 233
## Cogon_Patch_Size-Canis_latrans 5.5103 1.0275 164
## Cogon_Patch_Size-Procyon_lotor 1.2329 1.0509 231
## Cogon_Patch_Size-Dasypus_novemcinctus 2.5549 1.0149 505
## Cogon_Patch_Size-Lynx_rufus 3.0073 1.0558 250
## Cogon_Patch_Size-Didelphis_virginiana 4.7493 1.0242 308
## Cogon_Patch_Size-Sylvilagus_floridanus 1.3422 1.0313 318
## Cogon_Patch_Size-Meleagris_gallopavo 3.6010 1.0173 349
## Cogon_Patch_Size-Sciurus_carolinensis 1.7248 1.1358 280
## Veg_shannon_index-Canis_latrans 3.3843 1.0118 434
## Veg_shannon_index-Procyon_lotor 3.1669 1.0302 222
## Veg_shannon_index-Dasypus_novemcinctus 1.9788 1.0045 617
## Veg_shannon_index-Lynx_rufus 3.4598 1.0290 421
## Veg_shannon_index-Didelphis_virginiana 3.3144 1.0196 428
## Veg_shannon_index-Sylvilagus_floridanus 3.0188 1.0114 350
## Veg_shannon_index-Meleagris_gallopavo 3.7965 1.0248 522
## Veg_shannon_index-Sciurus_carolinensis 2.0544 1.0081 473
## total_shrub_cover-Canis_latrans 3.4543 1.0127 179
## total_shrub_cover-Procyon_lotor -0.3011 1.0092 583
## total_shrub_cover-Dasypus_novemcinctus 1.0920 1.0525 298
## total_shrub_cover-Lynx_rufus 0.2120 1.0121 153
## total_shrub_cover-Didelphis_virginiana 0.3881 1.0202 305
## total_shrub_cover-Sylvilagus_floridanus 0.8840 1.0274 387
## total_shrub_cover-Meleagris_gallopavo -0.4900 1.0141 192
## total_shrub_cover-Sciurus_carolinensis 0.8722 1.0652 185
## Avg_Cogongrass_Cover-Canis_latrans 2.9375 1.0365 233
## Avg_Cogongrass_Cover-Procyon_lotor 2.6397 1.0345 280
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.7311 1.0283 270
## Avg_Cogongrass_Cover-Lynx_rufus 3.0138 1.0138 320
## Avg_Cogongrass_Cover-Didelphis_virginiana 3.1123 1.0173 324
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.1411 1.0164 308
## Avg_Cogongrass_Cover-Meleagris_gallopavo 2.6157 1.0541 266
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.9545 1.0192 311
## Tree_Density-Canis_latrans -1.0152 1.0710 268
## Tree_Density-Procyon_lotor -0.3188 1.0581 299
## Tree_Density-Dasypus_novemcinctus -1.6415 1.1037 101
## Tree_Density-Lynx_rufus 4.8954 1.0961 117
## Tree_Density-Didelphis_virginiana 0.5920 1.0782 212
## Tree_Density-Sylvilagus_floridanus 0.0971 1.0652 380
## Tree_Density-Meleagris_gallopavo 0.5883 1.0187 448
## Tree_Density-Sciurus_carolinensis 0.7727 1.0713 272
## Avg_Canopy_Cover-Canis_latrans 1.4686 1.0051 618
## Avg_Canopy_Cover-Procyon_lotor 4.2780 1.0315 172
## Avg_Canopy_Cover-Dasypus_novemcinctus 5.8434 1.0215 148
## Avg_Canopy_Cover-Lynx_rufus 5.3483 1.0696 276
## Avg_Canopy_Cover-Didelphis_virginiana 8.1048 1.0291 149
## Avg_Canopy_Cover-Sylvilagus_floridanus 11.8663 1.0214 123
## Avg_Canopy_Cover-Meleagris_gallopavo 7.3227 1.0117 201
## Avg_Canopy_Cover-Sciurus_carolinensis 8.7614 1.0328 204
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 7.2585 1.2779 74
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 11.4501 1.7038 47
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 3.5687 1.0324 305
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 10.5751 1.6135 42
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 2.6448 1.0104 395
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 3.5724 1.0304 280
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 6.0932 1.6405 51
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 3.8507 1.0200 529
## avg_veg_height-Canis_latrans 1.2831 1.0160 570
## avg_veg_height-Procyon_lotor 1.6765 1.0275 440
## avg_veg_height-Dasypus_novemcinctus 2.1064 1.0236 302
## avg_veg_height-Lynx_rufus 1.4046 1.0147 354
## avg_veg_height-Didelphis_virginiana 1.3673 1.0169 476
## avg_veg_height-Sylvilagus_floridanus 1.4248 1.0235 497
## avg_veg_height-Meleagris_gallopavo 2.1080 1.0024 340
## avg_veg_height-Sciurus_carolinensis 2.7352 1.0180 329
## CWD_presence-Canis_latrans 2.5169 1.0125 356
## CWD_presence-Procyon_lotor 0.8826 1.0103 543
## CWD_presence-Dasypus_novemcinctus 0.9923 1.0013 1302
## CWD_presence-Lynx_rufus 2.1500 1.0126 677
## CWD_presence-Didelphis_virginiana 1.4050 1.0109 854
## CWD_presence-Sylvilagus_floridanus 0.8816 1.0123 1049
## CWD_presence-Meleagris_gallopavo 1.2043 1.0066 1015
## CWD_presence-Sciurus_carolinensis 1.3505 1.0007 1059
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5724 0.1900 -2.9627 -2.5653 -2.2172 1.0107
