Stadium_Waste_Analysis_7

Author

Jingyi Yang

Install Packages

library(readxl)
library("readr")
library("tidyverse")
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ purrr     1.0.4
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(lme4)
Loading required package: Matrix

Attaching package: 'Matrix'

The following objects are masked from 'package:tidyr':

    expand, pack, unpack
library(lmerTest)
Warning: package 'lmerTest' was built under R version 4.5.2

Attaching package: 'lmerTest'

The following object is masked from 'package:lme4':

    lmer

The following object is masked from 'package:stats':

    step
library("effectsize")
Warning: package 'effectsize' was built under R version 4.5.2

Import the Data

Clean the data

data_clean <- data %>% select(`Conference`, `School`, `Area Classification (0-Rural; 1-Urban)`, `Year`, `Tenure Year`, `In-Season_Game`, `S_Diversion`, `Attendance`, `Game Time`,`Game result (Win=1; Loss=0)`,`Athletic Dept Profit`, `Athletic Dept Total Expenses`, `Athletic Dept Total Revenues`) # select the column
data_clean$GameTime_numeric <- as.numeric(format(data_clean$`Game Time`, "%H")) + as.numeric(format(data_clean$`Game Time`, "%M"))/60 # convert game time to numerical variable and create a new column
data_clean$`Game Time`=format(data_clean$`Game Time`, format = "%H:%M") # avoid game time impacted by computer system date
data_clean <- data_clean %>% mutate(`Game Time`= as.character(`Game Time`)) %>% mutate(`Area Classification (0-Rural; 1-Urban)`= as.character(`Area Classification (0-Rural; 1-Urban)`)) %>% mutate(`Attendance`= as.numeric(`Attendance`)) # Convert the variable to its suitable data type. 
Warning: There was 1 warning in `mutate()`.
ℹ In argument: `Attendance = as.numeric(Attendance)`.
Caused by warning:
! NAs introduced by coercion
cols_to_factor <- data_clean%>% select_if(is.character) %>% colnames() 
cols_to_factor
[1] "Conference"                            
[2] "School"                                
[3] "Area Classification (0-Rural; 1-Urban)"
[4] "Game Time"                             
[5] "Game result (Win=1; Loss=0)"           
 data_clean <- data_clean %>% 
  mutate(`Game result (Win=1; Loss=0)` = na_if(`Game result (Win=1; Loss=0)`, "N/A")) %>%
          mutate(across(all_of(cols_to_factor), as.factor)) # Make sure there is no NA level.
data_clean <- subset(data_clean, !is.na(`Game result (Win=1; Loss=0)`)) # Clean the game that is being cancelled.
data_clean$GameTime_numeric_c_1 <- with(data_clean, ifelse(
  GameTime_numeric >= 9 &  GameTime_numeric < 12, 1,  # Morning
  ifelse(GameTime_numeric >= 12 & GameTime_numeric < 15.5, 2,   # noon
  ifelse(GameTime_numeric >= 15.5 & GameTime_numeric < 19, 3,   # afternoon
  ifelse(GameTime_numeric >= 19,  4,   # evening
  NA)))                                
)) # Classify game time into four time slots.
data_clean$GameTime_numeric_c_2 <-  data_clean$GameTime_numeric-12 # centralize game time by 12
data_clean$`In-Season_Game_Centered` <- with(data_clean,
  ifelse(`In-Season_Game` == 1, 0,
  ifelse(`In-Season_Game` == 2, 1,
  ifelse(`In-Season_Game` == 3, 2,
  ifelse(`In-Season_Game` == 4, 3,
  ifelse(`In-Season_Game` == 5, 4,
  ifelse(`In-Season_Game` == 6, 5,
  ifelse(`In-Season_Game` == 7, 6,
  ifelse(`In-Season_Game` == 8, 7,
  ifelse(`In-Season_Game` == 9, 8, NA)))))))))
) # Centralize in the in-season game to 0.
data_clean$`Tenure Year Centered` <- with(data_clean,
  ifelse(`Tenure Year` == 1, 0,
  ifelse(`Tenure Year` == 2, 1,
  ifelse(`Tenure Year` == 3, 2,
  ifelse(`Tenure Year` == 4, 3,
  ifelse(`Tenure Year` == 5, 4,
  ifelse(`Tenure Year` == 6, 5,
  ifelse(`Tenure Year` == 7, 6,
  ifelse(`Tenure Year` == 8, 7,
  ifelse(`Tenure Year` == 9, 8,
  ifelse(`Tenure Year` == 10, 9,
  ifelse(`Tenure Year` == 11, 10,
  ifelse(`Tenure Year` == 12, 11,
  ifelse(`Tenure Year` == 13, 12,
  ifelse(`Tenure Year` == 14, 13,
  ifelse(`Tenure Year` == 15, 14,
  ifelse(`Tenure Year` == 16, 15,
  ifelse(`Tenure Year` == 17, 16,
  ifelse(`Tenure Year` == 18, 17,
  ifelse(`Tenure Year` == 19, 18,
  ifelse(`Tenure Year` == 20, 19,
         NA))))))))))))))))))))
)  # Centralize the tenure year to 0.
data_clean$Year_Centered <- with(data_clean,
  ifelse(`Year` == 2003, 0,
  ifelse(`Year` == 2004, 1,
  ifelse(`Year` == 2005, 2,
  ifelse(`Year` == 2006, 3,
  ifelse(`Year` == 2007, 4,
  ifelse(`Year` == 2008, 5,
  ifelse(`Year` == 2009, 6,
  ifelse(`Year` == 2010, 7,
  ifelse(`Year` == 2011, 8,
  ifelse(`Year` == 2012, 9,
  ifelse(`Year` == 2013, 10,
  ifelse(`Year` == 2014, 11,
  ifelse(`Year` == 2015, 12,
  ifelse(`Year` == 2016, 13,
  ifelse(`Year` == 2017, 14,
  ifelse(`Year` == 2018, 15,
  ifelse(`Year` == 2019, 16,
  ifelse(`Year` == 2020, 17,
  ifelse(`Year` == 2021, 18,
  ifelse(`Year` == 2022, 19,
  ifelse(`Year` == 2023, 20,
  ifelse(`Year` == 2024, 21,
         NA))))))))))))))))))))))
) # centralize year to 0.
data_clean <- data_clean %>% dplyr::rename(`conference`= `Conference`,
                                    `school`= `School`,
                                    `area_classification` = `Area Classification (0-Rural; 1-Urban)`,
                                    `year`= `Year`,
                                    `tenure_year` = `Tenure Year`,
                                    `s_game`= `In-Season_Game`,
                                    `s_diversion`= `S_Diversion`,
                                    `attendance`= `Attendance`,
                                    `game_time`= `Game Time`,
                                    `game_result`= `Game result (Win=1; Loss=0)`,
                                    `profit`= `Athletic Dept Profit`,
                                    `total_expenses`= `Athletic Dept Total Expenses`,
                                    `total_revenues`= `Athletic Dept Total Revenues`,
                                    `game_time_chars_c_1`= `GameTime_numeric_c_1`,
                                    `game_time_num_c_2`= `GameTime_numeric_c_2`,
                                    `s_game_c`= `In-Season_Game_Centered`,
                                    `tenure_year_c`= `Tenure Year Centered`,
                                    `year_c`= `Year_Centered`
                                    ) %>% select(- `GameTime_numeric`) # rename the columns.

data_clean$game_time_chars_c_1 <-as.factor(data_clean$game_time_chars_c_1) # Change the variable into a factor variable.
# 
data_clean %<>%
  group_by(school) %>%
  mutate(attendance_mean_school = mean(attendance, na.rm = TRUE)) %>%
  mutate(attendance_cwc_school = attendance - attendance_mean_school) %>%
  ungroup()
data_clean %<>%
  group_by(year) %>%
  mutate(attendance_mean_year = mean(attendance, na.rm = TRUE)) %>%
  mutate(attendance_cwc_year = attendance - attendance_mean_year) %>%
  ungroup()
data_clean %<>%
mutate(total_revenues_mean = mean(total_revenues, na.rm = TRUE)) %>%
mutate(total_revenues_cgm = total_revenues - total_revenues_mean)
str(data_clean)
tibble [1,390 × 24] (S3: tbl_df/tbl/data.frame)
 $ conference            : Factor w/ 5 levels "ACC","Big10",..: 4 4 4 4 4 4 4 4 4 4 ...
 $ school                : Factor w/ 31 levels "Arizona State",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ area_classification   : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
 $ year                  : num [1:1390] 2015 2015 2015 2015 2015 ...
 $ tenure_year           : num [1:1390] 1 1 1 1 1 1 1 2 2 2 ...
 $ s_game                : num [1:1390] 1 2 3 4 5 6 7 1 2 3 ...
 $ s_diversion           : num [1:1390] 0.44 0.412 0.315 0.57 0.579 ...
 $ attendance            : num [1:1390] 46500 43310 61904 44157 56534 ...
 $ game_time             : Factor w/ 54 levels "09:00","10:00",..: 49 44 46 44 46 13 15 49 44 44 ...
 $ game_result           : Factor w/ 2 levels "0","1": 2 2 1 2 1 2 2 2 2 2 ...
 $ profit                : num [1:1390] 566524 566524 566524 566524 566524 ...
 $ total_expenses        : num [1:1390] 83873516 83873516 83873516 83873516 83873516 ...
 $ total_revenues        : num [1:1390] 84440040 84440040 84440040 84440040 84440040 ...
 $ game_time_chars_c_1   : Factor w/ 4 levels "1","2","3","4": 4 4 4 4 4 2 2 4 4 4 ...
 $ game_time_num_c_2     : num [1:1390] 8 7 7.5 7 7.5 1 1.5 8 7 7 ...
 $ s_game_c              : num [1:1390] 0 1 2 3 4 5 6 0 1 2 ...
 $ tenure_year_c         : num [1:1390] 0 0 0 0 0 0 0 1 1 1 ...
 $ year_c                : num [1:1390] 12 12 12 12 12 12 12 13 13 13 ...
 $ attendance_mean_school: num [1:1390] 50009 50009 50009 50009 50009 ...
 $ attendance_cwc_school : num [1:1390] -3509 -6699 11895 -5852 6525 ...
 $ attendance_mean_year  : num [1:1390] 70003 70003 70003 70003 70003 ...
 $ attendance_cwc_year   : num [1:1390] -23503 -26693 -8099 -25846 -13469 ...
 $ total_revenues_mean   : num [1:1390] 1.25e+08 1.25e+08 1.25e+08 1.25e+08 1.25e+08 ...
 $ total_revenues_cgm    : num [1:1390] -40621158 -40621158 -40621158 -40621158 -40621158 ...

