# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309983 -0.0029354856  0.0366058345  0.052133205  4.992285e-02
## 2013-02-28  0.0058915397 -0.0231053453 -0.0129693818  0.016175342  1.267856e-02
## 2013-03-28  0.0009844304 -0.0102352316  0.0129693818  0.040257885  3.726788e-02
## 2013-04-30  0.0096391959  0.0120851273  0.0489678087  0.001222538  1.903064e-02
## 2013-05-31 -0.0202137936 -0.0494835176 -0.0306557766  0.041976891  2.333455e-02
## 2013-06-28 -0.0157786224 -0.0547285338 -0.0271443468 -0.001403198 -1.343432e-02
## 2013-07-31  0.0026877041  0.0131598630  0.0518605797  0.063541230  5.038606e-02
## 2013-08-30 -0.0082981785 -0.0257056421 -0.0197463298 -0.034743287 -3.045111e-02
## 2013-09-30  0.0111447239  0.0695886549  0.0753385976  0.063873430  3.115581e-02
## 2013-10-31  0.0082913099  0.0408614795  0.0320813234  0.034234254  4.526727e-02
## 2013-11-29 -0.0025100110 -0.0025940761  0.0054499275  0.041661072  2.920647e-02
## 2013-12-31 -0.0055829453 -0.0040745915  0.0215280857  0.012891965  2.559595e-02
## 2014-01-31  0.0152916910 -0.0903222373 -0.0534135125 -0.035775655 -3.588435e-02
## 2014-02-28  0.0037576147  0.0332202932  0.0595050873  0.045257774  4.451015e-02
## 2014-03-31 -0.0014819410  0.0380217630 -0.0046026528  0.013315232  8.261201e-03
## 2014-04-30  0.0081826843  0.0077725550  0.0165295022 -0.023184439  6.927754e-03
## 2014-05-30  0.0117219356  0.0290914298  0.0158285209  0.006205615  2.294107e-02
## 2014-06-30 -0.0005752718  0.0237338294  0.0091651086  0.037718732  2.043464e-02
## 2014-07-31 -0.0025125341  0.0135558000 -0.0263796602 -0.052009582 -1.352879e-02
## 2014-08-29  0.0114304342  0.0279047127  0.0018003198  0.043657791  3.870524e-02
## 2014-09-30 -0.0061668821 -0.0808569957 -0.0395983828 -0.061260156 -1.389236e-02
## 2014-10-31  0.0105843615  0.0140965730 -0.0026547701  0.068874957  2.327789e-02
## 2014-11-28  0.0065483378 -0.0155413256  0.0006254113  0.004773494  2.710149e-02
## 2014-12-31  0.0014756214 -0.0404421179 -0.0407466407  0.025295678 -2.540269e-03
## 2015-01-30  0.0203151709 -0.0068953886  0.0062265346 -0.054627567 -3.007710e-02
## 2015-02-27 -0.0089882999  0.0431357164  0.0614503340  0.056914286  5.468205e-02
## 2015-03-31  0.0037408066 -0.0150864224 -0.0143887940  0.010156466 -1.583014e-02
## 2015-04-30 -0.0032338744  0.0662814793  0.0358165820 -0.018417570  9.785522e-03
## 2015-05-29 -0.0043830760 -0.0419108097  0.0019527893  0.007509707  1.277442e-02
## 2015-06-30 -0.0108254123 -0.0297468223 -0.0316788399  0.004171436 -2.052115e-02
## 2015-07-31  0.0085842200 -0.0651781505  0.0201144152 -0.027375424  2.233776e-02
## 2015-08-31 -0.0033639695 -0.0925121983 -0.0771522498 -0.047268843 -6.288654e-02
## 2015-09-30  0.0080820828 -0.0318250291 -0.0451951046 -0.038464347 -2.584744e-02
## 2015-10-30  0.0006846272  0.0618082789  0.0640260786  0.063590090  8.163508e-02
## 2015-11-30 -0.0038979846 -0.0255604049 -0.0075562313  0.024414797  3.648594e-03
## 2015-12-31 -0.0019190855 -0.0389472098 -0.0235947998 -0.052156932 -1.743376e-02
## 2016-01-29  0.0123301147 -0.0516364737 -0.0567578828 -0.060306641 -5.106833e-02
## 2016-02-29  0.0088317698 -0.0082116139 -0.0339138341  0.020605212 -8.268926e-04
## 2016-03-31  0.0087089559  0.1218788821  0.0637457564  0.089910291  6.510062e-02
## 2016-04-29  0.0025462067  0.0040792413  0.0219751028  0.021044165  3.933256e-03
## 2016-05-31  0.0001351525 -0.0376284639 -0.0008560850  0.004396951  1.686859e-02
## 2016-06-30  0.0191669821  0.0445822210 -0.0244915251  0.008292475  3.469846e-03
## 2016-07-29  0.0054295073  0.0524424305  0.0390002385  0.049348352  3.582192e-02
## 2016-08-31 -0.0021561788  0.0087984061  0.0053268445  0.011260917  1.196974e-03
## 2016-09-30  0.0005162171  0.0248729185  0.0132790786  0.008614807  