## (Intercept)-Procyon_lotor -2.2357 0.1619 -2.5634 -2.2326 -1.9265 1.0291
## (Intercept)-Dasypus_novemcinctus -1.7346 0.1938 -2.1151 -1.7302 -1.3546 1.0120
## (Intercept)-Lynx_rufus -3.4594 0.3494 -4.1869 -3.4454 -2.8128 1.0171
## (Intercept)-Didelphis_virginiana -2.5177 0.3056 -3.1468 -2.5159 -1.9382 1.0240
## (Intercept)-Sylvilagus_floridanus -3.0661 0.2690 -3.6440 -3.0568 -2.5623 1.0046
## (Intercept)-Meleagris_gallopavo -3.4524 0.5178 -4.5519 -3.4329 -2.4961 1.0196
## (Intercept)-Sciurus_carolinensis -2.7589 0.3344 -3.4527 -2.7416 -2.1279 1.0059
## shrub_cover-Canis_latrans -0.3080 0.2340 -0.7648 -0.3130 0.1472 1.0306
## shrub_cover-Procyon_lotor 0.2862 0.1657 -0.0527 0.2879 0.6079 1.0113
## shrub_cover-Dasypus_novemcinctus 1.0757 0.3244 0.4352 1.0747 1.6921 1.0101
## shrub_cover-Lynx_rufus 0.0801 0.3778 -0.6981 0.0970 0.7682 1.0306
## shrub_cover-Didelphis_virginiana 1.1604 0.3912 0.4434 1.1435 2.0021 1.0395
## shrub_cover-Sylvilagus_floridanus 0.6340 0.3887 -0.1244 0.6295 1.4329 1.0170
## shrub_cover-Meleagris_gallopavo -0.3755 0.4638 -1.3196 -0.3761 0.5234 1.0264
## shrub_cover-Sciurus_carolinensis 1.1743 0.4020 0.3625 1.1774 1.9596 1.0210
## veg_height-Canis_latrans -0.5596 0.1871 -0.9296 -0.5583 -0.1979 1.0098
## veg_height-Procyon_lotor 0.3770 0.1226 0.1331 0.3777 0.6150 1.0119
## veg_height-Dasypus_novemcinctus 0.3036 0.1425 0.0263 0.3020 0.5888 1.0038
## veg_height-Lynx_rufus 0.1590 0.2441 -0.3269 0.1686 0.6161 1.0176
## veg_height-Didelphis_virginiana 0.5197 0.2452 0.0566 0.5107 1.0160 1.0058
## veg_height-Sylvilagus_floridanus 0.1815 0.2445 -0.2932 0.1839 0.6618 1.0012
## veg_height-Meleagris_gallopavo -0.1175 0.4120 -0.9231 -0.1098 0.6990 1.0148
## veg_height-Sciurus_carolinensis 0.2014 0.2353 -0.2393 0.1952 0.6795 1.0033
## week-Canis_latrans 0.4542 0.2499 -0.0087 0.4446 0.9783 1.0098
## week-Procyon_lotor 0.1594 0.2006 -0.2339 0.1598 0.5658 1.0018
## week-Dasypus_novemcinctus 0.0635 0.2146 -0.3560 0.0630 0.4837 1.0012
## week-Lynx_rufus 0.2761 0.3016 -0.3170 0.2738 0.8783 1.0112
## week-Didelphis_virginiana 0.0411 0.3112 -0.5949 0.0520 0.6212 1.0007
## week-Sylvilagus_floridanus 0.0505 0.2955 -0.5431 0.0524 0.6247 1.0107
## week-Meleagris_gallopavo -0.1119 0.3619 -0.9186 -0.0793 0.5259 1.0133
## week-Sciurus_carolinensis 0.5540 0.3364 -0.0357 0.5324 1.2988 1.0008
## I(week^2)-Canis_latrans -0.1923 0.1067 -0.4090 -0.1903 0.0062 1.0089
## I(week^2)-Procyon_lotor -0.1123 0.0870 -0.2872 -0.1118 0.0544 1.0038
## I(week^2)-Dasypus_novemcinctus -0.1572 0.1013 -0.3675 -0.1534 0.0357 1.0059
## I(week^2)-Lynx_rufus -0.2111 0.1456 -0.5078 -0.2100 0.0600 1.0010
## I(week^2)-Didelphis_virginiana -0.3648 0.2079 -0.8340 -0.3437 -0.0144 1.0117
## I(week^2)-Sylvilagus_floridanus -0.1638 0.1545 -0.4855 -0.1583 0.1213 1.0033
## I(week^2)-Meleagris_gallopavo -0.3780 0.2402 -0.9364 -0.3408 -0.0072 1.0447
## I(week^2)-Sciurus_carolinensis -0.2001 0.1404 -0.4974 -0.1930 0.0539 1.0008
## ESS
## (Intercept)-Canis_latrans 1430
## (Intercept)-Procyon_lotor 740
## (Intercept)-Dasypus_novemcinctus 938
## (Intercept)-Lynx_rufus 341
## (Intercept)-Didelphis_virginiana 786
## (Intercept)-Sylvilagus_floridanus 803
## (Intercept)-Meleagris_gallopavo 255
## (Intercept)-Sciurus_carolinensis 545
## shrub_cover-Canis_latrans 619
## shrub_cover-Procyon_lotor 1245
## shrub_cover-Dasypus_novemcinctus 517
## shrub_cover-Lynx_rufus 281
## shrub_cover-Didelphis_virginiana 619
## shrub_cover-Sylvilagus_floridanus 587
## shrub_cover-Meleagris_gallopavo 280
## shrub_cover-Sciurus_carolinensis 448
## veg_height-Canis_latrans 964
## veg_height-Procyon_lotor 1878
## veg_height-Dasypus_novemcinctus 1777
## veg_height-Lynx_rufus 774
## veg_height-Didelphis_virginiana 1169
## veg_height-Sylvilagus_floridanus 941
## veg_height-Meleagris_gallopavo 339
## veg_height-Sciurus_carolinensis 956
## week-Canis_latrans 1521
## week-Procyon_lotor 2113
## week-Dasypus_novemcinctus 2467
## week-Lynx_rufus 1144
## week-Didelphis_virginiana 1509
## week-Sylvilagus_floridanus 1468
## week-Meleagris_gallopavo 833
## week-Sciurus_carolinensis 1413
## I(week^2)-Canis_latrans 1576
## I(week^2)-Procyon_lotor 1969
## I(week^2)-Dasypus_novemcinctus 2320
## I(week^2)-Lynx_rufus 959
## I(week^2)-Didelphis_virginiana 637
## I(week^2)-Sylvilagus_floridanus 932
## I(week^2)-Meleagris_gallopavo 304
## I(week^2)-Sciurus_carolinensis 1557
names(ms_fullQ_fullQ)
## [1] "rhat" "beta.comm.samples" "alpha.comm.samples"
## [4] "tau.sq.beta.samples" "tau.sq.alpha.samples" "beta.samples"
## [7] "alpha.samples" "z.samples" "psi.samples"
## [10] "like.samples" "sigma.sq.psi.samples" "beta.star.samples"
## [13] "re.level.names" "ESS" "X"
## [16] "X.p" "X.p.re" "X.re"
## [19] "y" "call" "n.samples"
## [22] "x.names" "sp.names" "x.p.names"
## [25] "n.post" "n.thin" "n.burn"
## [28] "n.chains" "pRE" "psiRE"
## [31] "run.time"
str(ms_fullQ_fullQ$beta.samples)