Two level Model

Only fix predictors

data_clean$attendance_cwc_year_z <- datawizard::standardize(data_clean$attendance_cwc_year)
data_clean$attendance_cwc_school_z <- datawizard::standardize(data_clean$attendance_cwc_school)
data_clean$total_revenues_cgm_z <- datawizard::standardize(data_clean$total_revenues_cgm)
model_school <- lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1|school),
data = data_clean
)
summary(model_school)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 | school)
   Data: data_clean

REML criterion at convergence: -1295

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6648 -0.6192 -0.0451  0.5362  4.0547 

Random effects:
 Groups   Name        Variance Std.Dev.
 school   (Intercept) 0.06239  0.2498  
 Residual             0.01773  0.1332  
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.730e-01  2.069e-01  2.123e+01   2.770   0.0114 *  
game_time_num_c_2       -1.020e-03  1.370e-03  1.214e+03  -0.745   0.4564    
attendance_cwc_school_z -2.550e-03  3.774e-03  1.214e+03  -0.676   0.4994    
game_result1             1.250e-03  9.011e-03  1.214e+03   0.139   0.8897    
s_game_c                -4.310e-04  1.971e-03  1.213e+03  -0.219   0.8269    
area_classification1    -1.348e-01  1.637e-01  2.098e+01  -0.823   0.4195    
tenure_year_c            1.358e-02  1.848e-03  1.233e+03   7.348 3.65e-13 ***
total_revenues_cgm_z     5.933e-02  1.009e-02  1.233e+03   5.882 5.20e-09 ***
conferenceBig10         -1.391e-01  1.521e-01  2.103e+01  -0.915   0.3707    
conferenceBig12         -2.885e-01  2.178e-01  2.116e+01  -1.325   0.1993    
conferencePac12         -7.757e-02  1.824e-01  2.113e+01  -0.425   0.6750    
conferenceSEC           -2.364e-01  1.576e-01  2.114e+01  -1.500   0.1483    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.025                                                        
attndnc_c__ -0.008 -0.090                                                 
game_reslt1 -0.032  0.038  0.046                                          
s_game_c    -0.035  0.147 -0.070  0.167                                   
ar_clssfct1 -0.791  0.001  0.000 -0.007 -0.002                            
tenure_yr_c -0.055 -0.043  0.183 -0.002  0.016 -0.001                     
ttl_rvns_c_  0.071 -0.011 -0.145 -0.056 -0.039 -0.014 -0.785              
confrncBg10 -0.673  0.005  0.006  0.003  0.001  0.216  0.034 -0.050       
confrncBg12 -0.354 -0.004  0.010  0.002  0.004  0.001  0.051 -0.071  0.478
confrncPc12 -0.594 -0.009 -0.004  0.006  0.000  0.226 -0.030  0.021  0.614
conferncSEC -0.486 -0.008  0.010  0.002  0.000  0.001  0.052 -0.060  0.659
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.394       
conferncSEC  0.462  0.545
performance::icc(model_school)
# Intraclass Correlation Coefficient

    Adjusted ICC: 0.779
  Unadjusted ICC: 0.662
plot(model_school, type=c("p","smooth"))

  1. The line stay close to zero.
  2. Might violate the heteroscedasticity. The spread of residuals is not constant across the range of fitted values.(fitted values < 0.2, variance is small)
plot(model_school,
     form = sqrt(abs(resid(.))) ~ fitted(.),
     type = c("p","smooth"))

The line is not flat, which shows a non-constant variance pattern.

qqnorm(resid(model_school)); qqline(resid(model_school))

  1. The points almost fit on the reference line. (normally distributed)
hist(resid(model_school))

  1. a single peak (unimodal), roughly symmetrical shape,frequencies tapering off on both sides,most values concentrated around 0. (normally distributed)
qqnorm(ranef(model_school)$school[, "(Intercept)"]);qqline(ranef(model_school)$school[, "(Intercept)"])

  1. Mostly linear between -1 to 1, the majority of school random intercepts follow a normal distribution.
hist(ranef(model_school)$school[, "(Intercept)"])

  1. Distribution is roughly centered around zero, but slightly skewed. (Normality assumption is broadly acceptable)
model_school_cat <- lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1|school),
data = data_clean
)
summary(model_school_cat)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 | school)
   Data: data_clean

REML criterion at convergence: -1289

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6544 -0.6171 -0.0422  0.5459  4.1285 

Random effects:
 Groups   Name        Variance Std.Dev.
 school   (Intercept) 0.06211  0.2492  
 Residual             0.01771  0.1331  
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.942e-01  2.074e-01  2.164e+01   2.865  0.00909 ** 
game_time_chars_c_12    -2.024e-02  1.967e-02  1.216e+03  -1.029  0.30365    
game_time_chars_c_13    -3.373e-02  2.018e-02  1.216e+03  -1.671  0.09490 .  
game_time_chars_c_14    -1.931e-02  2.091e-02  1.216e+03  -0.924  0.35590    
attendance_cwc_school_z -2.455e-03  3.771e-03  1.211e+03  -0.651  0.51507    
game_result1             2.257e-03  9.026e-03  1.212e+03   0.250  0.80259    
s_game_c                -3.591e-04  1.967e-03  1.211e+03  -0.183  0.85519    
area_classification1    -1.355e-01  1.633e-01  2.099e+01  -0.830  0.41608    
tenure_year_c            1.346e-02  1.848e-03  1.231e+03   7.280 5.92e-13 ***
total_revenues_cgm_z     5.947e-02  1.008e-02  1.231e+03   5.899 4.73e-09 ***
conferenceBig10         -1.403e-01  1.518e-01  2.104e+01  -0.924  0.36591    
conferenceBig12         -2.912e-01  2.173e-01  2.117e+01  -1.340  0.19447    
conferencePac12         -8.095e-02  1.820e-01  2.113e+01  -0.445  0.66104    
conferenceSEC           -2.397e-01  1.573e-01  2.115e+01  -1.524  0.14222    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
performance::icc(model_school_cat)
# Intraclass Correlation Coefficient

    Adjusted ICC: 0.778
  Unadjusted ICC: 0.661
plot(model_school_cat, type=c("p","smooth"))

  1. Mild linearity, a large difference in residual spread across fitted values(heteroscedasticity)
plot(model_school_cat,
     form = sqrt(abs(resid(.))) ~ fitted(.),
     type = c("p","smooth"))

  1. The smoothed line is not horizontal (heteroscedasticity)
qqnorm(resid(model_school_cat)); qqline(resid(model_school_cat))

  1. The points almost fit on the reference line. (normally distributed)
hist(resid(model_school_cat))

  1. The histogram shows a single, central peak. The distribution is roughly bell-shaped. (normally distributed)
qqnorm(ranef(model_school_cat)$school[, "(Intercept)"]);qqline(ranef(model_school_cat)$school[, "(Intercept)"])

  1. close to linear, roughly follow a normal distribution.
hist(ranef(model_school_cat)$school[, "(Intercept)"])

  1. roughly bell-shaped distribution, but a little bit skewed. (approximate normality with mild skew)
model_year <- lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1|year),
data = data_clean
)
summary(model_year)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 | year)
   Data: data_clean

REML criterion at convergence: 133.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4210 -0.7368 -0.1779  0.7686  2.8209 

Random effects:
 Groups   Name        Variance Std.Dev.
 year     (Intercept) 0.002053 0.04531 
 Residual             0.060334 0.24563 
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.721e-01  4.348e-02  2.285e+02  13.158  < 2e-16 ***
game_time_num_c_2       -3.947e-03  2.444e-03  1.219e+03  -1.615    0.107    
attendance_cwc_school_z -7.871e-03  7.484e-03  2.019e+02  -1.052    0.294    
game_result1            -7.403e-03  1.618e-02  1.230e+03  -0.458    0.647    
s_game_c                -2.005e-03  3.613e-03  1.206e+03  -0.555    0.579    
area_classification1    -1.539e-02  2.716e-02  1.084e+03  -0.566    0.571    
tenure_year_c           -2.344e-03  1.895e-03  1.155e+03  -1.237    0.216    
total_revenues_cgm_z     1.866e-01  1.287e-02  1.014e+02  14.497  < 2e-16 ***
conferenceBig10         -1.203e-01  2.521e-02  8.013e+02  -4.772 2.16e-06 ***
conferenceBig12         -4.402e-01  4.319e-02  6.825e+02 -10.194  < 2e-16 ***
conferencePac12          1.988e-01  2.888e-02  1.226e+03   6.881 9.44e-12 ***
conferenceSEC           -2.891e-01  2.692e-02  9.560e+02 -10.738  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.225                                                        
attndnc_c__  0.011 -0.082                                                 
game_reslt1 -0.246  0.011  0.056                                          
s_game_c    -0.298  0.131 -0.058  0.154                                   
ar_clssfct1 -0.643  0.025 -0.016 -0.103 -0.011                            
tenure_yr_c -0.246  0.003  0.095 -0.006 -0.001 -0.125                     
ttl_rvns_c_  0.518 -0.054 -0.042 -0.133 -0.053 -0.201 -0.454              
confrncBg10 -0.659  0.068  0.006 -0.008 -0.005  0.292  0.150 -0.502       
confrncBg12 -0.500 -0.023  0.003  0.043  0.042  0.145  0.265 -0.608  0.634
confrncPc12 -0.307 -0.113 -0.011  0.013  0.008  0.199 -0.181  0.106  0.438
conferncSEC -0.472 -0.107  0.019  0.010 -0.026  0.068  0.294 -0.451  0.694
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.213       
conferncSEC  0.563  0.366
performance::icc(model_year)
# Intraclass Correlation Coefficient

    Adjusted ICC: 0.033
  Unadjusted ICC: 0.023
plot(model_year, type=c("p","smooth"))

  1. The smooth line rises gradually as fitted values increase. (nonlinearity)
  2. Residual variance changes as fitted values increase. (Residual variance changes as fitted values increase.)
plot(model_year,
     form = sqrt(abs(resid(.))) ~ fitted(.),
     type = c("p","smooth"))

  1. The smooth curve is NOT flat.
  2. The point cluster around 0.4
qqnorm(resid(model_year)); qqline(resid(model_year))

  1. The s-shape curve (indicates skewness in the residuals)
hist(resid(model_year))

  1. Skewed (The bars are taller and more concentrated around -0.2)
qqnorm(ranef(model_year)$year[, "(Intercept)"]);qqline(ranef(model_year)$year[, "(Intercept)"])

  1. Points lie very close to the line (very small deviations)- Level-2 random intercepts (year effects) are approximately normally distributed.
hist(ranef(model_year)$year[, "(Intercept)"])

  1. No extreme skewness
  2. Slight multi-modality
model_year_cat <- lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1|year),
data = data_clean
)
summary(model_year_cat)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 | year)
   Data: data_clean

REML criterion at convergence: 140.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4543 -0.7401 -0.1737  0.7594  2.8741 

