Install necessary packages and import appropriate data
pacman::p_load(tidyverse, readxl, raster, vegan, tigris, sf, sjPlot, sp, spOccupancy, ggrepel, lme4, lmerTest, MuMIn, brms, MCMCvis, cmdstanr, lubridate)
# Install dependencies
#install.packages(c("posterior", "RcppParallel", "jsonlite"))
# Then install cmdstanr from the Stan developers’ repository
#install.packages("cmdstanr", repos = c("https://mc-stan.org/r-packages/", getOption("repos")))
# Tree PCQ Data
tree_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Tree_PCQ")
# Soil Data
fuel_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Fuel_Sampling")
# Veg Data
Veg_Cover <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Veg_Cover")
# Shrub Cover Data
shrub_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Shrub_Cover")
# Site Data
CameraData <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraData.xlsx")
CameraLoc <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "CameraLocations")
# Add effort data
effort_matrix <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "Effort_Matrix_Full") %>%
pivot_longer(cols = matches("^202[4-5]-"), names_to = "week", values_to = "days") %>%
filter(days == "7") %>%
dplyr::select(Plot, week)
I moved this from a later section because the filtering process removed quadrats that did not capture any species. Rows labeled as “None” were removed, suggesting that the number of quadrats sampled per plot is not consistent across all plots.
# Count the total number of quadrats per plot
quadrat_count <- Veg_Cover %>%
group_by(Plot) %>%
summarize(total_quadrats = n_distinct(Quadrat), .groups = "drop")
#Filter tree data to only include trees with "tree" in the growth column
tree_data <- dplyr::filter(tree_data, Growth == "Tree")
#Filter Veg Cover to exclude Shrubs and Trees
Veg_Cover <- dplyr::filter(Veg_Cover, Growth != "Shrub" & Growth != "Tree")
#Filter Shrub Cover to only include Shrubs and Trees
shrub_data <- dplyr::filter(shrub_data, Growth == "Shrub" | Growth == "Tree")
# Calculate the total number of sites
total_sites <- nrow(CameraLoc)
# Function to filter data by frequency
filter_by_frequency <- function(df) {
# Group data by species and calculate the frequency
freq <- df %>%
group_by(Species) %>%
summarise(Frequency = n_distinct(Plot) / nrow(CameraLoc) * 100) %>%
filter(Frequency >= 3)
# Filter the original data to include only species with frequency >= 3%
filtered_df <- df %>%
filter(Species %in% freq$Species)
return(filtered_df)
}
# Filter tree data by frequency
tree_data <- filter_by_frequency(tree_data)
# Filter Veg Cover data by frequency
Veg_Cover <- filter_by_frequency(Veg_Cover)
# Filter Shrub Cover data by frequency
shrub_data <- filter_by_frequency(shrub_data)
# Total length of Shrub cover at a site
shrub_cover <- shrub_data %>%
mutate(Cover = Line_End - Line_Start) %>%
group_by(Species_Name, Plot) %>%
summarise(Shrub_Total_Cover = sum(Cover, na.rm = TRUE), .groups = "drop") %>%
mutate(Shrub_Percent_Cover = Shrub_Total_Cover / 3000 * 100)
# Summed length of shrub over at a site
shrub_cover_summed <- shrub_cover %>%
group_by(Plot) %>%
summarize(total_shrub_cover = sum(Shrub_Total_Cover, na.rm = TRUE), .groups = "drop")
# Combine Plot and Quadrat columns
Veg_Cover <- Veg_Cover %>%
mutate(Plot_Quadrat = paste(Plot, Quadrat, sep = '_'))
# Join with CogonSites to get site information
Veg_Cover <- Veg_Cover %>%
left_join(CameraLoc, by = "Plot")
# Sum species cover across quadrats for each species at each plot
veg_cover_summed <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE), .groups = "drop")
# Calculate average herbaceous species cover
avg_species_cover <- veg_cover_summed %>%
left_join(quadrat_count, by = "Plot") %>%
mutate(avg_cover = total_cover / total_quadrats)
This species matrix includes herbaceous and shrub species
# Merge shrub cover with herbaceous average cover
combined_cover <- avg_species_cover %>%
full_join(
shrub_cover %>%
dplyr::select(Plot, Species_Name, Shrub_Percent_Cover),
by = c("Plot", "Species_Name")
) %>%
mutate(
overlap_flag = ifelse(!is.na(avg_cover) & !is.na(Shrub_Percent_Cover), TRUE, FALSE), # Flag overlaps
final_cover = case_when(
!is.na(avg_cover) & is.na(Shrub_Percent_Cover) ~ avg_cover, # Use herbaceous cover if no shrub data
is.na(avg_cover) & !is.na(Shrub_Percent_Cover) ~ Shrub_Percent_Cover, # Use shrub cover if no herbaceous data
TRUE ~ NA_real_ # Leave as NA where overlaps exist
)
)
# Species Matrix
species_matrix <- combined_cover %>%
dplyr::select(Plot, Species_Name, final_cover) %>%
pivot_wider(
names_from = Species_Name,
values_from = final_cover,
values_fill = 0
)
avg_cogongrass_cover <- species_matrix %>%
group_by(Plot) %>%
summarize(Avg_Cogongrass_Cover = sum(Imperata_cylindrica, na.rm = TRUE) / n(), .groups = "drop")
# Summarize species cover by site
site_species_cover <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'Plot'. You can override using the