## 'mcmc' num [1:4000, 1:80] 0.761 -3.866 -5.481 -3.925 0.225 ...
## - attr(*, "mcpar")= num [1:3] 1 4000 1
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:80] "(Intercept)-Canis_latrans" "(Intercept)-Procyon_lotor" "(Intercept)-Dasypus_novemcinctus" "(Intercept)-Lynx_rufus" ...
mean(ms_fullQ_fullQ$beta.samples[, 5] > 0) # effect of ? on occupancy
## [1] 0.00375
MCMCplot(ms_fullQ_fullQ$beta.samples, ref_ovl = TRUE, ci = c(50, 95)) # Occupancy
MCMCplot(ms_fullQ_fullQ$alpha.samples, ref_ovl = TRUE, ci = c(50, 95)) # Detection
# 1. Create a sequence of unscaled cogongrass cover values
cogon.pred.vals <- seq(min(data_list$occ.covs$Avg_Cogongrass_Cover),
max(data_list$occ.covs$Avg_Cogongrass_Cover),
length.out = 100)
# 2. Scale using the same transformation used in the model
cogon.mean <- mean(data_list$occ.covs$Avg_Cogongrass_Cover)
cogon.sd <- sd(data_list$occ.covs$Avg_Cogongrass_Cover)
cogon.pred.scale <- (cogon.pred.vals - cogon.mean) / cogon.sd
# 3. Generate the quadratic term (scaled^2)
cogon.pred.scale2 <- cogon.pred.scale^2
# 4. Prediction matrix: set all other covariates to their means (recommended)
# Replace 0 with mean(...) if you want predictions at mean conditions
pred.df <- as.matrix(data.frame(
intercept = 1,
Avg_Cogongrass_Cover = cogon.pred.scale,
I.Avg_Cogongrass_Cover.2. = cogon.pred.scale2,
CWD_presence = 0,
Cogon_Patch_Size = 0,
Veg_shannon_index = 0,
total_shrub_cover = 0,
Tree_Density = 0,
Avg_Canopy_Cover = 0,
avg_veg_height = 0,
Auth = 0
))
# 5. Predict occupancy from the model
out.pred <- predict(ms_fullQ_fullQ, pred.df)
# 6. Convert posterior samples to quantiles
psi.0.quants <- apply(out.pred$psi.0.samples, 3,
function(x) quantile(x, prob = c(0.025, 0.5, 0.975)))
# 7. Format for plotting
psi.plot.dat <- data.frame(
psi.med = psi.0.quants[2, ],
psi.low = psi.0.quants[1, ],
psi.high = psi.0.quants[3, ],
Avg_Cogongrass_Cover = cogon.pred.vals
)
# 8. Plot
ggplot(psi.plot.dat, aes(x = Avg_Cogongrass_Cover, y = psi.med)) +
geom_ribbon(aes(ymin = psi.low, ymax = psi.high), fill = "grey70") +
geom_line(size = 1.1) +
theme_bw() +
labs(x = "Average Cogongrass Cover (%)", y = "Predicted Occupancy") +
scale_y_continuous(limits = c(0,1))
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
summary(ms_fullQ_fullQ) # Summary of parameter estimates
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 4000
## Run Time (min): 1.0163
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.8514 0.8121 -3.4919 -1.8477 -0.2943 1.0637 301
## Cogon_Patch_Size 0.1768 0.7714 -1.3996 0.2011 1.6597 1.0326 561
## Veg_shannon_index 1.0501 0.5888 -0.0256 1.0189 2.2562 1.0163 328
## total_shrub_cover -1.2684 0.7409 -2.9159 -1.2132 0.1031 1.0217 459
## Avg_Cogongrass_Cover -0.0043 1.0806 -2.0015 -0.0055 2.1706 1.0314 182
## Tree_Density -2.3169 1.0734 -4.4275 -2.3159 -0.1533 1.0155 280
## Avg_Canopy_Cover 1.9824 0.8800 0.2835 1.9474 3.7783 1.0060 620
## I(Avg_Cogongrass_Cover^2) 1.4475 0.8156 -0.1665 1.4516 3.1328 1.0104 356
## avg_veg_height -0.0415 0.6330 -1.2614 -0.0531 1.2993 1.0259 270
## CWD_presence -0.0858 0.4655 -1.0101 -0.0847 0.8577 1.0010 875
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.5290 5.1113 0.0586 0.9443 15.6248 1.0998 264
## Cogon_Patch_Size 3.7615 7.6181 0.0845 1.5554 21.9914 1.0779 322
## Veg_shannon_index 1.0371 2.0866 0.0515 0.4567 5.5222 1.0726 423
## total_shrub_cover 3.5520 5.7067 0.1062 1.7916 17.8547 1.0066 174
## Avg_Cogongrass_Cover 1.6950 3.5559 0.0533 0.6020 9.8154 1.0453 218
## Tree_Density 7.6907 25.8166 0.0750 1.9728 54.6315 1.1951 213
## Avg_Canopy_Cover 6.9780 10.4791 0.3030 3.5269 36.4636 1.0073 166
## I(Avg_Cogongrass_Cover^2) 7.0629 35.1218 0.0912 1.7463 41.2268 2.0894 99
## avg_veg_height 0.9225 1.7482 0.0451 0.3823 5.2734 1.0331 295
## CWD_presence 0.8078 1.2768 0.0455 0.4027 4.0202 1.0437 295
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 2.5955 3.9334 0.0688 1.122 13.9372 1.1096 83
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6441 0.3098 -3.2435 -2.6500 -1.9936 1.0037 1708