5.802546e-05
## 2016-10-31 -0.0082054532 -0.0083122645 -0.0224036661 -0.038134959 -1.748947e-02
## 2016-11-30 -0.0259897123 -0.0451616270 -0.0179745747  0.125246475  3.617641e-02
## 2016-12-30  0.0025385077 -0.0025300487  0.0267029898  0.031491742  2.006906e-02
## 2017-01-31  0.0021262162  0.0644314134  0.0323817472 -0.012143831  1.773656e-02
## 2017-02-28  0.0064380468  0.0172578354  0.0118366770  0.013428646  3.853903e-02
## 2017-03-31 -0.0005531278  0.0361888562  0.0318055897 -0.006533060  1.249122e-03
## 2017-04-28  0.0090288995  0.0168666395  0.0239524062  0.005108016  9.877524e-03
## 2017-05-31  0.0068472697  0.0280598963  0.0348100648 -0.022862609  1.401435e-02
## 2017-06-30 -0.0001824771  0.0092235488  0.0029559259  0.029151638  6.354361e-03
## 2017-07-31  0.0033344926  0.0565947442  0.0261878800  0.007481528  2.034601e-02
## 2017-08-31  0.0093692425  0.0232437116 -0.0004483592 -0.027564839  2.913568e-03
## 2017-09-29 -0.0057328752 -0.0004461573  0.0233428833  0.082321981  1.994872e-02
## 2017-10-31  0.0009785262  0.0322784943  0.0166536509  0.005915633  2.329089e-02
## 2017-11-30 -0.0014842345 -0.0038970180  0.0068697554  0.036913721  3.010802e-02
## 2017-12-29  0.0047406857  0.0369254159  0.0133985498 -0.003731303  1.205495e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398447e-05 0.0001042090 4.178117e-05 -7.811969e-05 -9.032221e-06
## EEM  1.042090e-04 0.0017547095 1.039016e-03  6.437735e-04  6.795437e-04
## EFA  4.178117e-05 0.0010390164 1.064237e-03  6.490293e-04  6.975418e-04
## IJS -7.811969e-05 0.0006437735 6.490293e-04  1.565450e-03  8.290254e-04
## SPY -9.032221e-06 0.0006795437 6.975418e-04  8.290254e-04  7.408301e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##           [,1]
## [1,] 0.0234749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874079 0.009257142 0.005815631 0.005684469 0.002330252
rowSums(component_contribution)
## [1] 0.0234749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl 
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309983 -0.0029354856  0.0366058345  0.052133205  4.992285e-02
## 2013-02-28  0.0058915397 -0.0231053453 -0.0129693818  0.016175342  1.267856e-02
## 2013-03-28  0.0009844304 -0.0102352316  0.0129693818  0.040257885  3.726788e-02
## 2013-04-30  0.0096391959  0.0120851273  0.0489678087  0.001222538  1.903064e-02
## 2013-05-31 -0.0202137936 -0.0494835176 -0.0306557766  0.041976891  2.333455e-02
## 2013-06-28 -0.0157786224 -0.0547285338 -0.0271443468 -0.001403198 -1.343432e-02
## 2013-07-31  0.0026877041  0.0131598630  0.0518605797  0.063541230  5.038606e-02
## 2013-08-30 -0.0082981785 -0.0257056421 -0.0197463298 -0.034743287 -3.045111e-02
## 2013-09-30  0.0111447239  0.0695886549  0.0753385976  0.063873430  3.115581e-02
## 2013-10-31  0.0082913099  0.0408614795  0.0320813234  0.034234254  4.526727e-02
## 2013-11-29 -0.0025100110 -0.0025940761  0.0054499275  0.041661072  2.920647e-02
## 2013-12-31 -0.0055829453 -0.0040745915  0.0215280857  0.012891965  2.559595e-02
## 2014-01-31  0.0152916910 -0.0903222373 -0.0534135125 -0.035775655 -3.588435e-02
## 2014-02-28  0.0037576147  0.0332202932  0.0595050873  0.045257774  4.451015e-02
## 2014-03-31 -0.0014819410  0.0380217630 -0.0046026528  0.013315232  8.261201e-03
## 2014-04-30  0.0081826843  0.0077725550  0.0165295022 -0.023184439  6.927754e-03
## 2014-05-30  0.0117219356  0.0290914298  0.0158285209  0.006205615  2.294107e-02
## 2014-06-30 -0.0005752718  0.0237338294  0.0091651086  0.037718732  2.043464e-02
## 2014-07-31 -0.0025125341  0.0135558000 -0.0263796602 -0.052009582 -1.352879e-02
## 2014-08-29  0.0114304342  0.0279047127  0.0018003198  0.043657791  3.870524e-02
## 2014-09-30 -0.0061668821 -0.0808569957 -0.0395983828 -0.061260156 -1.389236e-02
## 