Random effects:
 Groups   Name        Variance Std.Dev.
 year     (Intercept) 0.00212  0.04604 
 Residual             0.06040  0.24575 
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.517e-01  5.549e-02  3.538e+02   9.943  < 2e-16 ***
game_time_chars_c_12     1.851e-02  3.295e-02  1.230e+03   0.562    0.574    
game_time_chars_c_13    -9.826e-03  3.348e-02  1.229e+03  -0.293    0.769    
game_time_chars_c_14    -1.707e-03  3.457e-02  1.231e+03  -0.049    0.961    
attendance_cwc_school_z -8.212e-03  7.506e-03  1.997e+02  -1.094    0.275    
game_result1            -7.523e-03  1.620e-02  1.227e+03  -0.464    0.643    
s_game_c                -1.878e-03  3.612e-03  1.205e+03  -0.520    0.603    
area_classification1    -1.233e-02  2.763e-02  1.047e+03  -0.446    0.656    
tenure_year_c           -2.354e-03  1.919e-03  1.155e+03  -1.226    0.220    
total_revenues_cgm_z     1.864e-01  1.295e-02  1.032e+02  14.400  < 2e-16 ***
conferenceBig10         -1.182e-01  2.543e-02  7.823e+02  -4.647 3.95e-06 ***
conferenceBig12         -4.392e-01  4.349e-02  6.736e+02 -10.098  < 2e-16 ***
conferencePac12          1.957e-01  2.917e-02  1.223e+03   6.708 3.01e-11 ***
conferenceSEC           -2.902e-01  2.696e-02  9.607e+02 -10.762  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
performance::icc(model_year_cat)
# Intraclass Correlation Coefficient

    Adjusted ICC: 0.034
  Unadjusted ICC: 0.023
plot(model_year_cat, type=c("p","smooth"))

  1. Nonlinearity (Strong heteroscedasticity)
plot(model_year_cat,
     form = sqrt(abs(resid(.))) ~ fitted(.),
     type = c("p","smooth"))

  1. Have strong curve (heteroscedasticity)
qqnorm(resid(model_year_cat)); qqline(resid(model_year_cat))

  1. Strong S-shape pattern (residuals are not normally distributed)
hist(resid(model_year_cat))

  1. The residual distribution is skewed, not fit with a normal distribution.
qqnorm(ranef(model_year_cat)$year[, "(Intercept)"]);qqline(ranef(model_year_cat)$year[, "(Intercept)"])

  1. Close to the diagonal line (Level-2 random intercepts (year effects) are approximately normally distributed)
hist(ranef(model_year_cat)$year[, "(Intercept)"])

  1. A single peak, roughly symmetrical shape, no extreme outliers, no bimodality(approximately normally distributed)

Add random predictors

Shcool level- Game Time (Numerical)

Test one by one

After testing one by one, we found that the Random effects Variance for most predictors is close to 0 (which will cause a warning), but total_revenues_cgm_z.

summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+game_time_num_c_2|school),
  data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + game_time_num_c_2 | school)
   Data: data_clean

REML criterion at convergence: -1295.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6192 -0.6173 -0.0469  0.5559  4.0560 

Random effects:
 Groups   Name              Variance  Std.Dev.  Corr
 school   (Intercept)       6.077e-02 0.2465181     
          game_time_num_c_2 9.758e-07 0.0009879 1.00
 Residual                   1.773e-02 0.1331387     
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              6.038e-01  2.049e-01  2.132e+01   2.946  0.00763 ** 
game_time_num_c_2       -1.139e-03  1.383e-03  4.373e+02  -0.824  0.41060    
attendance_cwc_school_z -2.533e-03  3.773e-03  1.214e+03  -0.671  0.50215    
game_result1             1.417e-03  9.009e-03  1.214e+03   0.157  0.87499    
s_game_c                -4.573e-04  1.971e-03  1.213e+03  -0.232  0.81654    
area_classification1    -1.489e-01  1.623e-01  2.110e+01  -0.917  0.36931    
tenure_year_c            1.354e-02  1.848e-03  1.233e+03   7.324 4.33e-13 ***
total_revenues_cgm_z     5.951e-02  1.009e-02  1.233e+03   5.900 4.68e-09 ***
conferenceBig10         -1.699e-01  1.504e-01  2.099e+01  -1.130  0.27131    
conferenceBig12         -3.100e-01  2.158e-01  2.131e+01  -1.437  0.16538    
conferencePac12         -8.840e-02  1.810e-01  2.133e+01  -0.488  0.63031    
conferenceSEC           -2.479e-01  1.562e-01  2.128e+01  -1.587  0.12723    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.010                                                        
attndnc_c__ -0.003 -0.088                                                 
game_reslt1 -0.032  0.039  0.045                                          
s_game_c    -0.038  0.146 -0.069  0.168                                   
ar_clssfct1 -0.792  0.021 -0.007 -0.005  0.004                            
tenure_yr_c -0.058 -0.036  0.183 -0.003  0.017  0.002                     
ttl_rvns_c_  0.072 -0.014 -0.145 -0.056 -0.039 -0.015 -0.785              
confrncBg10 -0.674  0.021  0.005  0.000  0.001  0.216  0.039 -0.052       
confrncBg12 -0.353 -0.002  0.020  0.005 -0.001  0.001  0.048 -0.068  0.478
confrncPc12 -0.589 -0.011 -0.007  0.001 -0.003  0.222 -0.030  0.021  0.612
conferncSEC -0.485 -0.012  0.009  0.001 -0.002  0.001  0.048 -0.058  0.658
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.393       
conferncSEC  0.461  0.543
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+attendance_cwc_school_z|school),
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + attendance_cwc_school_z | school)
   Data: data_clean

REML criterion at convergence: -1314.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.7475 -0.6062 -0.0523  0.5205  3.7444 

Random effects:
 Groups   Name                    Variance Std.Dev. Corr 
 school   (Intercept)             0.062801 0.25060       
          attendance_cwc_school_z 0.003057 0.05529  -0.02
 Residual                         0.016953 0.13020       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.690e-01  2.075e-01  2.123e+01   2.743   0.0121 *  
game_time_num_c_2       -6.771e-04  1.355e-03  1.197e+03  -0.500   0.6172    
attendance_cwc_school_z -4.668e-03  1.396e-02  1.174e+01  -0.334   0.7439    
game_result1            -9.566e-04  8.861e-03  1.198e+03  -0.108   0.9141    
s_game_c                -3.722e-04  1.937e-03  1.194e+03  -0.192   0.8477    
area_classification1    -1.340e-01  1.642e-01  2.098e+01  -0.816   0.4237    
tenure_year_c            1.446e-02  1.853e-03  1.228e+03   7.802 1.30e-14 ***
total_revenues_cgm_z     5.864e-02  1.013e-02  1.217e+03   5.790 8.96e-09 ***
conferenceBig10         -1.405e-01  1.526e-01  2.103e+01  -0.921   0.3674    
conferenceBig12         -2.885e-01  2.184e-01  2.116e+01  -1.321   0.2007    
conferencePac12         -8.155e-02  1.830e-01  2.112e+01  -0.446   0.6603    
conferenceSEC           -2.329e-01  1.581e-01  2.114e+01  -1.473   0.1554    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.024                                                        
attndnc_c__ -0.006 -0.057                                                 
game_reslt1 -0.032  0.031  0.045                                          
s_game_c    -0.035  0.140 -0.008  0.167                                   
ar_clssfct1 -0.792  0.001  0.001 -0.006 -0.001                            
tenure_yr_c -0.055 -0.045  0.063  0.000  0.026 -0.001                     
ttl_rvns_c_  0.071  0.000 -0.047 -0.058 -0.047 -0.014 -0.782              
confrncBg10 -0.673  0.004  0.000  0.003  0.002  0.216  0.033 -0.050       
confrncBg12 -0.354 -0.004  0.003  0.002  0.005  0.001  0.050 -0.071  0.478
confrncPc12 -0.594 -0.009 -0.002  0.006  0.000  0.226 -0.030  0.020  0.614
conferncSEC -0.486 -0.009  0.002  0.002  0.000  0.001  0.052 -0.060  0.659
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.394       
conferncSEC  0.462  0.545
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+game_result|school),
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + game_result | school)
   Data: data_clean

REML criterion at convergence: -1297.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6853 -0.6096 -0.0376  0.5382  4.0799 

Random effects:
 Groups   Name         Variance  Std.Dev. Corr
 school   (Intercept)  0.0598328 0.24461      
          game_result1 0.0005406 0.02325  0.31
 Residual              0.0176276 0.13277      
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.720e-01  2.037e-01  2.126e+01   2.808   0.0105 *  
game_time_num_c_2       -9.471e-04  1.369e-03  1.214e+03  -0.692   0.4892    
attendance_cwc_school_z -2.566e-03  3.765e-03  1.207e+03  -0.682   0.4956    
game_result1            -6.861e-04  1.032e-02  3.392e+01  -0.067   0.9474    
s_game_c                -2.796e-04  1.969e-03  1.213e+03  -0.142   0.8871    
area_classification1    -1.372e-01  1.609e-01  2.084e+01  -0.853   0.4033    
tenure_year_c            1.342e-02  1.848e-03  1.233e+03   7.264 6.65e-13 ***
total_revenues_cgm_z     5.948e-02  1.008e-02  1.228e+03   5.904 4.60e-09 ***
conferenceBig10         -1.494e-01  1.503e-01  2.130e+01  -0.994   0.3314    
conferenceBig12         -2.845e-01  2.157e-01  2.158e+01  -1.319   0.2009    
conferencePac12         -5.235e-02  1.797e-01  2.118e+01  -0.291   0.7736    
conferenceSEC           -2.204e-01  1.558e-01  2.146e+01  -1.414   0.1716    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.025                                                        
attndnc_c__ -0.009 -0.091                                                 
game_reslt1  0.003  0.033  0.042                                          
s_game_c    -0.036  0.148 -0.070  0.149                                   
ar_clssfct1 -0.790  0.003  0.000 -0.007 -0.001                            
tenure_yr_c -0.062 -0.044  0.185  0.006  0.014  0.003                     
ttl_rvns_c_  0.073 -0.009 -0.146 -0.056 -0.038 -0.014 -0.785              
confrncBg10 -0.677  0.002  0.008  0.005 -0.003  0.218  0.041 -0.051       
confrncBg12 -0.354  0.000  0.009 -0.005  0.005  0.001  0.050 -0.066  0.477
confrncPc12 -0.593 -0.014 -0.001  0.002  0.001  0.222 -0.023  0.017  0.615
conferncSEC -0.488 -0.008  0.010 -0.005  0.003  0.001  0.053 -0.060  0.658
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.395       
conferncSEC  0.461  0.547
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+s_game_c|school),
  data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + s_game_c | school)
   Data: data_clean

REML criterion at convergence: -1299.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5714 -0.6246 -0.0449  0.5511  4.1298 