## `.groups` argument.
# Calculate Shannon diversity per site
Veg_shannon_diversity <- site_species_cover %>%
group_by(Plot) %>%
mutate(proportion = total_cover / sum(total_cover)) %>%
summarize(Veg_shannon_index = -sum(proportion * log(proportion), na.rm = TRUE))
print(Veg_shannon_diversity)
## # A tibble: 206 × 2
## Plot Veg_shannon_index
## <chr> <dbl>
## 1 BI200 2.28
## 2 BI201 2.20
## 3 BI202 1.50
## 4 BI97 1.82
## 5 BI99 3.06
## 6 BN210 2.97
## 7 BN211 2.43
## 8 BN212 2.22
## 9 BN96 3.05
## 10 BN98 2.79
## # ℹ 196 more rows
if (!is.numeric(fuel_data$Height)) {
fuel_data$Height <- as.numeric(as.character(fuel_data$Height))
}
## Warning: NAs introduced by coercion
# Calculate average vegetation height per plot
veg_height <- fuel_data %>%
group_by(Plot) %>%
summarize(avg_veg_height = mean(Height, na.rm = TRUE), .groups = "drop")
# Tree density from point-centered quarter data
if (!is.numeric(tree_data$Distance)) {
tree_data$Distance <- as.numeric(as.character(tree_data$Distance))
}
tree_density_data <- tree_data %>%
group_by(Plot) %>%
summarize(Average_Distance = mean(Distance) / 100, # Convert to meters
Tree_Density = 10000 / (Average_Distance^2)) # Convert to trees per hectare
# Average canopy cover from vegetation quadrats
tree_canopy_data <- Veg_Cover %>%
distinct(Plot, Quadrat, .keep_all = TRUE) %>% # Ensure each quadrat counts once per plot
group_by(Plot) %>%
summarize(Avg_Canopy_Cover = mean(Canopy_Cover, na.rm = TRUE), .groups = "drop") # Calculate the average canopy cover per plot
cor(tree_density_data$Tree_Density, tree_canopy_data$Avg_Canopy_Cover)
## [1] 0.2742307
CameraData <- CameraData%>%
dplyr::select(-Status)
O2_data <- CameraData %>%
left_join(CameraLoc_O2, by = "Plot")
O2_data <- O2_data %>%
mutate(
DateTime = update(Date,
hour = hour(Time),
minute = minute(Time),
second = second(Time))
)
gap_mins <- 30
O2_data <- O2_data %>%
filter(!is.na(DateTime)) %>%
arrange(Plot, Name, DateTime) %>%
group_by(Plot, Name) %>%
group_modify(~{
df <- .x
keep <- logical(nrow(df))
last_kept <- as.POSIXct(NA, tz = tz(df$DateTime[1]))
for (i in seq_len(nrow(df))) {
if (is.na(last_kept) || difftime(df$DateTime[i], last_kept, units = "mins") > gap_mins) {
keep[i] <- TRUE
last_kept <- df$DateTime[i]
}
}
df[keep, , drop = FALSE]
}) %>%
ungroup()
# Creating proportions of observations for each behavior type
behavior_counts <- O2_data %>%
group_by(Plot, Name, Behavior, Status, Site, Camera.Type, BehLoc) %>%
summarise(ObservationCount = n(), .groups = "drop_last") %>%
mutate(TotalObs = sum(ObservationCount)) %>%
ungroup()
# collapse rare species (threshold = 10 rows; tune if needed)
keep_names <- behavior_counts %>%