## shrub_cover 0.4455 0.3326 -0.2390 0.4517 1.1001 1.0124 1334
## veg_height 0.1344 0.1983 -0.2668 0.1364 0.5384 1.0014 1748
## week 0.1836 0.2046 -0.2287 0.1848 0.5902 1.0048 1809
## I(week^2) -0.2241 0.1210 -0.4726 -0.2183 0.0060 1.0153 958
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6496 0.6308 0.1337 0.4820 2.1934 1.0114 1834
## shrub_cover 0.7275 0.6190 0.1420 0.5571 2.3888 1.0181 918
## veg_height 0.2585 0.2194 0.0604 0.2003 0.8324 1.0115 2161
## week 0.2109 0.2397 0.0337 0.1400 0.8016 1.0176 1738
## I(week^2) 0.0798 0.0803 0.0200 0.0583 0.2743 1.0272 1144
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans -1.4494 1.1983 -3.7321 -1.4672
## (Intercept)-Procyon_lotor -1.1993 1.1654 -3.4022 -1.2268
## (Intercept)-Dasypus_novemcinctus -2.3250 1.2444 -5.1825 -2.1631
## (Intercept)-Lynx_rufus -1.4987 1.4610 -4.1599 -1.6236
## (Intercept)-Didelphis_virginiana -2.9072 1.4122 -6.3534 -2.6853
## (Intercept)-Sylvilagus_floridanus -2.0109 1.2257 -4.7121 -1.9378
## (Intercept)-Meleagris_gallopavo -1.9095 1.2402 -4.3373 -1.9254
## (Intercept)-Sciurus_carolinensis -3.0470 1.5682 -6.8812 -2.7984
## Cogon_Patch_Size-Canis_latrans 1.5980 1.4892 -0.4730 1.3222
## Cogon_Patch_Size-Procyon_lotor -0.4597 0.9913 -2.6166 -0.3576
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2751 1.0252 -1.6305 0.2300
## Cogon_Patch_Size-Lynx_rufus -0.1100 1.6671 -3.6190 -0.0028
## Cogon_Patch_Size-Didelphis_virginiana 1.6330 1.2916 -0.3366 1.4194
## Cogon_Patch_Size-Sylvilagus_floridanus -1.0368 1.6821 -5.1526 -0.7226
## Cogon_Patch_Size-Meleagris_gallopavo 0.4382 1.4195 -1.9606 0.3414
## Cogon_Patch_Size-Sciurus_carolinensis -0.7301 1.6181 -4.5143 -0.4989
## Veg_shannon_index-Canis_latrans 1.4076 0.8222 0.1077 1.3022
## Veg_shannon_index-Procyon_lotor 1.3859 0.7954 0.0838 1.3063
## Veg_shannon_index-Dasypus_novemcinctus 0.6465 0.6877 -0.7428 0.6509
## Veg_shannon_index-Lynx_rufus 1.0801 1.0799 -0.8876 1.0084
## Veg_shannon_index-Didelphis_virginiana 1.2864 0.8531 -0.1233 1.1834
## Veg_shannon_index-Sylvilagus_floridanus 1.1398 0.8364 -0.3524 1.0712
## Veg_shannon_index-Meleagris_gallopavo 1.4299 0.9879 -0.0901 1.2853
## Veg_shannon_index-Sciurus_carolinensis 0.3805 0.9633 -1.8080 0.4779
## total_shrub_cover-Canis_latrans 0.4363 1.1960 -1.4362 0.2544
## total_shrub_cover-Procyon_lotor -1.6333 0.8168 -3.4711 -1.5488
## total_shrub_cover-Dasypus_novemcinctus -0.8055 1.2396 -3.8219 -0.6702
## total_shrub_cover-Lynx_rufus -2.3324 1.7022 -6.3976 -2.0090
## total_shrub_cover-Didelphis_virginiana -1.6495 1.2296 -4.6706 -1.4797
## total_shrub_cover-Sylvilagus_floridanus -1.3283 1.2768 -4.3621 -1.1941
## total_shrub_cover-Meleagris_gallopavo -2.8933 1.6402 -6.6503 -2.6523
## total_shrub_cover-Sciurus_carolinensis -1.4777 1.6142 -5.2914 -1.2357
## Avg_Cogongrass_Cover-Canis_latrans 0.1377 1.3588 -2.3529 0.0872
## Avg_Cogongrass_Cover-Procyon_lotor -0.1396 1.3966 -2.8296 -0.1513
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.6520 1.4460 -1.8676 0.5302
## Avg_Cogongrass_Cover-Lynx_rufus 0.0155 1.5712 -3.0532 0.0211
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2004 1.4318 -2.5208 0.1635
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.6605 1.5262 -4.0146 -0.5829
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.2775 1.6114 -3.7333 -0.2490
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.0475 1.4512 -2.8119 0.0277
## Tree_Density-Canis_latrans -3.4932 1.7786 -7.9404 -3.1676
## Tree_Density-Procyon_lotor -2.6010 1.3499 -5.5921 -2.4799
## Tree_Density-Dasypus_novemcinctus -4.9566 3.1773 -13.6525 -4.0859
## Tree_Density-Lynx_rufus -0.8850 2.2887 -4.2735 -1.2378
## Tree_Density-Didelphis_virginiana -2.5125 1.6086 -6.2153 -2.4006
## Tree_Density-Sylvilagus_floridanus -3.0319 1.7782 -7.0404 -2.8560
## Tree_Density-Meleagris_gallopavo -2.5945 1.6629 -6.0979 -2.5539
## Tree_Density-Sciurus_carolinensis -2.7121 1.9577 -6.9339 -2.5578
## Avg_Canopy_Cover-Canis_latrans 0.0584 0.7385 -1.4888 0.0641
## Avg_Canopy_Cover-Procyon_lotor 1.8003 1.0500 0.0680 1.6890
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.6217 1.2363 0.8870 2.3928