Random effects:
 Groups   Name        Variance  Std.Dev. Corr
 school   (Intercept) 5.679e-02 0.238303     
          s_game_c    2.629e-05 0.005128 1.00
 Residual             1.764e-02 0.132831     
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              3.926e-01  1.886e-01  2.245e+01   2.082   0.0489 *  
game_time_num_c_2       -1.070e-03  1.367e-03  1.214e+03  -0.783   0.4338    
attendance_cwc_school_z -2.860e-03  3.763e-03  1.211e+03  -0.760   0.4473    
game_result1             1.774e-03  8.995e-03  1.213e+03   0.197   0.8437    
s_game_c                -6.164e-04  2.220e-03  4.501e+01  -0.278   0.7826    
area_classification1    -4.351e-02  1.495e-01  2.226e+01  -0.291   0.7738    
tenure_year_c            1.347e-02  1.839e-03  1.215e+03   7.324 4.36e-13 ***
total_revenues_cgm_z     5.987e-02  1.005e-02  1.224e+03   5.956 3.37e-09 ***
conferenceBig10          1.452e-02  1.361e-01  2.104e+01   0.107   0.9161    
conferenceBig12         -1.755e-01  1.998e-01  2.259e+01  -0.878   0.3890    
conferencePac12          7.203e-02  1.679e-01  2.273e+01   0.429   0.6719    
conferenceSEC           -1.872e-01  1.433e-01  2.215e+01  -1.307   0.2048    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.033                                                        
attndnc_c__ -0.017 -0.089                                                 
game_reslt1 -0.046  0.039  0.047                                          
s_game_c     0.032  0.133 -0.058  0.151                                   
ar_clssfct1 -0.790  0.016  0.002  0.005  0.045                            
tenure_yr_c -0.061 -0.039  0.179 -0.001  0.038 -0.003                     
ttl_rvns_c_  0.078 -0.015 -0.139 -0.057 -0.052 -0.015 -0.784              
confrncBg10 -0.662  0.007  0.017  0.000  0.056  0.203  0.041 -0.059       
confrncBg12 -0.346 -0.030  0.033 -0.001 -0.023  0.000  0.048 -0.057  0.476
confrncPc12 -0.584 -0.022  0.000  0.009 -0.027  0.223 -0.027  0.021  0.606
conferncSEC -0.482 -0.016  0.021  0.015 -0.007  0.000  0.056 -0.066  0.664
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.384       
conferncSEC  0.455  0.535
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+s_game_c|school),
  data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + s_game_c | school)
   Data: data_clean

REML criterion at convergence: -1299.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5714 -0.6246 -0.0449  0.5511  4.1298 

Random effects:
 Groups   Name        Variance  Std.Dev. Corr
 school   (Intercept) 5.679e-02 0.238303     
          s_game_c    2.629e-05 0.005128 1.00
 Residual             1.764e-02 0.132831     
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              3.926e-01  1.886e-01  2.245e+01   2.082   0.0489 *  
game_time_num_c_2       -1.070e-03  1.367e-03  1.214e+03  -0.783   0.4338    
attendance_cwc_school_z -2.860e-03  3.763e-03  1.211e+03  -0.760   0.4473    
game_result1             1.774e-03  8.995e-03  1.213e+03   0.197   0.8437    
s_game_c                -6.164e-04  2.220e-03  4.501e+01  -0.278   0.7826    
area_classification1    -4.351e-02  1.495e-01  2.226e+01  -0.291   0.7738    
tenure_year_c            1.347e-02  1.839e-03  1.215e+03   7.324 4.36e-13 ***
total_revenues_cgm_z     5.987e-02  1.005e-02  1.224e+03   5.956 3.37e-09 ***
conferenceBig10          1.452e-02  1.361e-01  2.104e+01   0.107   0.9161    
conferenceBig12         -1.755e-01  1.998e-01  2.259e+01  -0.878   0.3890    
conferencePac12          7.203e-02  1.679e-01  2.273e+01   0.429   0.6719    
conferenceSEC           -1.872e-01  1.433e-01  2.215e+01  -1.307   0.2048    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.033                                                        
attndnc_c__ -0.017 -0.089                                                 
game_reslt1 -0.046  0.039  0.047                                          
s_game_c     0.032  0.133 -0.058  0.151                                   
ar_clssfct1 -0.790  0.016  0.002  0.005  0.045                            
tenure_yr_c -0.061 -0.039  0.179 -0.001  0.038 -0.003                     
ttl_rvns_c_  0.078 -0.015 -0.139 -0.057 -0.052 -0.015 -0.784              
confrncBg10 -0.662  0.007  0.017  0.000  0.056  0.203  0.041 -0.059       
confrncBg12 -0.346 -0.030  0.033 -0.001 -0.023  0.000  0.048 -0.057  0.476
confrncPc12 -0.584 -0.022  0.000  0.009 -0.027  0.223 -0.027  0.021  0.606
conferncSEC -0.482 -0.016  0.021  0.015 -0.007  0.000  0.056 -0.066  0.664
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.384       
conferncSEC  0.455  0.535
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+area_classification|school),
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + area_classification | school)
   Data: data_clean

REML criterion at convergence: -1295

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6644 -0.6192 -0.0449  0.5366  4.0550 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr 
 school   (Intercept)          0.076864 0.27724       
          area_classification1 0.003173 0.05633  -0.61
 Residual                      0.017735 0.13317       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.734e-01  2.172e-01  5.968e+00   2.640   0.0387 *  
game_time_num_c_2       -1.022e-03  1.370e-03  1.214e+03  -0.746   0.4556    
attendance_cwc_school_z -2.547e-03  3.774e-03  1.213e+03  -0.675   0.4999    
game_result1             1.241e-03  9.011e-03  1.214e+03   0.138   0.8904    
s_game_c                -4.306e-04  1.971e-03  1.213e+03  -0.218   0.8271    
area_classification1    -1.351e-01  1.775e-01  2.846e+00  -0.761   0.5045    
tenure_year_c            1.359e-02  1.848e-03  1.233e+03   7.352 3.56e-13 ***
total_revenues_cgm_z     5.929e-02  1.009e-02  1.232e+03   5.878 5.35e-09 ***
conferenceBig10         -1.378e-01  1.507e-01  1.986e+01  -0.914   0.3717    
conferenceBig12         -2.885e-01  2.154e-01  1.947e+01  -1.339   0.1960    
conferencePac12         -8.113e-02  1.821e-01  2.111e+01  -0.446   0.6605    
conferenceSEC           -2.364e-01  1.559e-01  1.945e+01  -1.516   0.1455    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.024                                                        
attndnc_c__ -0.007 -0.090                                                 
game_reslt1 -0.031  0.038  0.046                                          
s_game_c    -0.034  0.147 -0.070  0.167                                   
ar_clssfct1 -0.817  0.001  0.000 -0.006 -0.001                            
tenure_yr_c -0.052 -0.043  0.183 -0.003  0.016 -0.001                     
ttl_rvns_c_  0.067 -0.010 -0.145 -0.056 -0.039 -0.012 -0.785              
confrncBg10 -0.633  0.005  0.007  0.003  0.001  0.196  0.035 -0.052       
confrncBg12 -0.333 -0.004  0.010  0.002  0.004  0.001  0.051 -0.071  0.477
confrncPc12 -0.555 -0.008 -0.005  0.007  0.000  0.206 -0.033  0.024  0.599
conferncSEC -0.458 -0.008  0.010  0.002  0.000  0.001  0.052 -0.061  0.658
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.391       
conferncSEC  0.462  0.540
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+tenure_year_c|school),
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + tenure_year_c | school)
   Data: data_clean

REML criterion at convergence: -1685.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.3748 -0.5619 -0.0612  0.4765  3.9554 

Random effects:
 Groups   Name          Variance Std.Dev. Corr 
 school   (Intercept)   0.058352 0.2416        
          tenure_year_c 0.001177 0.0343   -0.20
 Residual               0.012198 0.1104        
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)  
(Intercept)              5.220e-01  1.966e-01  2.087e+01   2.655   0.0149 *
game_time_num_c_2       -3.821e-04  1.146e-03  1.196e+03  -0.334   0.7388  
attendance_cwc_school_z  4.511e-03  3.292e-03  1.209e+03   1.370   0.1709  
game_result1             8.277e-03  7.568e-03  1.196e+03   1.094   0.2743  
s_game_c                -6.430e-04  1.638e-03  1.190e+03  -0.393   0.6946  
area_classification1    -7.655e-02  1.558e-01  2.072e+01  -0.491   0.6283  
tenure_year_c            7.756e-03  7.437e-03  2.504e+01   1.043   0.3070  
total_revenues_cgm_z     2.261e-02  9.305e-03  1.222e+03   2.429   0.0153 *
conferenceBig10         -1.399e-01  1.441e-01  2.038e+01  -0.971   0.3429  
conferenceBig12         -2.554e-01  2.067e-01  2.068e+01  -1.236   0.2304  
conferencePac12         -3.447e-03  1.776e-01  2.245e+01  -0.019   0.9847  
conferenceSEC           -2.297e-01  1.493e-01  2.050e+01  -1.538   0.1393  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.022                                                        
attndnc_c__ -0.010 -0.083                                                 
game_reslt1 -0.031  0.047  0.061                                          
s_game_c    -0.032  0.148 -0.064  0.170                                   
ar_clssfct1 -0.792  0.001  0.001 -0.001  0.000                            
tenure_yr_c -0.054 -0.012  0.046 -0.020  0.006 -0.011                     
ttl_rvns_c_  0.065 -0.002 -0.142 -0.036 -0.026 -0.018 -0.181              
confrncBg10 -0.672  0.005  0.008  0.005  0.001  0.217  0.007 -0.041       
confrncBg12 -0.350 -0.004  0.019  0.005  0.005  0.001  0.007 -0.046  0.475
confrncPc12 -0.593 -0.008  0.000  0.018  0.003  0.242 -0.043  0.013  0.603
conferncSEC -0.484 -0.008  0.006  0.002 -0.001  0.001  0.019 -0.052  0.658
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.384       
conferncSEC  0.459  0.531
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+total_revenues_cgm_z|school),
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + total_revenues_cgm_z | school)
   Data: data_clean