count(Name) %>% filter(n >= 10) %>% pull(Name)
behavior_counts <- behavior_counts %>%
mutate(Name_group = if_else(Name %in% keep_names, Name, "Other"))
# quick check
behavior_counts %>% count(Name_group) %>% arrange(n)
## # A tibble: 9 × 2
## Name_group n
## <chr> <int>
## 1 Lynx_rufus 12
## 2 Didelphis_virginiana 13
## 3 Meleagris_gallopavo 14
## 4 Sciurus_carolinensis 15
## 5 Sylvilagus_floridanus 19
## 6 Canis_latrans 27
## 7 Dasypus_novemcinctus 31
## 8 Procyon_lotor 47
## 9 Odocoileus_virginianus 137
# Creating proportions of observations for each behavior type
behavior_proportions <- O2_data %>%
group_by(Plot, Name, Behavior, Status, Camera.Type, BehLoc) %>%
summarise(ObservationCount = n()) %>%
ungroup() %>%
group_by(Plot, Name, Status, Camera.Type, BehLoc) %>%
mutate(Proportion = ObservationCount / sum(ObservationCount)) %>%
ungroup()
## `summarise()` has grouped output by 'Plot', 'Name', 'Behavior', 'Status',
## 'Camera.Type'. You can override using the `.groups` argument.
# Ensure Behavior is an unordered factor
if(!is.factor(behavior_counts$Behavior) || is.ordered(behavior_counts$Behavior)) {
behavior_counts$Behavior <- factor(behavior_counts$Behavior, ordered = FALSE)
}
# Make Foraging the reference category
behavior_counts$Behavior <- relevel(behavior_counts$Behavior, ref = "Local_Search")
# Ensure Name is an unordered factor
if(!is.factor(behavior_counts$Name) || is.ordered(behavior_counts$Name)) {
behavior_counts$Name <- factor(behavior_counts$Name, ordered = FALSE)
}
# Make Odocoileus_virginianus the reference category
behavior_counts$Name <- relevel(behavior_counts$Name, ref = "Odocoileus_virginianus")
# Ensure Status is an unordered factor
if(!is.factor(behavior_counts$Status) || is.ordered(behavior_counts$Status)) {
behavior_counts$Status <- factor(behavior_counts$Status, ordered = FALSE)
}
# Make "Non-Invaded" the reference category
behavior_counts$Status <- relevel(behavior_counts$Status, ref = "Non_Invaded")
## Ensure Site is a factor
if(!is.factor(behavior_counts$Plot) || is.ordered(behavior_counts$Plot)) {
behavior_counts$Plot <- factor(behavior_counts$Plot, ordered = FALSE)
}
priors <- c(
prior(normal(0, 1), class = "b"), # regularizing slopes
prior(student_t(3, 0, 2.5), class = "Intercept"),
prior(exponential(1), class = "sd") # for random effects
)
# Fit the model
brms_model <- brm(
ObservationCount | trials(TotalObs) ~ Status * Behavior + Status * Name + (1 | Site) + (1 | Camera.Type),
data = behavior_counts,
family = binomial(),
prior = priors,
iter = 5000, warmup = 3000, chains = 4, cores = 4,
control = list(adapt_delta = 0.99, max_treedepth = 15)
)