## Avg_Canopy_Cover-Lynx_rufus 1.1552 1.8031 -1.9360 0.9836
## Avg_Canopy_Cover-Didelphis_virginiana 3.7173 1.8763 1.2194 3.3100
## Avg_Canopy_Cover-Sylvilagus_floridanus 4.8289 2.6734 1.3955 4.2321
## Avg_Canopy_Cover-Meleagris_gallopavo 2.8136 1.7320 0.4695 2.4417
## Avg_Canopy_Cover-Sciurus_carolinensis 3.6137 1.9469 1.0506 3.2045
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.9184 2.0230 0.7691 2.4784
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.9902 2.8641 0.7463 2.4138
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4975 0.9254 -0.0398 1.3935
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 3.3583 2.8737 0.7825 2.7500
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.8163 0.8728 -0.8052 0.7841
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.0849 1.0851 -0.7920 1.0028
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 0.4402 3.1639 -3.9056 0.2245
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6231 0.9824 -0.0090 1.5445
## avg_veg_height-Canis_latrans -0.2053 0.7575 -1.7268 -0.1863
## avg_veg_height-Procyon_lotor 0.0328 0.7806 -1.4941 0.0203
## avg_veg_height-Dasypus_novemcinctus 0.3403 0.8174 -1.1333 0.2959
## avg_veg_height-Lynx_rufus -0.4445 1.0705 -2.9830 -0.3303
## avg_veg_height-Didelphis_virginiana -0.2955 0.8891 -2.1686 -0.2448
## avg_veg_height-Sylvilagus_floridanus -0.2306 0.8697 -2.1412 -0.2023
## avg_veg_height-Meleagris_gallopavo -0.0671 1.0534 -2.1377 -0.0723
## avg_veg_height-Sciurus_carolinensis 0.4451 0.9763 -1.2112 0.3397
## CWD_presence-Canis_latrans 0.5782 0.7953 -0.5990 0.4427
## CWD_presence-Procyon_lotor -0.3955 0.6747 -1.7775 -0.3478
## CWD_presence-Dasypus_novemcinctus -0.1576 0.5849 -1.4051 -0.1475
## CWD_presence-Lynx_rufus 0.2714 0.8152 -1.1132 0.1980
## CWD_presence-Didelphis_virginiana -0.1484 0.7662 -1.7679 -0.1281
## CWD_presence-Sylvilagus_floridanus -0.4925 0.7756 -2.2339 -0.4185
## CWD_presence-Meleagris_gallopavo -0.3011 0.7824 -1.9300 -0.2689
## CWD_presence-Sciurus_carolinensis -0.0444 0.6949 -1.4593 -0.0539
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 0.9590 1.0737 327
## (Intercept)-Procyon_lotor 1.1466 1.0238 302
## (Intercept)-Dasypus_novemcinctus -0.4755 1.1109 217
## (Intercept)-Lynx_rufus 1.8438 1.0552 274
## (Intercept)-Didelphis_virginiana -0.8142 1.0448 290
## (Intercept)-Sylvilagus_floridanus 0.2992 1.0594 376
## (Intercept)-Meleagris_gallopavo 0.5192 1.0242 394
## (Intercept)-Sciurus_carolinensis -0.7274 1.0927 233
## Cogon_Patch_Size-Canis_latrans 5.5103 1.0275 164
## Cogon_Patch_Size-Procyon_lotor 1.2329 1.0509 231
## Cogon_Patch_Size-Dasypus_novemcinctus 2.5549 1.0149 505
## Cogon_Patch_Size-Lynx_rufus 3.0073 1.0558 250
## Cogon_Patch_Size-Didelphis_virginiana 4.7493 1.0242 308
## Cogon_Patch_Size-Sylvilagus_floridanus 1.3422 1.0313 318
## Cogon_Patch_Size-Meleagris_gallopavo 3.6010 1.0173 349
## Cogon_Patch_Size-Sciurus_carolinensis 1.7248 1.1358 280
## Veg_shannon_index-Canis_latrans 3.3843 1.0118 434
## Veg_shannon_index-Procyon_lotor 3.1669 1.0302 222
## Veg_shannon_index-Dasypus_novemcinctus 1.9788 1.0045 617
## Veg_shannon_index-Lynx_rufus 3.4598 1.0290 421
## Veg_shannon_index-Didelphis_virginiana 3.3144 1.0196 428
## Veg_shannon_index-Sylvilagus_floridanus 3.0188 1.0114 350
## Veg_shannon_index-Meleagris_gallopavo 3.7965 1.0248 522
## Veg_shannon_index-Sciurus_carolinensis 2.0544 1.0081 473
## total_shrub_cover-Canis_latrans 3.4543 1.0127 179
## total_shrub_cover-Procyon_lotor -0.3011 1.0092 583
## total_shrub_cover-Dasypus_novemcinctus 1.0920 1.0525 298
## total_shrub_cover-Lynx_rufus 0.2120 1.0121 153
## total_shrub_cover-Didelphis_virginiana 0.3881 1.0202 305
## total_shrub_cover-Sylvilagus_floridanus 0.8840 1.0274 387
## total_shrub_cover-Meleagris_gallopavo -0.4900 1.0141 192
## total_shrub_cover-Sciurus_carolinensis 0.8722 1.0652 185
## Avg_Cogongrass_Cover-Canis_latrans 2.9375 1.0365 233
## Avg_Cogongrass_Cover-Procyon_lotor 2.6397 1.0345 280
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.7311 1.0283 270