REML criterion at convergence: -1566.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2751 -0.5549 -0.0545  0.4655  3.8007 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr
 school   (Intercept)          0.13964  0.3737       
          total_revenues_cgm_z 0.06095  0.2469   0.31
 Residual                      0.01322  0.1150       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.068e-01  2.975e-01  2.079e+01   1.704    0.103    
game_time_num_c_2       -8.046e-04  1.192e-03  1.187e+03  -0.675    0.500    
attendance_cwc_school_z  3.626e-03  3.423e-03  1.196e+03   1.060    0.290    
game_result1             6.791e-03  7.865e-03  1.187e+03   0.863    0.388    
s_game_c                -3.374e-04  1.704e-03  1.183e+03  -0.198    0.843    
area_classification1    -1.464e-01  2.341e-01  2.016e+01  -0.625    0.539    
tenure_year_c            2.039e-02  2.017e-03  1.226e+03  10.107   <2e-16 ***
total_revenues_cgm_z    -2.641e-02  5.382e-02  2.342e+01  -0.491    0.628    
conferenceBig10         -7.330e-02  2.184e-01  2.049e+01  -0.336    0.741    
conferenceBig12         -1.877e-01  3.110e-01  2.026e+01  -0.603    0.553    
conferencePac12         -1.632e-01  2.642e-01  2.120e+01  -0.618    0.543    
conferenceSEC           -1.087e-01  2.267e-01  2.077e+01  -0.480    0.636    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.015                                                        
attndnc_c__ -0.002 -0.082                                                 
game_reslt1 -0.017  0.044  0.060                                          
s_game_c    -0.020  0.149 -0.062  0.170                                   
ar_clssfct1 -0.789  0.001  0.001 -0.005 -0.002                            
tenure_yr_c -0.056 -0.046  0.105 -0.028  0.002 -0.004                     
ttl_rvns_c_  0.124  0.000 -0.008 -0.016 -0.006 -0.027 -0.214              
confrncBg10 -0.675  0.002  0.002  0.000  0.000  0.220  0.042 -0.046       
confrncBg12 -0.352 -0.006  0.015  0.002  0.002  0.000  0.032 -0.023  0.476
confrncPc12 -0.597 -0.005 -0.006 -0.003 -0.002  0.235 -0.025 -0.029  0.610
conferncSEC -0.486 -0.004 -0.006  0.002  0.000  0.001  0.064 -0.054  0.655
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.392       
conferncSEC  0.460  0.538
summary(lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+conference|school),
  data = data_clean
))
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 6 negative eigenvalues
Warning: Model failed to converge with 5 negative eigenvalues: -6.4e-05
-6.7e-05 -7.2e-05 -5.0e-04 -5.0e-04
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + conference | school)
   Data: data_clean

REML criterion at convergence: -1299.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6684 -0.6200 -0.0484  0.5378  4.0765 

Random effects:
 Groups   Name            Variance Std.Dev. Corr                   
 school   (Intercept)     0.05504  0.2346                          
          conferenceBig10 0.06068  0.2463   -0.36                  
          conferenceBig12 0.02813  0.1677   -0.92  0.39            
          conferencePac12 0.02499  0.1581    0.79 -0.38 -0.72      
          conferenceSEC   0.05418  0.2328   -0.80  0.33  0.66 -0.75
 Residual                 0.01774  0.1332                          
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.596e-01  2.272e-01  1.381e+01   2.463   0.0276 *  
game_time_num_c_2       -1.037e-03  1.370e-03  1.215e+03  -0.757   0.4490    
attendance_cwc_school_z -2.550e-03  3.774e-03  1.213e+03  -0.676   0.4994    
game_result1             9.344e-04  9.009e-03  1.215e+03   0.104   0.9174    
s_game_c                -4.525e-04  1.971e-03  1.213e+03  -0.230   0.8184    
area_classification1    -1.207e-01  1.934e-01  1.088e+01  -0.624   0.5455    
tenure_year_c            1.359e-02  1.847e-03  1.228e+03   7.354 3.50e-13 ***
total_revenues_cgm_z     5.983e-02  1.006e-02  1.177e+03   5.949 3.56e-09 ***
conferenceBig10         -1.367e-01  1.515e-01  7.169e+00  -0.903   0.3960    
conferenceBig12         -2.881e-01  1.401e-01  4.033e+00  -2.056   0.1084    
conferencePac12         -7.525e-02  2.260e-01  5.340e+00  -0.333   0.7518    
conferenceSEC           -2.382e-01  1.314e-01  4.513e+00  -1.813   0.1359    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.020                                                        
attndnc_c__ -0.009 -0.090                                                 
game_reslt1 -0.027  0.038  0.046                                          
s_game_c    -0.031  0.147 -0.070  0.167                                   
ar_clssfct1 -0.852 -0.002  0.002 -0.008 -0.002                            
tenure_yr_c -0.060 -0.044  0.183 -0.003  0.015  0.011                     
ttl_rvns_c_  0.075 -0.009 -0.145 -0.056 -0.038 -0.024 -0.786              
confrncBg10 -0.625  0.004  0.007  0.002  0.001  0.257  0.037 -0.053       
confrncBg12 -0.444 -0.006  0.015  0.003  0.007  0.003  0.079 -0.110  0.660
confrncPc12 -0.452 -0.008 -0.003  0.005  0.000  0.214 -0.021  0.014  0.460
conferncSEC -0.470 -0.010  0.012  0.003 -0.001  0.002  0.062 -0.072  0.701
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.437       
conferncSEC  0.762  0.466
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 6 negative eigenvalues

Create a model

This model has some improvement, but the Q-Q plot still shows the tile is quite deviant.

model_school_r <- lmer(
 s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +
    (1+total_revenues_cgm_z|school),
  data = data_clean
)
summary(model_school_r)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + total_revenues_cgm_z | school)
   Data: data_clean

REML criterion at convergence: -1566.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2751 -0.5549 -0.0545  0.4655  3.8007 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr
 school   (Intercept)          0.13964  0.3737       
          total_revenues_cgm_z 0.06095  0.2469   0.31
 Residual                      0.01322  0.1150       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.068e-01  2.975e-01  2.079e+01   1.704    0.103    
game_time_num_c_2       -8.046e-04  1.192e-03  1.187e+03  -0.675    0.500    
attendance_cwc_school_z  3.626e-03  3.423e-03  1.196e+03   1.060    0.290    
game_result1             6.791e-03  7.865e-03  1.187e+03   0.863    0.388    
s_game_c                -3.374e-04  1.704e-03  1.183e+03  -0.198    0.843    
area_classification1    -1.464e-01  2.341e-01  2.016e+01  -0.625    0.539    
tenure_year_c            2.039e-02  2.017e-03  1.226e+03  10.107   <2e-16 ***
total_revenues_cgm_z    -2.641e-02  5.382e-02  2.342e+01  -0.491    0.628    
conferenceBig10         -7.330e-02  2.184e-01  2.049e+01  -0.336    0.741    
conferenceBig12         -1.877e-01  3.110e-01  2.026e+01  -0.603    0.553    
conferencePac12         -1.632e-01  2.642e-01  2.120e+01  -0.618    0.543    
conferenceSEC           -1.087e-01  2.267e-01  2.077e+01  -0.480    0.636    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.015                                                        
attndnc_c__ -0.002 -0.082                                                 
game_reslt1 -0.017  0.044  0.060                                          
s_game_c    -0.020  0.149 -0.062  0.170                                   
ar_clssfct1 -0.789  0.001  0.001 -0.005 -0.002                            
tenure_yr_c -0.056 -0.046  0.105 -0.028  0.002 -0.004                     
ttl_rvns_c_  0.124  0.000 -0.008 -0.016 -0.006 -0.027 -0.214              
confrncBg10 -0.675  0.002  0.002  0.000  0.000  0.220  0.042 -0.046       
confrncBg12 -0.352 -0.006  0.015  0.002  0.002  0.000  0.032 -0.023  0.476
confrncPc12 -0.597 -0.005 -0.006 -0.003 -0.002  0.235 -0.025 -0.029  0.610
conferncSEC -0.486 -0.004 -0.006  0.002  0.000  0.001  0.064 -0.054  0.655
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.392       
conferncSEC  0.460  0.538
performance::icc(model_school_r)
# Intraclass Correlation Coefficient

    Adjusted ICC: 0.938
  Unadjusted ICC: 0.892
plot(model_school_r, type=c("p","smooth"))

plot(model_school_r,
     form = sqrt(abs(resid(.))) ~ fitted(.),
     type = c("p","smooth"))

qqnorm(resid(model_school_r)); qqline(resid(model_school_r))

qqnorm(ranef(model_school_r)$school[, 1]);qqline(ranef(model_school_r)$school[, 1])

qqnorm(ranef(model_school_r)$school[, 2]);qqline(ranef(model_school_r)$school[, 2])

Shcool level- Game Time (Categorical)

Same with the game time as a numerical variable model

Test one by one

summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + game_time_chars_c_1|school), 
  data = data_clean
))
boundary (singular) fit: see help('isSingular')
Warning: Model failed to converge with 1 negative eigenvalue: -2.3e-01
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + game_time_chars_c_1 |      school)
   Data: data_clean

REML criterion at convergence: -1295.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6327 -0.6199 -0.0398  0.5485  4.2589 

Random effects:
 Groups   Name                 Variance  Std.Dev. Corr             
 school   (Intercept)          0.0638950 0.252775                  
          game_time_chars_c_12 0.0000396 0.006292 -1.00            
          game_time_chars_c_13 0.0003384 0.018394 -0.19  0.19      
          game_time_chars_c_14 0.0005584 0.023629 -0.01  0.01 -0.98
 Residual                      0.0174574 0.132126                  
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              6.179e-01  2.056e-01  2.160e+01   3.005   0.0066 ** 
game_time_chars_c_12    -2.004e-02  1.968e-02  4.270e+02  -1.018   0.3092    
game_time_chars_c_13    -3.002e-02  2.055e-02  4.257e+02  -1.461   0.1447    
game_time_chars_c_14    -1.980e-02  2.164e-02  3.595e+02  -0.915   0.3608    
attendance_cwc_school_z -2.131e-03  3.757e-03  1.202e+03  -0.567   0.5707    
game_result1             1.898e-03  8.988e-03  1.209e+03   0.211   0.8328    
s_game_c                -4.065e-04  1.961e-03  1.209e+03  -0.207   0.8358    
area_classification1    -1.528e-01  1.622e-01  2.105e+01  -0.942   0.3568    
tenure_year_c            1.308e-02  1.844e-03  1.229e+03   7.095 2.18e-12 ***
total_revenues_cgm_z     5.904e-02  1.003e-02  1.222e+03   5.888 5.05e-09 ***
conferenceBig10         -1.584e-01  1.504e-01  2.099e+01  -1.053   0.3043    
conferenceBig12         -2.882e-01  2.162e-01  2.136e+01  -1.333   0.1964    
conferencePac12         -8.513e-02  1.808e-01  2.126e+01  -0.471   0.6426    
conferenceSEC           -2.397e-01  1.562e-01  2.126e+01  -1.534   0.1397    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + attendance_cwc_school_z|school), 
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + attendance_cwc_school_z |  
    school)
   Data: data_clean

REML criterion at convergence: -1308.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.7471 -0.6217 -0.0470  0.5324  3.8278 