## Compiling Stan program...
## Start sampling
# Diagnostic Plots
plot(brms_model)
# Summary Statistics
summary(brms_model)
## Family: binomial
## Links: mu = logit
## Formula: ObservationCount | trials(TotalObs) ~ Status * Behavior + Status * Name + (1 | Site) + (1 | Camera.Type)
## Data: behavior_counts (Number of observations: 315)
## Draws: 4 chains, each with iter = 5000; warmup = 3000; thin = 1;
## total post-warmup draws = 8000
##
## Multilevel Hyperparameters:
## ~Camera.Type (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.33 0.24 0.09 0.98 1.00 3291 4301
##
## ~Site (Number of levels: 5)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.16 0.16 0.00 0.55 1.00 2797 3887
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI
## Intercept 5.11 0.55 4.05 6.24
## StatusInvaded -4.67 0.51 -5.73 -3.72
## BehaviorForaging 0.67 0.61 -0.49 1.89
## BehaviorTransit 0.84 0.56 -0.29 1.97
## NameCanis_latrans 1.22 0.80 -0.31 2.85
## NameDasypus_novemcinctus 0.08 0.69 -1.25 1.41
## NameDidelphis_virginiana 0.28 0.72 -1.15 1.72
## NameLynx_rufus 1.15 0.82 -0.43 2.75
## NameMeleagris_gallopavo 0.28 0.78 -1.23 1.85
## NameProcyon_lotor 0.18 0.68 -1.12 1.55
## NameSciurus_carolinensis 0.62 0.76 -0.90 2.12
## NameSylvilagus_floridanus 0.46 0.74 -0.98 1.89
## StatusInvaded:BehaviorForaging -0.54 0.61 -1.77 0.64
## StatusInvaded:BehaviorTransit -1.34 0.57 -2.49 -0.22
## StatusInvaded:NameCanis_latrans 1.22 0.82 -0.39 2.83
## StatusInvaded:NameDasypus_novemcinctus -0.02 0.69 -1.36 1.32
## StatusInvaded:NameDidelphis_virginiana 0.28 0.72 -1.14 1.70
## StatusInvaded:NameLynx_rufus 1.16 0.82 -0.45 2.79
## StatusInvaded:NameMeleagris_gallopavo 0.24 0.79 -1.33 1.80
## StatusInvaded:NameProcyon_lotor 0.07 0.68 -1.28 1.37
## StatusInvaded:NameSciurus_carolinensis 0.61 0.76 -0.88 2.11
## StatusInvaded:NameSylvilagus_floridanus 0.40 0.74 -1.05 1.85
## Rhat Bulk_ESS Tail_ESS
## Intercept 1.00 6106 5718
## StatusInvaded 1.00 7441 5571
## BehaviorForaging 1.00 6204 5167
## BehaviorTransit 1.00 6075 5456
## NameCanis_latrans 1.00 9804 6383
## NameDasypus_novemcinctus 1.00 7007 6181
## NameDidelphis_virginiana 1.00 7329 5596
## NameLynx_rufus 1.00 9114 6226
## NameMeleagris_gallopavo 1.00 9287 6316
## NameProcyon_lotor 1.00 6697 5893
## NameSciurus_carolinensis 1.00 7846 6271
## NameSylvilagus_floridanus 1.00 7791 6295
## StatusInvaded:BehaviorForaging 1.00 6275 5464
## StatusInvaded:BehaviorTransit 1.00 6114 5423
## StatusInvaded:NameCanis_latrans 1.00 9669 6109
## StatusInvaded:NameDasypus_novemcinctus 1.00 6740 5746
## StatusInvaded:NameDidelphis_virginiana 1.00 7200 6241
## StatusInvaded:NameLynx_rufus 1.00 9840 6334
## StatusInvaded:NameMeleagris_gallopavo 1.00 9552 6296
## StatusInvaded:NameProcyon_lotor 1.00 6773 5520
## StatusInvaded:NameSciurus_carolinensis 1.00 7248 6120
## StatusInvaded:NameSylvilagus_floridanus 1.00 7993 6152
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# Create counts only for invaded sites
behavior_counts_invaded <- O2_data %>%
filter(Status == "Invaded") %>%
group_by(Plot, Name, Behavior, Status, Site, Camera.Type, BehLoc) %>%
summarise(ObservationCount = n(), .groups = "drop_last") %>%
mutate(TotalObs = sum(ObservationCount)) %>%
ungroup()
# Ensure Behavior is an unordered factor
if(!is.factor(behavior_counts_invaded$Behavior) || is.ordered(behavior_counts_invaded$Behavior)) {
behavior_counts_invaded$Behavior <- factor(behavior_counts_invaded$Behavior, ordered = FALSE)
}
# Make Foraging the reference category
behavior_counts_invaded$Behavior <- relevel(behavior_counts_invaded$Behavior, ref = "Local_Search")
# Ensure Name is an unordered factor
if(!is.factor(behavior_counts_invaded$Name) || is.ordered(behavior_counts_invaded$Name)) {
behavior_counts_invaded$Name <- factor(behavior_counts_invaded$Name, ordered = FALSE)
}
# Make Odocoileus_virginianus the reference category
behavior_counts_invaded$Name <- relevel(behavior_counts_invaded$Name, ref = "Odocoileus_virginianus")
priors <- c(
prior(normal(0, 1), class = "b"), # regularizing slopes
prior(student_t(3, 0, 2.5), class = "Intercept"),
prior(exponential(1), class = "sd") # for random effects
)
# Fit the model (binomial with trials)
Loc_model <- brm(
ObservationCount | trials(TotalObs) ~ BehLoc * Behavior + BehLoc * Name +
(1 | Site) + (1 | Camera.Type),
data = behavior_counts_invaded,
family = binomial(),
prior = priors,
iter = 5000, warmup = 3000, chains = 4, cores = 4,
control = list(adapt_delta = 0.99, max_treedepth = 15)
)