## Avg_Cogongrass_Cover-Lynx_rufus 3.0138 1.0138 320
## Avg_Cogongrass_Cover-Didelphis_virginiana 3.1123 1.0173 324
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.1411 1.0164 308
## Avg_Cogongrass_Cover-Meleagris_gallopavo 2.6157 1.0541 266
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.9545 1.0192 311
## Tree_Density-Canis_latrans -1.0152 1.0710 268
## Tree_Density-Procyon_lotor -0.3188 1.0581 299
## Tree_Density-Dasypus_novemcinctus -1.6415 1.1037 101
## Tree_Density-Lynx_rufus 4.8954 1.0961 117
## Tree_Density-Didelphis_virginiana 0.5920 1.0782 212
## Tree_Density-Sylvilagus_floridanus 0.0971 1.0652 380
## Tree_Density-Meleagris_gallopavo 0.5883 1.0187 448
## Tree_Density-Sciurus_carolinensis 0.7727 1.0713 272
## Avg_Canopy_Cover-Canis_latrans 1.4686 1.0051 618
## Avg_Canopy_Cover-Procyon_lotor 4.2780 1.0315 172
## Avg_Canopy_Cover-Dasypus_novemcinctus 5.8434 1.0215 148
## Avg_Canopy_Cover-Lynx_rufus 5.3483 1.0696 276
## Avg_Canopy_Cover-Didelphis_virginiana 8.1048 1.0291 149
## Avg_Canopy_Cover-Sylvilagus_floridanus 11.8663 1.0214 123
## Avg_Canopy_Cover-Meleagris_gallopavo 7.3227 1.0117 201
## Avg_Canopy_Cover-Sciurus_carolinensis 8.7614 1.0328 204
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 7.2585 1.2779 74
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 11.4501 1.7038 47
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 3.5687 1.0324 305
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 10.5751 1.6135 42
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 2.6448 1.0104 395
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 3.5724 1.0304 280
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 6.0932 1.6405 51
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 3.8507 1.0200 529
## avg_veg_height-Canis_latrans 1.2831 1.0160 570
## avg_veg_height-Procyon_lotor 1.6765 1.0275 440
## avg_veg_height-Dasypus_novemcinctus 2.1064 1.0236 302
## avg_veg_height-Lynx_rufus 1.4046 1.0147 354
## avg_veg_height-Didelphis_virginiana 1.3673 1.0169 476
## avg_veg_height-Sylvilagus_floridanus 1.4248 1.0235 497
## avg_veg_height-Meleagris_gallopavo 2.1080 1.0024 340
## avg_veg_height-Sciurus_carolinensis 2.7352 1.0180 329
## CWD_presence-Canis_latrans 2.5169 1.0125 356
## CWD_presence-Procyon_lotor 0.8826 1.0103 543
## CWD_presence-Dasypus_novemcinctus 0.9923 1.0013 1302
## CWD_presence-Lynx_rufus 2.1500 1.0126 677
## CWD_presence-Didelphis_virginiana 1.4050 1.0109 854
## CWD_presence-Sylvilagus_floridanus 0.8816 1.0123 1049
## CWD_presence-Meleagris_gallopavo 1.2043 1.0066 1015
## CWD_presence-Sciurus_carolinensis 1.3505 1.0007 1059
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5724 0.1900 -2.9627 -2.5653 -2.2172 1.0107
## (Intercept)-Procyon_lotor -2.2357 0.1619 -2.5634 -2.2326 -1.9265 1.0291
## (Intercept)-Dasypus_novemcinctus -1.7346 0.1938 -2.1151 -1.7302 -1.3546 1.0120
## (Intercept)-Lynx_rufus -3.4594 0.3494 -4.1869 -3.4454 -2.8128 1.0171
## (Intercept)-Didelphis_virginiana -2.5177 0.3056 -3.1468 -2.5159 -1.9382 1.0240
## (Intercept)-Sylvilagus_floridanus -3.0661 0.2690 -3.6440 -3.0568 -2.5623 1.0046
## (Intercept)-Meleagris_gallopavo -3.4524 0.5178 -4.5519 -3.4329 -2.4961 1.0196
## (Intercept)-Sciurus_carolinensis -2.7589 0.3344 -3.4527 -2.7416 -2.1279 1.0059
## shrub_cover-Canis_latrans -0.3080 0.2340 -0.7648 -0.3130 0.1472 1.0306
## shrub_cover-Procyon_lotor 0.2862 0.1657 -0.0527 0.2879 0.6079 1.0113
## shrub_cover-Dasypus_novemcinctus 1.0757 0.3244 0.4352 1.0747 1.6921 1.0101
## shrub_cover-Lynx_rufus 0.0801 0.3778 -0.6981 0.0970 0.7682 1.0306
## shrub_cover-Didelphis_virginiana 1.1604 0.3912 0.4434 1.1435 2.0021 1.0395
## shrub_cover-Sylvilagus_floridanus 0.6340 0.3887 -0.1244 0.6295 1.4329 1.0170
## shrub_cover-Meleagris_gallopavo -0.3755 0.4638 -1.3196 -0.3761 0.5234 1.0264
## shrub_cover-Sciurus_carolinensis 1.1743 0.4020 0.3625 1.1774 1.9596 