Random effects:
 Groups   Name                    Variance Std.Dev. Corr 
 school   (Intercept)             0.062503 0.2500        
          attendance_cwc_school_z 0.003091 0.0556   -0.02
 Residual                         0.016918 0.1301        
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.902e-01  2.080e-01  2.163e+01   2.838  0.00967 ** 
game_time_chars_c_12    -1.895e-02  1.940e-02  1.206e+03  -0.977  0.32879    
game_time_chars_c_13    -3.271e-02  1.989e-02  1.206e+03  -1.645  0.10028    
game_time_chars_c_14    -1.607e-02  2.063e-02  1.204e+03  -0.779  0.43607    
attendance_cwc_school_z -4.355e-03  1.402e-02  1.185e+01  -0.311  0.76156    
game_result1             3.200e-05  8.873e-03  1.196e+03   0.004  0.99712    
s_game_c                -3.272e-04  1.933e-03  1.193e+03  -0.169  0.86560    
area_classification1    -1.352e-01  1.638e-01  2.099e+01  -0.825  0.41855    
tenure_year_c            1.435e-02  1.853e-03  1.225e+03   7.745 1.99e-14 ***
total_revenues_cgm_z     5.880e-02  1.012e-02  1.215e+03   5.810 7.95e-09 ***
conferenceBig10         -1.415e-01  1.522e-01  2.104e+01  -0.929  0.36319    
conferenceBig12         -2.908e-01  2.179e-01  2.117e+01  -1.334  0.19627    
conferencePac12         -8.474e-02  1.825e-01  2.113e+01  -0.464  0.64724    
conferenceSEC           -2.365e-01  1.577e-01  2.115e+01  -1.500  0.14851    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + game_result|school), 
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + game_result | school)
   Data: data_clean

REML criterion at convergence: -1291.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6776 -0.6056 -0.0283  0.5567  4.1481 

Random effects:
 Groups   Name         Variance  Std.Dev. Corr
 school   (Intercept)  0.0593610 0.24364      
          game_result1 0.0005098 0.02258  0.34
 Residual              0.0176104 0.13270      
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.951e-01  2.039e-01  2.171e+01   2.919  0.00802 ** 
game_time_chars_c_12    -2.071e-02  1.968e-02  1.210e+03  -1.052  0.29285    
game_time_chars_c_13    -3.365e-02  2.020e-02  1.210e+03  -1.666  0.09592 .  
game_time_chars_c_14    -1.941e-02  2.091e-02  1.215e+03  -0.928  0.35339    
attendance_cwc_school_z -2.462e-03  3.763e-03  1.205e+03  -0.654  0.51312    
game_result1             3.970e-04  1.026e-02  3.421e+01   0.039  0.96934    
s_game_c                -2.165e-04  1.965e-03  1.211e+03  -0.110  0.91231    
area_classification1    -1.386e-01  1.601e-01  2.084e+01  -0.866  0.39658    
tenure_year_c            1.331e-02  1.849e-03  1.231e+03   7.202 1.03e-12 ***
total_revenues_cgm_z     5.962e-02  1.007e-02  1.226e+03   5.919 4.19e-09 ***
conferenceBig10         -1.517e-01  1.497e-01  2.133e+01  -1.014  0.32209    
conferenceBig12         -2.924e-01  2.149e-01  2.164e+01  -1.361  0.18765    
conferencePac12         -5.628e-02  1.789e-01  2.119e+01  -0.315  0.75621    
conferenceSEC           -2.241e-01  1.552e-01  2.150e+01  -1.444  0.16308    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + s_game_c|school), 
  data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + s_game_c | school)
   Data: data_clean

REML criterion at convergence: -1293.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5684 -0.6241 -0.0461  0.5658  4.2033 

Random effects:
 Groups   Name        Variance  Std.Dev. Corr
 school   (Intercept) 0.0565773 0.23786      
          s_game_c    0.0000249 0.00499  1.00
 Residual             0.0176255 0.13276      
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              4.103e-01  1.899e-01  2.282e+01   2.160   0.0415 *  
game_time_chars_c_12    -1.625e-02  1.961e-02  1.213e+03  -0.828   0.4076    
game_time_chars_c_13    -3.070e-02  2.013e-02  1.215e+03  -1.525   0.1276    
game_time_chars_c_14    -1.633e-02  2.087e-02  1.215e+03  -0.782   0.4341    
attendance_cwc_school_z -2.766e-03  3.760e-03  1.209e+03  -0.736   0.4621    
game_result1             2.692e-03  9.012e-03  1.211e+03   0.299   0.7652    
s_game_c                -5.814e-04  2.205e-03  4.588e+01  -0.264   0.7932    
area_classification1    -4.076e-02  1.498e-01  2.219e+01  -0.272   0.7881    
tenure_year_c            1.335e-02  1.840e-03  1.213e+03   7.259 6.95e-13 ***
total_revenues_cgm_z     5.996e-02  1.005e-02  1.223e+03   5.967 3.16e-09 ***
conferenceBig10          6.352e-03  1.365e-01  2.097e+01   0.047   0.9633    
conferenceBig12         -1.811e-01  2.001e-01  2.250e+01  -0.905   0.3750    
conferencePac12          6.776e-02  1.681e-01  2.263e+01   0.403   0.6907    
conferenceSEC           -1.896e-01  1.435e-01  2.206e+01  -1.321   0.2000    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + area_classification|school), 
  data = data_clean
))
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + area_classification |      school)
   Data: data_clean

REML criterion at convergence: -1289.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6540 -0.6173 -0.0419  0.5462  4.1289 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr 
 school   (Intercept)          0.07690  0.27731       
          area_classification1 0.00675  0.08216  -0.50
 Residual                      0.01771  0.13308       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.945e-01  2.179e-01  6.059e+00   2.728   0.0339 *  
game_time_chars_c_12    -2.025e-02  1.967e-02  1.216e+03  -1.029   0.3035    
game_time_chars_c_13    -3.375e-02  2.018e-02  1.216e+03  -1.672   0.0947 .  
game_time_chars_c_14    -1.933e-02  2.091e-02  1.216e+03  -0.925   0.3554    
attendance_cwc_school_z -2.452e-03  3.771e-03  1.211e+03  -0.650   0.5156    
game_result1             2.249e-03  9.026e-03  1.212e+03   0.249   0.8033    
s_game_c                -3.586e-04  1.967e-03  1.211e+03  -0.182   0.8554    
area_classification1    -1.358e-01  1.774e-01  2.847e+00  -0.766   0.5024    
tenure_year_c            1.346e-02  1.849e-03  1.231e+03   7.284 5.77e-13 ***
total_revenues_cgm_z     5.943e-02  1.008e-02  1.230e+03   5.894 4.86e-09 ***
conferenceBig10         -1.389e-01  1.504e-01  1.987e+01  -0.924   0.3667    
conferenceBig12         -2.911e-01  2.149e-01  1.948e+01  -1.355   0.1910    
conferencePac12         -8.439e-02  1.817e-01  2.111e+01  -0.465   0.6470    
conferenceSEC           -2.397e-01  1.555e-01  1.947e+01  -1.541   0.1393    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + tenure_year_c|school), 
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + tenure_year_c |      school)
   Data: data_clean

REML criterion at convergence: -1677.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.3473 -0.5499 -0.0607  0.4894  3.9441 

Random effects:
 Groups   Name          Variance Std.Dev. Corr 
 school   (Intercept)   0.057930 0.24069       
          tenure_year_c 0.001175 0.03428  -0.20
 Residual               0.012195 0.11043       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)  
(Intercept)              5.390e-01  1.970e-01  2.119e+01   2.736   0.0123 *
game_time_chars_c_12    -1.919e-02  1.649e-02  1.200e+03  -1.163   0.2449  
game_time_chars_c_13    -2.401e-02  1.697e-02  1.203e+03  -1.415   0.1574  
game_time_chars_c_14    -1.540e-02  1.761e-02  1.202e+03  -0.874   0.3821  
attendance_cwc_school_z  4.557e-03  3.290e-03  1.207e+03   1.385   0.1663  
game_result1             9.078e-03  7.588e-03  1.194e+03   1.196   0.2318  
s_game_c                -5.565e-04  1.635e-03  1.189e+03  -0.340   0.7337  
area_classification1    -7.607e-02  1.555e-01  2.073e+01  -0.489   0.6298  
tenure_year_c            7.818e-03  7.433e-03  2.508e+01   1.052   0.3030  
total_revenues_cgm_z     2.284e-02  9.312e-03  1.220e+03   2.453   0.0143 *
conferenceBig10         -1.401e-01  1.437e-01  2.038e+01  -0.975   0.3412  
conferenceBig12         -2.581e-01  2.062e-01  2.069e+01  -1.251   0.2248  
conferencePac12         -6.495e-03  1.773e-01  2.249e+01  -0.037   0.9711  
conferenceSEC           -2.318e-01  1.490e-01  2.049e+01  -1.556   0.1350  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + total_revenues_cgm_z|school), 
  data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + total_revenues_cgm_z |  
    school)
   Data: data_clean

REML criterion at convergence: -1559.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2543 -0.5722 -0.0400  0.4691  3.7914 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr
 school   (Intercept)          0.13931  0.3732       
          total_revenues_cgm_z 0.06102  0.2470   0.31
 Residual                      0.01321  0.1149       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.276e-01  2.970e-01  2.093e+01   1.776   0.0902 .  
game_time_chars_c_12    -2.304e-02  1.718e-02  1.190e+03  -1.341   0.1801    
game_time_chars_c_13    -3.137e-02  1.767e-02  1.191e+03  -1.776   0.0760 .  
game_time_chars_c_14    -2.217e-02  1.832e-02  1.192e+03  -1.210   0.2264    
attendance_cwc_school_z  3.695e-03  3.419e-03  1.193e+03   1.081   0.2800    
game_result1             7.637e-03  7.880e-03  1.185e+03   0.969   0.3327    
s_game_c                -2.717e-04  1.700e-03  1.181e+03  -0.160   0.8731    
area_classification1    -1.451e-01  2.333e-01  2.016e+01  -0.622   0.5410    
tenure_year_c            2.028e-02  2.019e-03  1.224e+03  10.045   <2e-16 ***
total_revenues_cgm_z    -2.607e-02  5.383e-02  2.343e+01  -0.484   0.6327    
conferenceBig10         -7.437e-02  2.177e-01  2.048e+01  -0.342   0.7361    
conferenceBig12         -1.882e-01  3.099e-01  2.026e+01  -0.607   0.5505    
conferencePac12         -1.636e-01  2.633e-01  2.120e+01  -0.621   0.5411    
conferenceSEC           -1.124e-01  2.260e-01  2.077e+01  -0.498   0.6240    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
summary(lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1 + conference|school), 
  data = data_clean
))
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 4 negative eigenvalues
Warning: Model failed to converge with 5 negative eigenvalues: -3.6e-05
-4.3e-05 -4.8e-05 -3.7e-04 -3.7e-04
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + conference | school)
   Data: data_clean