## Compiling Stan program...
## Start sampling
## Warning: There were 1 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
# Summarize model
summary(Loc_model)
## Warning: There were 1 divergent transitions after warmup. Increasing
## adapt_delta above 0.99 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: binomial
## Links: mu = logit
## Formula: ObservationCount | trials(TotalObs) ~ BehLoc * Behavior + BehLoc * Name + (1 | Site) + (1 | Camera.Type)
## Data: behavior_counts_invaded (Number of observations: 186)
## Draws: 4 chains, each with iter = 5000; warmup = 3000; thin = 1;
## total post-warmup draws = 8000
##
## Multilevel Hyperparameters:
## ~Camera.Type (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.22 0.22 0.01 0.75 1.00 2317 2640
##
## ~Site (Number of levels: 5)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.14 0.13 0.00 0.48 1.00 3101 3950
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 1.32 0.26 0.81 1.76 1.00
## BehLocPatch -2.04 0.23 -2.50 -1.59 1.00
## BehaviorForaging 1.32 0.29 0.78 1.89 1.00
## BehaviorTransit -1.46 0.18 -1.80 -1.13 1.00
## NameCanis_latrans 1.60 0.69 0.33 3.01 1.00
## NameDasypus_novemcinctus 0.14 0.25 -0.35 0.63 1.00
## NameDidelphis_virginiana 0.18 0.47 -0.72 1.15 1.00
## NameLynx_rufus 1.79 0.66 0.54 3.14 1.00
## NameMeleagris_gallopavo 0.25 0.71 -1.12 1.65 1.00
## NameProcyon_lotor 0.59 0.25 0.11 1.08 1.00
## NameSciurus_carolinensis 0.98 0.56 -0.08 2.12 1.00
## NameSylvilagus_floridanus 0.72 0.53 -0.30 1.79 1.00
## BehLocPatch:BehaviorForaging -2.57 0.41 -3.39 -1.80 1.00
## BehLocPatch:BehaviorTransit 2.40 0.25 1.91 2.89 1.00
## BehLocPatch:NameCanis_latrans 0.69 0.85 -0.92 2.40 1.00
## BehLocPatch:NameDasypus_novemcinctus -0.18 0.34 -0.87 0.48 1.00
## BehLocPatch:NameDidelphis_virginiana 0.41 0.61 -0.77 1.63 1.00
## BehLocPatch:NameLynx_rufus 0.16 0.97 -1.69 2.06 1.00
## BehLocPatch:NameMeleagris_gallopavo 0.09 0.83 -1.51 1.75 1.00
## BehLocPatch:NameProcyon_lotor -1.05 0.36 -1.74 -0.34 1.00
## BehLocPatch:NameSciurus_carolinensis -0.74 0.82 -2.34 0.85 1.00
## BehLocPatch:NameSylvilagus_floridanus -0.55 0.74 -2.01 0.90 1.00
## Bulk_ESS Tail_ESS
## Intercept 3835 2554
## BehLocPatch 4953 5415
## BehaviorForaging 6439 5998
## BehaviorTransit 5609 5745
## NameCanis_latrans 10610 5626
## NameDasypus_novemcinctus 8792 6741
## NameDidelphis_virginiana 8351 5673
## NameLynx_rufus 12299 5115
## NameMeleagris_gallopavo 10849 6072
## NameProcyon_lotor 7715 6484
## NameSciurus_carolinensis 11266 6046
## NameSylvilagus_floridanus 11007 6259
## BehLocPatch:BehaviorForaging 6190 6138
## BehLocPatch:BehaviorTransit 5063 5139
## BehLocPatch:NameCanis_latrans 10619 5583
## BehLocPatch:NameDasypus_novemcinctus 8931 6306
## BehLocPatch:NameDidelphis_virginiana 7847 5839
## BehLocPatch:NameLynx_rufus 12768 5468
## BehLocPatch:NameMeleagris_gallopavo 11479 6512
## BehLocPatch:NameProcyon_lotor 8192 5929
## BehLocPatch:NameSciurus_carolinensis 11130 5341
## BehLocPatch:NameSylvilagus_floridanus 11391 6059
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# Diagnostics and posterior checks
plot(Loc_model)
pp_check(Loc_model, type = 'dens_overlay')
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
pp_check(Loc_model, type = 'hist')
## Using 10 posterior draws for ppc type 'hist' by default.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
pp_check(Loc_model, type = 'boxplot')