1.0210
## veg_height-Canis_latrans -0.5596 0.1871 -0.9296 -0.5583 -0.1979 1.0098
## veg_height-Procyon_lotor 0.3770 0.1226 0.1331 0.3777 0.6150 1.0119
## veg_height-Dasypus_novemcinctus 0.3036 0.1425 0.0263 0.3020 0.5888 1.0038
## veg_height-Lynx_rufus 0.1590 0.2441 -0.3269 0.1686 0.6161 1.0176
## veg_height-Didelphis_virginiana 0.5197 0.2452 0.0566 0.5107 1.0160 1.0058
## veg_height-Sylvilagus_floridanus 0.1815 0.2445 -0.2932 0.1839 0.6618 1.0012
## veg_height-Meleagris_gallopavo -0.1175 0.4120 -0.9231 -0.1098 0.6990 1.0148
## veg_height-Sciurus_carolinensis 0.2014 0.2353 -0.2393 0.1952 0.6795 1.0033
## week-Canis_latrans 0.4542 0.2499 -0.0087 0.4446 0.9783 1.0098
## week-Procyon_lotor 0.1594 0.2006 -0.2339 0.1598 0.5658 1.0018
## week-Dasypus_novemcinctus 0.0635 0.2146 -0.3560 0.0630 0.4837 1.0012
## week-Lynx_rufus 0.2761 0.3016 -0.3170 0.2738 0.8783 1.0112
## week-Didelphis_virginiana 0.0411 0.3112 -0.5949 0.0520 0.6212 1.0007
## week-Sylvilagus_floridanus 0.0505 0.2955 -0.5431 0.0524 0.6247 1.0107
## week-Meleagris_gallopavo -0.1119 0.3619 -0.9186 -0.0793 0.5259 1.0133
## week-Sciurus_carolinensis 0.5540 0.3364 -0.0357 0.5324 1.2988 1.0008
## I(week^2)-Canis_latrans -0.1923 0.1067 -0.4090 -0.1903 0.0062 1.0089
## I(week^2)-Procyon_lotor -0.1123 0.0870 -0.2872 -0.1118 0.0544 1.0038
## I(week^2)-Dasypus_novemcinctus -0.1572 0.1013 -0.3675 -0.1534 0.0357 1.0059
## I(week^2)-Lynx_rufus -0.2111 0.1456 -0.5078 -0.2100 0.0600 1.0010
## I(week^2)-Didelphis_virginiana -0.3648 0.2079 -0.8340 -0.3437 -0.0144 1.0117
## I(week^2)-Sylvilagus_floridanus -0.1638 0.1545 -0.4855 -0.1583 0.1213 1.0033
## I(week^2)-Meleagris_gallopavo -0.3780 0.2402 -0.9364 -0.3408 -0.0072 1.0447
## I(week^2)-Sciurus_carolinensis -0.2001 0.1404 -0.4974 -0.1930 0.0539 1.0008
## ESS
## (Intercept)-Canis_latrans 1430
## (Intercept)-Procyon_lotor 740
## (Intercept)-Dasypus_novemcinctus 938
## (Intercept)-Lynx_rufus 341
## (Intercept)-Didelphis_virginiana 786
## (Intercept)-Sylvilagus_floridanus 803
## (Intercept)-Meleagris_gallopavo 255
## (Intercept)-Sciurus_carolinensis 545
## shrub_cover-Canis_latrans 619
## shrub_cover-Procyon_lotor 1245
## shrub_cover-Dasypus_novemcinctus 517
## shrub_cover-Lynx_rufus 281
## shrub_cover-Didelphis_virginiana 619
## shrub_cover-Sylvilagus_floridanus 587
## shrub_cover-Meleagris_gallopavo 280
## shrub_cover-Sciurus_carolinensis 448
## veg_height-Canis_latrans 964
## veg_height-Procyon_lotor 1878
## veg_height-Dasypus_novemcinctus 1777
## veg_height-Lynx_rufus 774
## veg_height-Didelphis_virginiana 1169
## veg_height-Sylvilagus_floridanus 941
## veg_height-Meleagris_gallopavo 339
## veg_height-Sciurus_carolinensis 956
## week-Canis_latrans 1521
## week-Procyon_lotor 2113
## week-Dasypus_novemcinctus 2467
## week-Lynx_rufus 1144
## week-Didelphis_virginiana 1509
## week-Sylvilagus_floridanus 1468
## week-Meleagris_gallopavo 833
## week-Sciurus_carolinensis 1413
## I(week^2)-Canis_latrans 1576
## I(week^2)-Procyon_lotor 1969
## I(week^2)-Dasypus_novemcinctus 2320
## I(week^2)-Lynx_rufus 959
## I(week^2)-Didelphis_virginiana 637
## I(week^2)-Sylvilagus_floridanus 932
## I(week^2)-Meleagris_gallopavo 304
## I(week^2)-Sciurus_carolinensis 1557
names(ms_fullQ_fullQ)
## [1] "rhat" "beta.comm.samples" "alpha.comm.samples"
## [4] "tau.sq.beta.samples" "tau.sq.alpha.samples" "beta.samples"
## [7] "alpha.samples" "z.samples" "psi.samples"
## [10] "like.samples" "sigma.sq.psi.samples" "beta.star.samples"
## [13] "re.level.names" "ESS" "X"
## [16] "X.p" "X.p.re" "X.re"
## [19] "y" "call" "n.samples"
## [22] "x.names" "sp.names" "x.p.names"
## [25] "n.post" "n.thin" "n.burn"
## [28] "n.chains" "pRE" "psiRE"
## [31] "run.time"
str(ms_fullQ_fullQ$beta.samples)
## 'mcmc' num [1:4000, 1:80] 0.761 -3.866 -5.481 -3.925 0.225 ...
## - attr(*, "mcpar")= num [1:3] 1 4000 1
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:80] "(Intercept)-Canis_latrans" "(Intercept)-Procyon_lotor" "(Intercept)-Dasypus_novemcinctus" "(Intercept)-Lynx_rufus" ...