2014-10-31  0.0105843615  0.0140965730 -0.0026547701  0.068874957  2.327789e-02
## 2014-11-28  0.0065483378 -0.0155413256  0.0006254113  0.004773494  2.710149e-02
## 2014-12-31  0.0014756214 -0.0404421179 -0.0407466407  0.025295678 -2.540269e-03
## 2015-01-30  0.0203151709 -0.0068953886  0.0062265346 -0.054627567 -3.007710e-02
## 2015-02-27 -0.0089882999  0.0431357164  0.0614503340  0.056914286  5.468205e-02
## 2015-03-31  0.0037408066 -0.0150864224 -0.0143887940  0.010156466 -1.583014e-02
## 2015-04-30 -0.0032338744  0.0662814793  0.0358165820 -0.018417570  9.785522e-03
## 2015-05-29 -0.0043830760 -0.0419108097  0.0019527893  0.007509707  1.277442e-02
## 2015-06-30 -0.0108254123 -0.0297468223 -0.0316788399  0.004171436 -2.052115e-02
## 2015-07-31  0.0085842200 -0.0651781505  0.0201144152 -0.027375424  2.233776e-02
## 2015-08-31 -0.0033639695 -0.0925121983 -0.0771522498 -0.047268843 -6.288654e-02
## 2015-09-30  0.0080820828 -0.0318250291 -0.0451951046 -0.038464347 -2.584744e-02
## 2015-10-30  0.0006846272  0.0618082789  0.0640260786  0.063590090  8.163508e-02
## 2015-11-30 -0.0038979846 -0.0255604049 -0.0075562313  0.024414797  3.648594e-03
## 2015-12-31 -0.0019190855 -0.0389472098 -0.0235947998 -0.052156932 -1.743376e-02
## 2016-01-29  0.0123301147 -0.0516364737 -0.0567578828 -0.060306641 -5.106833e-02
## 2016-02-29  0.0088317698 -0.0082116139 -0.0339138341  0.020605212 -8.268926e-04
## 2016-03-31  0.0087089559  0.1218788821  0.0637457564  0.089910291  6.510062e-02
## 2016-04-29  0.0025462067  0.0040792413  0.0219751028  0.021044165  3.933256e-03
## 2016-05-31  0.0001351525 -0.0376284639 -0.0008560850  0.004396951  1.686859e-02
## 2016-06-30  0.0191669821  0.0445822210 -0.0244915251  0.008292475  3.469846e-03
## 2016-07-29  0.0054295073  0.0524424305  0.0390002385  0.049348352  3.582192e-02
## 2016-08-31 -0.0021561788  0.0087984061  0.0053268445  0.011260917  1.196974e-03
## 2016-09-30  0.0005162171  0.0248729185  0.0132790786  0.008614807  5.802546e-05
## 2016-10-31 -0.0082054532 -0.0083122645 -0.0224036661 -0.038134959 -1.748947e-02
## 2016-11-30 -0.0259897123 -0.0451616270 -0.0179745747  0.125246475  3.617641e-02
## 2016-12-30  0.0025385077 -0.0025300487  0.0267029898  0.031491742  2.006906e-02
## 2017-01-31  0.0021262162  0.0644314134  0.0323817472 -0.012143831  1.773656e-02
## 2017-02-28  0.0064380468  0.0172578354  0.0118366770  0.013428646  3.853903e-02
## 2017-03-31 -0.0005531278  0.0361888562  0.0318055897 -0.006533060  1.249122e-03
## 2017-04-28  0.0090288995  0.0168666395  0.0239524062  0.005108016  9.877524e-03
## 2017-05-31  0.0068472697  0.0280598963  0.0348100648 -0.022862609  1.401435e-02
## 2017-06-30 -0.0001824771  0.0092235488  0.0029559259  0.029151638  6.354361e-03
## 2017-07-31  0.0033344926  0.0565947442  0.0261878800  0.007481528  2.034601e-02
## 2017-08-31  0.0093692425  0.0232437116 -0.0004483592 -0.027564839  2.913568e-03
## 2017-09-29 -0.0057328752 -0.0004461573  0.0233428833  0.082321981  1.994872e-02
## 2017-10-31  0.0009785262  0.0322784943  0.0166536509  0.005915633  2.329089e-02
## 2017-11-30 -0.0014842345 -0.0038970180  0.0068697554  0.036913721  3.010802e-02
## 2017-12-29  0.0047406857  0.0369254159  0.0133985498 -0.003731303  1.205495e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead on a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) + 
    geom_col(fill = "cornflowerblue") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column chart of component contribution and weight

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>% 
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) + 
    geom_col(position = "dodge") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent", 
         x = NULL)

6 Rolling Component Contribution