## Using 10 posterior draws for ppc type 'boxplot' by default.
## Notch went outside hinges
## ℹ Do you want `notch = FALSE`?Notch went outside hinges
## ℹ Do you want `notch = FALSE`?Notch went outside hinges
## ℹ Do you want `notch = FALSE`?Notch went outside hinges
## ℹ Do you want `notch = FALSE`?Notch went outside hinges
## ℹ Do you want `notch = FALSE`?Notch went outside hinges
## ℹ Do you want `notch = FALSE`?Notch went outside hinges
## ℹ Do you want `notch = FALSE`?
pp_check(Loc_model, type = 'intervals')
## Using all posterior draws for ppc type 'intervals' by default.
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## ℹ The deprecated feature was likely used in the bayesplot package.
## Please report the issue at <https://github.com/stan-dev/bayesplot/issues/>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
pp_check(Loc_model, type = 'scatter_avg')
## Using all posterior draws for ppc type 'scatter_avg' by default.
# Compute marginal effects
marginal_effects_data <- conditional_effects(Loc_model)
## Setting all 'trials' variables to 1 by default if not specified otherwise.
# Plot marginal effects
plot(marginal_effects_data)
## Ignoring unknown labels:
## • fill : "NA"
## • colour : "NA"
## Ignoring unknown labels:
## • fill : "NA"
## • colour : "NA"
## Ignoring unknown labels:
## • fill : "NA"
## • colour : "NA"
## Ignoring unknown labels:
## • fill : "NA"
## • colour : "NA"
## Ignoring unknown labels:
## • fill : "NA"
## • colour : "NA"
## Ignoring unknown labels:
## • fill : "NA"
## • colour : "NA"
# Add proportions for plotting predicted vs observed:
invaded_data <- behavior_counts_invaded %>%
group_by(Plot, Name, Status, Camera.Type, BehLoc) %>%
mutate(Proportion = ObservationCount / sum(ObservationCount)) %>%
ungroup()
# Obtain fitted posterior predictions
predicted_values <- posterior_epred(Loc_model, newdata = invaded_data)
# Plot predicted (posterior mean) vs observed
plot(invaded_data$Proportion,
colMeans(predicted_values),
xlab = "Observed Proportion",
ylab = "Predicted Proportion",
pch = 19)
abline(a = 0, b = 1, col = "red", lwd = 2)
# Extract interaction marginal effect
interaction_plot_data <- conditional_effects(Loc_model, effects = "BehLoc:Behavior")
## Setting all 'trials' variables to 1 by default if not specified otherwise.
df <- as.data.frame(interaction_plot_data$`BehLoc:Behavior`)
ggplot(df, aes(x = BehLoc, y = estimate__, color = Behavior, group = Behavior)) +
geom_line(linewidth = 1) +
geom_ribbon(aes(ymin = lower__, ymax = upper__, fill = Behavior),
alpha = 0.2, color = NA) +
theme_minimal() +
labs(title = "Interaction Plot: BehLoc × Behavior",
y = "Estimated Probability",
x = "Behavior Location (Patch vs Non-Patch)")