data source: “ArMorr DBP DNA 12 23 2015.xlsx”

Original Data

Baseline information

##    Variable              DBP7.A            DBP7.AG.G P.Value
## 1       Age  64.5 + 14.9 (1065)   61.2 + 15.7 (1210)   <.001
## 2       Sex 613 / 1065 (57.6 %)  627 / 1210 (51.8 %)   0.007
## 3     Race2 920 / 1065 (86.4 %)  441 / 1210 (36.4 %)   <.001
## 4    Ethnic 151 / 1065 (14.2 %)  136 / 1210 (11.2 %)   0.041
## 5  diabetes 481 / 1058 (45.5 %)  521 / 1207 (43.2 %)   0.291
## 6  catheter  666 / 985 (67.6 %)  717 / 1113 (64.4 %)   0.135
## 7       BMI   27.3 + 7.5 (1064)    28.1 + 8.2 (1210)   0.026
## 8     sbp14 141.1 + 22.4 (1052)  145.8 + 22.6 (1205)   <.001
## 9     dbp14  71.6 + 13.1 (1052)   75.2 + 13.2 (1205)   <.001
## 10     ca14    8.5 + 0.8 (1041)     8.4 + 0.9 (1195)   0.224
## 11     cr14    5.8 + 2.4 (1019)     6.8 + 3.0 (1179)   <.001
## 12    alk14   98.5 + 73.6 (978)   98.5 + 64.2 (1128)   0.988
## 13    alb14    3.5 + 0.5 (1049)     3.5 + 0.5 (1202)   0.076
## 14    pth14 266.1 + 265.6 (822)  314.8 + 259.5 (949)   <.001
## 15   phos14    4.7 + 1.6 (1045)     4.7 + 1.6 (1192)   0.879
## 16    wbc14    8.8 + 3.2 (1018)     8.4 + 3.0 (1179)   0.003
## 17   ferr14 300.5 + 369.2 (972) 325.0 + 344.0 (1130)   0.116
## 18   Ivvitd 684 / 1065 (64.2 %)  881 / 1210 (72.8 %)   <.001

Kaplan Meier Curve

km <- survfit(Surv(fu, Death)~group, data=dat)
ggkmTable(km, ystratalabs=c("A", "AG/G"), timeby=50, main="DBP 7: A vs. AG/G")

Cox model

cox.fit <- coxph(Surv(fu, Death)~group+Age+Race2+diabetes+pth14+ca14+phos14+alb14+catheter+Ivvitd, dat)
summary(cox.fit)
## Call:
## coxph(formula = Surv(fu, Death) ~ group + Age + Race2 + diabetes + 
##     pth14 + ca14 + phos14 + alb14 + catheter + Ivvitd, data = dat)
## 
##   n= 1602, number of events= 224 
##    (691 observations deleted due to missingness)
## 
##                 coef  exp(coef)   se(coef)      z Pr(>|z|)    
## group0    -0.2036363  0.8157590  0.1515646 -1.344    0.179    
## Age        0.0429902  1.0439277  0.0054199  7.932 2.11e-15 ***
## Race2NW    0.0141941  1.0142954  0.1679337  0.085    0.933    
## diabetes0  0.0131327  1.0132194  0.1371148  0.096    0.924    
## pth14      0.0002818  1.0002819  0.0002788  1.011    0.312    
## ca14       0.1450807  1.1561328  0.0938318  1.546    0.122    
## phos14     0.0309412  1.0314249  0.0455985  0.679    0.497    
## alb14     -0.8124774  0.4437573  0.1465972 -5.542 2.99e-08 ***
## catheter0 -0.2735063  0.7607075  0.1498499 -1.825    0.068 .  
## Ivvitd0   -0.0230802  0.9771842  0.1606759 -0.144    0.886    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## group0       0.8158     1.2259    0.6061    1.0979
## Age          1.0439     0.9579    1.0329    1.0551
## Race2NW      1.0143     0.9859    0.7298    1.4096
## diabetes0    1.0132     0.9870    0.7744    1.3256
## pth14        1.0003     0.9997    0.9997    1.0008
## ca14         1.1561     0.8650    0.9619    1.3896
## phos14       1.0314     0.9695    0.9432    1.1278
## alb14        0.4438     2.2535    0.3329    0.5915
## catheter0    0.7607     1.3146    0.5671    1.0204
## Ivvitd0      0.9772     1.0233    0.7132    1.3389
## 
## Concordance= 0.706  (se = 0.019 )
## Rsquare= 0.069   (max possible= 0.87 )
## Likelihood ratio test= 115.3  on 10 df,   p=0
## Wald test            = 108.4  on 10 df,   p=0
## Score (logrank) test = 109.8  on 10 df,   p=0
logit.fit <- glm(Death~group+Age+Race2+diabetes+pth14+ca14+phos14+alb14+catheter+Ivvitd,
                 dat, family="binomial")
summary(logit.fit)
## 
## Call:
## glm(formula = Death ~ group + Age + Race2 + diabetes + pth14 + 
##     ca14 + phos14 + alb14 + catheter + Ivvitd, family = "binomial", 
##     data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3787  -0.5908  -0.4408  -0.2913   2.7046  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -3.1907759  0.9330944  -3.420 0.000627 ***
## group0      -0.2543495  0.1698599  -1.497 0.134287    
## Age          0.0477245  0.0060632   7.871 3.51e-15 ***
## Race2NW      0.0177572  0.1863729   0.095 0.924094    
## diabetes0    0.0203106  0.1534822   0.132 0.894721    
## pth14        0.0003216  0.0003264   0.986 0.324376    
## ca14         0.1502854  0.1030468   1.458 0.144725    
## phos14       0.0356131  0.0512432   0.695 0.487067    
## alb14       -0.9109368  0.1679169  -5.425 5.80e-08 ***
## catheter0   -0.3023627  0.1646709  -1.836 0.066334 .  
## Ivvitd0     -0.0162697  0.1803800  -0.090 0.928131    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1296.5  on 1601  degrees of freedom
## Residual deviance: 1182.2  on 1591  degrees of freedom
##   (691 observations deleted due to missingness)
## AIC: 1204.2
## 
## Number of Fisher Scoring iterations: 5