REML criterion at convergence: -1293.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6581 -0.6144 -0.0436  0.5488  4.1513 

Random effects:
 Groups   Name            Variance Std.Dev. Corr                   
 school   (Intercept)     0.05431  0.2330                          
          conferenceBig10 0.05033  0.2243   -0.29                  
          conferenceBig12 0.03300  0.1817   -0.90  0.38            
          conferencePac12 0.05821  0.2413    0.22 -0.36 -0.39      
          conferenceSEC   0.04332  0.2081   -0.78  0.25  0.74 -0.20
 Residual                 0.01771  0.1331                          
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.813e-01  2.276e-01  1.406e+01   2.554   0.0229 *  
game_time_chars_c_12    -1.999e-02  1.965e-02  1.218e+03  -1.018   0.3091    
game_time_chars_c_13    -3.358e-02  2.016e-02  1.218e+03  -1.666   0.0960 .  
game_time_chars_c_14    -1.909e-02  2.088e-02  1.219e+03  -0.914   0.3608    
attendance_cwc_school_z -2.460e-03  3.771e-03  1.211e+03  -0.652   0.5144    
game_result1             1.950e-03  9.025e-03  1.213e+03   0.216   0.8289    
s_game_c                -3.778e-04  1.967e-03  1.211e+03  -0.192   0.8477    
area_classification1    -1.223e-01  1.933e-01  1.089e+01  -0.633   0.5399    
tenure_year_c            1.346e-02  1.848e-03  1.226e+03   7.286 5.69e-13 ***
total_revenues_cgm_z     5.996e-02  1.005e-02  1.178e+03   5.963 3.26e-09 ***
conferenceBig10         -1.380e-01  1.508e-01  7.216e+00  -0.915   0.3898    
conferenceBig12         -2.907e-01  1.402e-01  4.014e+00  -2.074   0.1065    
conferencePac12         -7.886e-02  2.252e-01  5.331e+00  -0.350   0.7396    
conferenceSEC           -2.414e-01  1.306e-01  4.521e+00  -1.848   0.1300    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 4 negative eigenvalues

Create a model

model_school_cat_r <- lmer(s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+total_revenues_cgm_z|school), 
  data = data_clean
)
summary(model_school_cat_r)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + total_revenues_cgm_z |  
    school)
   Data: data_clean

REML criterion at convergence: -1559.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2543 -0.5722 -0.0400  0.4691  3.7914 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr
 school   (Intercept)          0.13931  0.3732       
          total_revenues_cgm_z 0.06102  0.2470   0.31
 Residual                      0.01321  0.1149       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.276e-01  2.970e-01  2.093e+01   1.776   0.0902 .  
game_time_chars_c_12    -2.304e-02  1.718e-02  1.190e+03  -1.341   0.1801    
game_time_chars_c_13    -3.137e-02  1.767e-02  1.191e+03  -1.776   0.0760 .  
game_time_chars_c_14    -2.217e-02  1.832e-02  1.192e+03  -1.210   0.2264    
attendance_cwc_school_z  3.695e-03  3.419e-03  1.193e+03   1.081   0.2800    
game_result1             7.637e-03  7.880e-03  1.185e+03   0.969   0.3327    
s_game_c                -2.717e-04  1.700e-03  1.181e+03  -0.160   0.8731    
area_classification1    -1.451e-01  2.333e-01  2.016e+01  -0.622   0.5410    
tenure_year_c            2.028e-02  2.019e-03  1.224e+03  10.045   <2e-16 ***
total_revenues_cgm_z    -2.607e-02  5.383e-02  2.343e+01  -0.484   0.6327    
conferenceBig10         -7.437e-02  2.177e-01  2.048e+01  -0.342   0.7361    
conferenceBig12         -1.882e-01  3.099e-01  2.026e+01  -0.607   0.5505    
conferencePac12         -1.636e-01  2.633e-01  2.120e+01  -0.621   0.5411    
conferenceSEC           -1.124e-01  2.260e-01  2.077e+01  -0.498   0.6240    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
performance::icc(model_school_cat_r)
# Intraclass Correlation Coefficient

    Adjusted ICC: 0.938
  Unadjusted ICC: 0.893
plot(model_school_cat_r, type=c("p","smooth"))

plot(model_school_cat_r,
     form = sqrt(abs(resid(.))) ~ fitted(.),
     type = c("p","smooth"))

qqnorm(resid(model_school_cat_r)); qqline(resid(model_school_cat_r))

qqnorm(ranef(model_school_r)$school[, 1]);qqline(ranef(model_school_r)$school[, 1])

qqnorm(ranef(model_school_r)$school[, 2]);qqline(ranef(model_school_r)$school[, 2])

Year level- Game Time (Numerical)

After testing one by one, we found that the Random effects Variance for all predictors is close to 0.

Test one by one

summary(lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+game_time_num_c_2|year),
data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + game_time_num_c_2 | year)
   Data: data_clean

REML criterion at convergence: 131

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4493 -0.7309 -0.1797  0.7674  2.7983 

Random effects:
 Groups   Name              Variance  Std.Dev. Corr
 year     (Intercept)       9.738e-04 0.031207     
          game_time_num_c_2 2.551e-05 0.005051 0.64
 Residual                   6.017e-02 0.245301     
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.732e-01  4.236e-02  1.914e+02  13.531  < 2e-16 ***
game_time_num_c_2       -3.365e-03  2.749e-03  2.439e+01  -1.224    0.233    
attendance_cwc_school_z -8.255e-03  7.488e-03  2.089e+02  -1.102    0.272    
game_result1            -6.589e-03  1.617e-02  1.230e+03  -0.407    0.684    
s_game_c                -2.181e-03  3.609e-03  1.205e+03  -0.604    0.546    
area_classification1    -1.723e-02  2.706e-02  1.033e+03  -0.637    0.524    
tenure_year_c           -2.426e-03  1.891e-03  1.132e+03  -1.283    0.200    
total_revenues_cgm_z     1.863e-01  1.273e-02  9.390e+01  14.640  < 2e-16 ***
conferenceBig10         -1.197e-01  2.512e-02  7.264e+02  -4.766 2.28e-06 ***
conferenceBig12         -4.381e-01  4.297e-02  6.095e+02 -10.194  < 2e-16 ***
conferencePac12          1.995e-01  2.888e-02  1.226e+03   6.907 7.92e-12 ***
conferenceSEC           -2.894e-01  2.697e-02  9.291e+02 -10.732  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.124                                                        
attndnc_c__  0.009 -0.054                                                 
game_reslt1 -0.251  0.009  0.052                                          
s_game_c    -0.303  0.115 -0.058  0.154                                   
ar_clssfct1 -0.650 -0.008 -0.018 -0.105 -0.013                            
tenure_yr_c -0.254 -0.003  0.095 -0.008 -0.001 -0.119                     
ttl_rvns_c_  0.526 -0.017 -0.042 -0.131 -0.055 -0.199 -0.469              
confrncBg10 -0.668  0.032  0.006 -0.009 -0.007  0.291  0.154 -0.499       
confrncBg12 -0.506 -0.047  0.005  0.042  0.041  0.145  0.269 -0.604  0.632
confrncPc12 -0.314 -0.092 -0.009  0.014  0.008  0.198 -0.183  0.108  0.437
conferncSEC -0.483 -0.109  0.020  0.012 -0.024  0.070  0.296 -0.455  0.693
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.211       
conferncSEC  0.561  0.362
summary(lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+attendance_cwc_year_z|year),
data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + attendance_cwc_year_z | year)
   Data: data_clean

REML criterion at convergence: 101.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6638 -0.7088 -0.1771  0.7714  2.7699 

Random effects:
 Groups   Name                  Variance Std.Dev. Corr
 year     (Intercept)           0.001566 0.03957      
          attendance_cwc_year_z 0.004572 0.06762  0.94
 Residual                       0.057930 0.24069      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.759e-01  4.191e-02  1.929e+02  13.741  < 2e-16 ***
game_time_num_c_2       -3.915e-03  2.401e-03  1.218e+03  -1.630   0.1033    
attendance_cwc_school_z -1.764e-02  7.447e-03  2.200e+02  -2.369   0.0187 *  
game_result1            -1.470e-02  1.596e-02  1.228e+03  -0.921   0.3571    
s_game_c                -2.000e-03  3.545e-03  1.200e+03  -0.564   0.5727    
area_classification1    -1.758e-02  2.755e-02  4.912e+02  -0.638   0.5239    
tenure_year_c           -5.240e-03  1.987e-03  9.004e+02  -2.637   0.0085 ** 
total_revenues_cgm_z     1.720e-01  1.309e-02  5.482e+01  13.145  < 2e-16 ***
conferenceBig10         -1.140e-01  2.667e-02  4.304e+02  -4.275 2.36e-05 ***
conferenceBig12         -4.419e-01  4.242e-02  4.690e+02 -10.416  < 2e-16 ***
conferencePac12          2.137e-01  2.858e-02  1.154e+03   7.478 1.49e-13 ***
conferenceSEC           -2.944e-01  2.813e-02  9.042e+02 -10.467  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.248                                                        
attndnc_c__ -0.019 -0.097                                                 
game_reslt1 -0.273  0.012  0.074                                          
s_game_c    -0.306  0.131 -0.060  0.153                                   
ar_clssfct1 -0.664  0.043  0.015 -0.084 -0.010                            
tenure_yr_c -0.201 -0.027  0.180  0.021  0.000 -0.156                     
ttl_rvns_c_  0.508 -0.107  0.074 -0.117 -0.053 -0.161 -0.319              
confrncBg10 -0.701  0.094  0.030  0.027  0.006  0.347  0.081 -0.481       
confrncBg12 -0.524 -0.004  0.032  0.067  0.049  0.157  0.237 -0.573  0.634
confrncPc12 -0.322 -0.102 -0.049  0.010  0.012  0.187 -0.201  0.035  0.411
conferncSEC -0.532 -0.081  0.090  0.043 -0.015  0.151  0.255 -0.381  0.728
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.221       
conferncSEC  0.572  0.340
summary(lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+game_result|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Warning: Model failed to converge with 1 negative eigenvalue: -3.9e+00
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + game_result | year)
   Data: data_clean

REML criterion at convergence: 131.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5769 -0.7312 -0.1745  0.7981  2.7869 