mean(ms_fullQ_fullQ$beta.samples[, 5] > 0) # effect of ? on occupancy
## [1] 0.00375
MCMCplot(ms_fullQ_fullQ$beta.samples, ref_ovl = TRUE, ci = c(50, 95)) # Occupancy
MCMCplot(ms_fullQ_fullQ$alpha.samples, ref_ovl = TRUE, ci = c(50, 95)) # Detection
## Occupancy
# Total number of parameters
n_params <- ncol(ms_fullQ_fullQ$beta.samples)
# Choose how many parameters to plot at a time
chunk_size <- 10
# Split and plot
for (i in seq(1, n_params, by = chunk_size)) {
end <- min(i + chunk_size - 1, n_params)
param_names <- colnames(ms_fullQ_fullQ$beta.samples)[i:end]
# Set filename
file_name <- paste0("MCMCplot_Occupancy_Params_", i, "_to_", end, ".png")
# Save plot to PNG
png(filename = file_name, width = 1200, height = 800, res = 150)
MCMCplot(ms_fullQ_fullQ$beta.samples[, param_names],
ref_ovl = TRUE,
ci = c(50, 95),
main = paste0("Occupancy Parameters: ", i, " to ", end))
dev.off()
}
## Detection
# Number of parameters
n_params <- ncol(ms_fullQ_fullQ$alpha.samples)
# Number of parameters to plot at a time
chunk_size <- 10
# Split and plot
for (i in seq(1, n_params, by = chunk_size)) {
end <- min(i + chunk_size - 1, n_params)
param_names <- colnames(ms_fullQ_fullQ$alpha.samples)[i:end]
# Set filename
file_name <- paste0("MCMCplot_Detection_Params_", i, "_to_", end, ".png")
# Save plot to PNG
png(filename = file_name, width = 1200, height = 800, res = 150)
MCMCplot(ms_fullQ_fullQ$alpha.samples[, param_names],
ref_ovl = TRUE,
ci = c(50, 95),
main = paste0("Detection Parameters: ", i, " to ", end))
dev.off()
}
species_index <- which(dimnames(data_list$y)$species == "Procyon_lotor")
# Create a set of values across the range of observed cogongrass values
cogon.pred.vals <- seq(min(data_list$occ.covs$Avg_Cogongrass_Cover),
max(data_list$occ.covs$Avg_Cogongrass_Cover),
length.out = 100)
# Scale predicted values by mean and standard deviation used to fit the model
cogon.pred.vals.scale <- (cogon.pred.vals - mean(data_list$occ.covs$Avg_Cogongrass_Cover)) /
sd(data_list$occ.covs$Avg_Cogongrass_Cover)
# Predict occupancy across cogongrass cover values at mean values of all other variables
pred.df <- as.matrix(data.frame(intercept = 1, Avg_Cogongrass_Cover =
cogon.pred.vals.scale, 'I(Avg_Cogongrass_Cover^2)' = 0,
Cogon_Patch_Size = 0, Veg_shannon_index = 0,
total_shrub_cover = 0, Tree_Density = 0,
Avg_Canopy_Cover = 0, avg_veg_height = 0,
CWD_presence = 0, Auth = 0))
out.pred <- predict(ms_fullQ_fullQ, pred.df, species = species_index)
## Warning in predict.msPGOcc(ms_fullQ_fullQ, pred.df, species = species_index):
## 'species' is not an argument
str(out.pred)
## List of 3
## $ psi.0.samples: num [1:4000, 1:8, 1:100] 1.37e-01 6.78e-05 1.68e-05 2.01e-04 1.38e-01 ...
## $ z.0.samples : int [1:4000, 1:8, 1:100] 0 0 0 0 0 0 0 0 0 0 ...
## $ call : language predict.msPGOcc(object = ms_fullQ_fullQ, X.0 = pred.df, species = species_index)
## - attr(*, "class")= chr "predict.msPGOcc"
str(out.pred$psi.0.samples)
## num [1:4000, 1:8, 1:100] 1.37e-01 6.78e-05 1.68e-05 2.01e-04 1.38e-01 ...
psi.0.quants <- apply(out.pred$psi.0.samples, c(3), function(x) quantile(x, prob = c(0.025, 0.5, 0.975)))
str(psi.0.quants)
## num [1:3, 1:100] 0.000617 0.112853 0.918106 0.000618 0.111394 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:3] "2.5%" "50%" "97.5%"
## ..$ : NULL
psi.plot.dat <- data.frame(
psi.med = psi.0.quants[2, ],
psi.low = psi.0.quants[1, ],
psi.high = psi.0.quants[3, ],
Avg_Cogongrass_Cover = cogon.pred.vals
)
str(psi.plot.dat)
## 'data.frame': 100 obs. of 4 variables:
## $ psi.med : num 0.113 0.111 0.114 0.113 0.114 ...
## $ psi.low : num 0.000617 0.000618 0.000693 0.000671 0.000701 ...
## $ psi.high : num 0.918 0.912 0.919 0.913 0.913 ...
## $ Avg_Cogongrass_Cover: num -0.708 -0.675 -0.641 -0.608 -0.575 ...
ggplot(psi.plot.dat, aes(x = Avg_Cogongrass_Cover, y = psi.med)) +
geom_ribbon(aes(ymin = psi.low, ymax = psi.high), fill = "grey70") +
geom_line() +
theme_bw() +
scale_y_continuous(limits = c(0, 1)) +
labs(x = "Average Cogongrass Cover", y = "Occupancy Probability") +
ggtitle("Procyon_lotor Occupancy vs Cogongrass Cover")