Matched Sample

m.out <- matchit(group~Age, data=na.exclude(subset(dat, select=c("Age","group", "MRN"))), method="nearest")
m.data1 <- match.data(m.out)
dat.m <- subset(dat, MRN %in% m.data1$MRN)

Baseline information: matched sample

##    Variable              DBP7.A           DBP7.AG.G P.Value
## 1       Age  64.5 + 14.9 (1065)  63.8 + 14.5 (1066)   0.238
## 2       Sex 613 / 1065 (57.6 %) 549 / 1066 (51.5 %)   0.006
## 3     Race2 920 / 1065 (86.4 %) 400 / 1066 (37.5 %)   <.001
## 4    Ethnic 151 / 1065 (14.2 %) 118 / 1066 (11.1 %)   0.036
## 5  diabetes 481 / 1058 (45.5 %) 473 / 1063 (44.5 %)   0.686
## 6  catheter  666 / 985 (67.6 %)  626 / 978 (64.0 %)   0.102
## 7       BMI   27.3 + 7.5 (1064)   27.9 + 8.0 (1066)   0.107
## 8     sbp14 141.1 + 22.4 (1052) 145.5 + 23.0 (1061)   <.001
## 9     dbp14  71.6 + 13.1 (1052)  74.2 + 13.2 (1061)   <.001
## 10     ca14    8.5 + 0.8 (1041)    8.4 + 0.9 (1054)   0.351
## 11     cr14    5.8 + 2.4 (1019)    6.5 + 2.8 (1038)   <.001
## 12    alk14   98.5 + 73.6 (978)  97.6 + 63.0 (1000)   0.778
## 13    alb14    3.5 + 0.5 (1049)    3.5 + 0.5 (1058)   0.117
## 14    pth14 266.1 + 265.6 (822) 308.2 + 255.6 (830)   0.001
## 15   phos14    4.7 + 1.6 (1045)    4.7 + 1.5 (1050)   0.313
## 16    wbc14    8.8 + 3.2 (1018)    8.4 + 3.0 (1038)   0.005
## 17   ferr14 300.5 + 369.2 (972) 326.6 + 342.4 (998)   0.104
## 18   Ivvitd 684 / 1065 (64.2 %) 773 / 1066 (72.5 %)   <.001

Kaplan Meier Curve: matched sample

km.m <- survfit(Surv(fu, Death)~group, data=dat.m)
ggkmTable(km.m, ystratalabs=c("A", "AG/G"), timeby=50, main="DBP 7: A vs. AG/G")

Cox model: matched sample

cox.match.fit <- coxph(Surv(fu, Death)~group+Age+Race2+diabetes+pth14+ca14+phos14+alb14+catheter+Ivvitd, dat.m)
summary(cox.match.fit)
## Call:
## coxph(formula = Surv(fu, Death) ~ group + Age + Race2 + diabetes + 
##     pth14 + ca14 + phos14 + alb14 + catheter + Ivvitd, data = dat.m)
## 
##   n= 1496, number of events= 218 
##    (635 observations deleted due to missingness)
## 
##                 coef  exp(coef)   se(coef)      z Pr(>|z|)    
## group0    -0.2097677  0.8107725  0.1540250 -1.362   0.1732    
## Age        0.0428529  1.0437844  0.0057374  7.469 8.07e-14 ***
## Race2NW    0.0137935  1.0138890  0.1708248  0.081   0.9356    
## diabetes0  0.0209467  1.0211676  0.1394983  0.150   0.8806    
## pth14      0.0003182  1.0003182  0.0002795  1.138   0.2549    
## ca14       0.1515415  1.1636266  0.0953977  1.589   0.1122    
## phos14     0.0125871  1.0126667  0.0470591  0.267   0.7891    
## alb14     -0.7873122  0.4550663  0.1491910 -5.277 1.31e-07 ***
## catheter0 -0.2641410  0.7678653  0.1515529 -1.743   0.0814 .  
## Ivvitd0   -0.0343162  0.9662660  0.1627594 -0.211   0.8330    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## group0       0.8108     1.2334    0.5995    1.0965
## Age          1.0438     0.9581    1.0321    1.0556
## Race2NW      1.0139     0.9863    0.7254    1.4171
## diabetes0    1.0212     0.9793    0.7769    1.3423
## pth14        1.0003     0.9997    0.9998    1.0009
## ca14         1.1636     0.8594    0.9652    1.4029
## phos14       1.0127     0.9875    0.9234    1.1105
## alb14        0.4551     2.1975    0.3397    0.6096
## catheter0    0.7679     1.3023    0.5705    1.0334
## Ivvitd0      0.9663     1.0349    0.7024    1.3293
## 
## Concordance= 0.698  (se = 0.02 )
## Rsquare= 0.066   (max possible= 0.879 )
## Likelihood ratio test= 102.8  on 10 df,   p=0
## Wald test            = 97.17  on 10 df,   p=2.22e-16
## Score (logrank) test = 98.23  on 10 df,   p=1.11e-16
logit.match.fit <- glm(Death~group+Age+Race2+diabetes+pth14+ca14+phos14+alb14+catheter+Ivvitd, 
                       dat.m, family="binomial")
summary(logit.match.fit)
## 
## Call:
## glm(formula = Death ~ group + Age + Race2 + diabetes + pth14 + 
##     ca14 + phos14 + alb14 + catheter + Ivvitd, family = "binomial", 
##     data = dat.m)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3370  -0.6036  -0.4538  -0.3090   2.7234  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -3.2811849  0.9594454  -3.420 0.000626 ***
## group0      -0.2650137  0.1727966  -1.534 0.125110    
## Age          0.0478088  0.0064154   7.452 9.18e-14 ***
## Race2NW      0.0205942  0.1897542   0.109 0.913575    
## diabetes0    0.0293598  0.1562082   0.188 0.850914    
## pth14        0.0003693  0.0003301   1.119 0.263308    
## ca14         0.1579803  0.1049764   1.505 0.132346    
## phos14       0.0131283  0.0528068   0.249 0.803662    
## alb14       -0.8793534  0.1707552  -5.150 2.61e-07 ***
## catheter0   -0.2918558  0.1668021  -1.750 0.080168 .  
## Ivvitd0     -0.0324433  0.1829553  -0.177 0.859250    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1242.3  on 1495  degrees of freedom
## Residual deviance: 1140.3  on 1485  degrees of freedom
##   (635 observations deleted due to missingness)
## AIC: 1162.3
## 
## Number of Fisher Scoring iterations: 5

Limit Age under 80

dat.age <- subset(dat, Age <= 80 & !is.na(Age))

Baseline information: Age <= 80

##    Variable              DBP7.A           DBP7.AG.G P.Value
## 1       Age  64.5 + 14.9 (1065)  63.8 + 14.5 (1066)   0.238
## 2       Sex 613 / 1065 (57.6 %) 549 / 1066 (51.5 %)   0.006
## 3     Race2 920 / 1065 (86.4 %) 400 / 1066 (37.5 %)   <.001
## 4    Ethnic 151 / 1065 (14.2 %) 118 / 1066 (11.1 %)   0.036
## 5  diabetes 481 / 1058 (45.5 %) 473 / 1063 (44.5 %)   0.686
## 6  catheter  666 / 985 (67.6 %)  626 / 978 (64.0 %)   0.102
## 7       BMI   27.3 + 7.5 (1064)   27.9 + 8.0 (1066)   0.107
## 8     sbp14 141.1 + 22.4 (1052) 145.5 + 23.0 (1061)   <.001
## 9     dbp14  71.6 + 13.1 (1052)  74.2 + 13.2 (1061)   <.001
## 10     ca14    8.5 + 0.8 (1041)    8.4 + 0.9 (1054)   0.351
## 11     cr14    5.8 + 2.4 (1019)    6.5 + 2.8 (1038)   <.001
## 12    alk14   98.5 + 73.6 (978)  97.6 + 63.0 (1000)   0.778
## 13    alb14    3.5 + 0.5 (1049)    3.5 + 0.5 (1058)   0.117
## 14    pth14 266.1 + 265.6 (822) 308.2 + 255.6 (830)   0.001
## 15   phos14    4.7 + 1.6 (1045)    4.7 + 1.5 (1050)   0.313
## 16    wbc14    8.8 + 3.2 (1018)    8.4 + 3.0 (1038)   0.005
## 17   ferr14 300.5 + 369.2 (972) 326.6 + 342.4 (998)   0.104
## 18   Ivvitd 684 / 1065 (64.2 %) 773 / 1066 (72.5 %)   <.001

Kaplan Meier Curve: Age <= 80

km.age <- survfit(Surv(fu, Death)~group, data=dat.age)
ggkmTable(km.age, ystratalabs=c("A", "AG/G"), timeby=50, main="DBP 7: A vs. AG/G")

Cox model: Age <= 80

cox.age.fit <- coxph(Surv(fu, Death)~group+Age+Race2+diabetes+pth14+ca14+phos14+alb14+catheter+Ivvitd, dat.age)
summary(cox.age.fit)
## Call:
## coxph(formula = Surv(fu, Death) ~ group + Age + Race2 + diabetes + 
##     pth14 + ca14 + phos14 + alb14 + catheter + Ivvitd, data = dat.age)
## 
##   n= 1387, number of events= 164 
##    (589 observations deleted due to missingness)
## 
##                 coef  exp(coef)   se(coef)      z Pr(>|z|)    
## group0    -0.3696558  0.6909721  0.1834042 -2.016   0.0438 *  
## Age        0.0450304  1.0460596  0.0071889  6.264 3.76e-10 ***
## Race2NW    0.0991971  1.1042840  0.1949591  0.509   0.6109    
## diabetes0  0.1867077  1.2052750  0.1591426  1.173   0.2407    
## pth14      0.0003911  1.0003912  0.0003118  1.254   0.2097    
## ca14       0.2119637  1.2361030  0.1049105  2.020   0.0433 *  
## phos14     0.0710947  1.0736829  0.0538328  1.321   0.1866    
## alb14     -1.0444074  0.3519003  0.1708378 -6.113 9.75e-10 ***
## catheter0 -0.2738454  0.7604497  0.1736344 -1.577   0.1148    
## Ivvitd0    0.0301015  1.0305591  0.1880014  0.160   0.8728    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## group0       0.6910     1.4472    0.4823    0.9899
## Age          1.0461     0.9560    1.0314    1.0609
## Race2NW      1.1043     0.9056    0.7536    1.6182
## diabetes0    1.2053     0.8297    0.8823    1.6465
## pth14        1.0004     0.9996    0.9998    1.0010
## ca14         1.2361     0.8090    1.0064    1.5183
## phos14       1.0737     0.9314    0.9662    1.1932
## alb14        0.3519     2.8417    0.2518    0.4919
## catheter0    0.7604     1.3150    0.5411    1.0687
## Ivvitd0      1.0306     0.9703    0.7129    1.4897
## 
## Concordance= 0.7  (se = 0.023 )
## Rsquare= 0.06   (max possible= 0.817 )
## Likelihood ratio test= 85.23  on 10 df,   p=4.696e-14
## Wald test            = 79.1  on 10 df,   p=7.526e-13
## Score (logrank) test = 80.27  on 10 df,   p=4.448e-13
logit.age.fit <- glm(Death~group+Age+Race2+diabetes+pth14+ca14+phos14+alb14+catheter+Ivvitd, 
                     dat.age, family="binomial")
summary(logit.age.fit)
## 
## Call:
## glm(formula = Death ~ group + Age + Race2 + diabetes + pth14 + 
##     ca14 + phos14 + alb14 + catheter + Ivvitd, family = "binomial", 
##     data = dat.age)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3192  -0.5503  -0.4152  -0.2763   2.7769  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -3.4069575  1.0543858  -3.231  0.00123 ** 
## group0      -0.4258677  0.2014205  -2.114  0.03449 *  
## Age          0.0481956  0.0078024   6.177 6.53e-10 ***
## Race2NW      0.1105601  0.2133601   0.518  0.60433    
## diabetes0    0.1758694  0.1752935   1.003  0.31572    
## pth14        0.0004620  0.0003619   1.277  0.20178    
## ca14         0.2207920  0.1152208   1.916  0.05533 .  
## phos14       0.0684467  0.0577018   1.186  0.23554    
## alb14       -1.1112122  0.1915276  -5.802 6.56e-09 ***
## catheter0   -0.2845288  0.1881925  -1.512  0.13056    
## Ivvitd0      0.0461366  0.2067001   0.223  0.82338    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1008.09  on 1386  degrees of freedom
## Residual deviance:  925.26  on 1376  degrees of freedom
##   (589 observations deleted due to missingness)
## AIC: 947.26
## 
## Number of Fisher Scoring iterations: 5