Random effects:
 Groups   Name         Variance Std.Dev. Corr
 year     (Intercept)  0.000000 0.00000      
          game_result1 0.003447 0.05871   NaN
 Residual              0.060143 0.24524      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.700e-01  4.081e-02  3.329e+02  13.965  < 2e-16 ***
game_time_num_c_2       -4.167e-03  2.442e-03  1.216e+03  -1.706   0.0882 .  
attendance_cwc_school_z -8.206e-03  7.517e-03  1.837e+02  -1.092   0.2764    
game_result1            -6.295e-03  2.150e-02  7.371e+00  -0.293   0.7778    
s_game_c                -1.729e-03  3.610e-03  1.200e+03  -0.479   0.6320    
area_classification1    -1.328e-02  2.678e-02  8.660e+02  -0.496   0.6200    
tenure_year_c           -2.803e-03  1.904e-03  1.151e+03  -1.472   0.1413    
total_revenues_cgm_z     1.853e-01  1.269e-02  6.905e+01  14.599  < 2e-16 ***
conferenceBig10         -1.178e-01  2.493e-02  5.354e+02  -4.724 2.96e-06 ***
conferenceBig12         -4.365e-01  4.267e-02  4.485e+02 -10.228  < 2e-16 ***
conferencePac12          2.032e-01  2.880e-02  1.213e+03   7.057 2.86e-12 ***
conferenceSEC           -2.888e-01  2.687e-02  8.765e+02 -10.746  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.237                                                        
attndnc_c__ -0.003 -0.092                                                 
game_reslt1 -0.162 -0.003  0.078                                          
s_game_c    -0.312  0.132 -0.060  0.112                                   
ar_clssfct1 -0.650  0.026 -0.017 -0.109 -0.015                            
tenure_yr_c -0.260  0.002  0.097 -0.020  0.000 -0.125                     
ttl_rvns_c_  0.533 -0.061 -0.049 -0.080 -0.054 -0.192 -0.459              
confrncBg10 -0.675  0.072  0.010 -0.035 -0.007  0.281  0.154 -0.498       
confrncBg12 -0.507 -0.019  0.012  0.004  0.040  0.135  0.268 -0.601  0.627
confrncPc12 -0.324 -0.109 -0.008  0.023  0.008  0.198 -0.184  0.118  0.431
conferncSEC -0.495 -0.101  0.028  0.000 -0.024  0.065  0.294 -0.447  0.695
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.205       
conferncSEC  0.560  0.363
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+s_game_c|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + s_game_c | year)
   Data: data_clean

REML criterion at convergence: 133.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4126 -0.7365 -0.1732  0.7786  2.8281 

Random effects:
 Groups   Name        Variance  Std.Dev. Corr
 year     (Intercept) 1.659e-03 0.040726     
          s_game_c    2.534e-06 0.001592 1.00
 Residual             6.032e-02 0.245606     
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.722e-01  4.312e-02  2.010e+02  13.269  < 2e-16 ***
game_time_num_c_2       -3.975e-03  2.443e-03  1.218e+03  -1.627    0.104    
attendance_cwc_school_z -7.615e-03  7.432e-03  1.859e+02  -1.025    0.307    
game_result1            -7.236e-03  1.618e-02  1.227e+03  -0.447    0.655    
s_game_c                -1.845e-03  3.631e-03  4.130e+02  -0.508    0.612    
area_classification1    -1.551e-02  2.716e-02  1.084e+03  -0.571    0.568    
tenure_year_c           -2.349e-03  1.895e-03  1.152e+03  -1.240    0.215    
total_revenues_cgm_z     1.867e-01  1.288e-02  1.034e+02  14.495  < 2e-16 ***
conferenceBig10         -1.206e-01  2.521e-02  8.024e+02  -4.785 2.03e-06 ***
conferenceBig12         -4.408e-01  4.317e-02  6.824e+02 -10.209  < 2e-16 ***
conferencePac12          1.989e-01  2.887e-02  1.225e+03   6.889 8.96e-12 ***
conferenceSEC           -2.892e-01  2.693e-02  9.592e+02 -10.742  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.226                                                        
attndnc_c__  0.010 -0.081                                                 
game_reslt1 -0.248  0.012  0.055                                          
s_game_c    -0.266  0.129 -0.052  0.153                                   
ar_clssfct1 -0.646  0.025 -0.017 -0.103 -0.020                            
tenure_yr_c -0.247  0.003  0.095 -0.006 -0.002 -0.125                     
ttl_rvns_c_  0.520 -0.055 -0.039 -0.132 -0.044 -0.202 -0.453              
confrncBg10 -0.662  0.068  0.006 -0.008 -0.013  0.292  0.150 -0.502       
confrncBg12 -0.502 -0.023  0.003  0.043  0.034  0.145  0.264 -0.608  0.634
confrncPc12 -0.310 -0.112 -0.011  0.013  0.009  0.199 -0.181  0.107  0.438
conferncSEC -0.475 -0.106  0.020  0.010 -0.029  0.068  0.294 -0.451  0.694
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.212       
conferncSEC  0.563  0.366
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+area_classification|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Warning: Model failed to converge with 1 negative eigenvalue: -1.5e+01
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + area_classification | year)
   Data: data_clean

REML criterion at convergence: 130.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.3758 -0.7403 -0.1781  0.7484  2.7694 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr
 year     (Intercept)          0.000000 0.00000      
          area_classification1 0.002584 0.05083   NaN
 Residual                      0.060106 0.24516      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.764e-01  4.065e-02  9.683e+02  14.179  < 2e-16 ***
game_time_num_c_2       -4.088e-03  2.441e-03  1.220e+03  -1.675   0.0942 .  
attendance_cwc_school_z -8.297e-03  7.589e-03  2.228e+02  -1.093   0.2755    
game_result1            -8.631e-03  1.615e-02  1.230e+03  -0.534   0.5931    
s_game_c                -2.137e-03  3.607e-03  1.210e+03  -0.592   0.5537    
area_classification1    -1.262e-02  2.903e-02  1.210e+02  -0.435   0.6646    
tenure_year_c           -2.675e-03  1.897e-03  1.182e+03  -1.410   0.1588    
total_revenues_cgm_z     1.893e-01  1.293e-02  1.478e+02  14.642  < 2e-16 ***
conferenceBig10         -1.231e-01  2.508e-02  9.639e+02  -4.908 1.08e-06 ***
conferenceBig12         -4.470e-01  4.306e-02  8.457e+02 -10.380  < 2e-16 ***
conferencePac12          1.957e-01  2.893e-02  1.229e+03   6.764 2.07e-11 ***
conferenceSEC           -2.916e-01  2.691e-02  1.044e+03 -10.835  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.235                                                        
attndnc_c__ -0.006 -0.083                                                 
game_reslt1 -0.267  0.010  0.057                                          
s_game_c    -0.314  0.131 -0.055  0.154                                   
ar_clssfct1 -0.573  0.012  0.012 -0.095 -0.018                            
tenure_yr_c -0.259  0.006  0.094 -0.005  0.000 -0.126                     
ttl_rvns_c_  0.532 -0.058 -0.047 -0.143 -0.055 -0.155 -0.454              
confrncBg10 -0.674  0.072  0.009 -0.001 -0.004  0.226  0.153 -0.496       
confrncBg12 -0.510 -0.018  0.003  0.049  0.044  0.096  0.268 -0.604  0.632
confrncPc12 -0.337 -0.113 -0.012  0.011  0.008  0.195 -0.180  0.100  0.445
conferncSEC -0.497 -0.103  0.019  0.014 -0.025  0.051  0.295 -0.452  0.693
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.219       
conferncSEC  0.562  0.366
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+total_revenues_cgm_z|year),
data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + total_revenues_cgm_z | year)
   Data: data_clean

REML criterion at convergence: 124.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5445 -0.7184 -0.1661  0.7373  2.7666 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr
 year     (Intercept)          0.003814 0.06176      
          total_revenues_cgm_z 0.002776 0.05269  0.78
 Residual                      0.059127 0.24316      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              6.209e-01  4.709e-02  1.384e+02  13.184  < 2e-16 ***
game_time_num_c_2       -3.843e-03  2.425e-03  1.214e+03  -1.585    0.113    
attendance_cwc_school_z -1.230e-02  8.673e-03  1.668e+02  -1.418    0.158    
game_result1            -1.177e-02  1.610e-02  1.225e+03  -0.731    0.465    
s_game_c                -2.059e-03  3.584e-03  1.194e+03  -0.574    0.566    
area_classification1    -3.677e-02  2.753e-02  6.961e+02  -1.336    0.182    
tenure_year_c           -1.889e-03  1.905e-03  1.159e+03  -0.992    0.322    
total_revenues_cgm_z     2.097e-01  2.043e-02  1.293e+01  10.264 1.40e-07 ***
conferenceBig10         -1.446e-01  2.620e-02  5.379e+02  -5.519 5.30e-08 ***
conferenceBig12         -4.699e-01  4.376e-02  7.482e+02 -10.738  < 2e-16 ***
conferencePac12          2.025e-01  2.875e-02  1.184e+03   7.045 3.13e-12 ***
conferenceSEC           -3.114e-01  2.766e-02  8.998e+02 -11.259  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.214                                                        
attndnc_c__  0.014 -0.096                                                 
game_reslt1 -0.247  0.011  0.067                                          
s_game_c    -0.276  0.130 -0.033  0.156                                   
ar_clssfct1 -0.637  0.028 -0.018 -0.089 -0.011                            
tenure_yr_c -0.195  0.001  0.107 -0.008  0.003 -0.148                     
ttl_rvns_c_  0.607 -0.052  0.027 -0.110 -0.039 -0.198 -0.260              
confrncBg10 -0.678  0.071  0.004  0.012 -0.003  0.332  0.111 -0.438       
confrncBg12 -0.510 -0.016 -0.006  0.050  0.041  0.172  0.246 -0.464  0.644
confrncPc12 -0.269 -0.115 -0.013  0.008  0.006  0.185 -0.177  0.079  0.405
conferncSEC -0.499 -0.096  0.002  0.021 -0.026  0.116  0.252 -0.373  0.714
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.199       
conferncSEC  0.575  0.346
summary(lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+conference|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Warning: Model failed to converge with 1 negative eigenvalue: -1.4e+00
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + conference | year)
   Data: data_clean

REML criterion at convergence: 26.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.2180 -0.7012 -0.1184  0.5827  2.5649 

Random effects:
 Groups   Name            Variance Std.Dev. Corr                   
 year     (Intercept)     0.004768 0.06905                         
          conferenceBig10 0.007741 0.08798  -0.84                  
          conferenceBig12 0.023929 0.15469  -0.49  0.89            
          conferencePac12 0.061404 0.24780  -0.62  0.18 -0.23      
          conferenceSEC   0.056706 0.23813  -1.00  0.81  0.44  0.65
 Residual                 0.053121 0.23048                         
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.835e-01  4.253e-02  1.238e+02  13.721  < 2e-16 ***
game_time_num_c_2       -3.319e-03  2.321e-03  1.201e+03  -1.430  0.15284    
attendance_cwc_school_z -5.960e-03  7.712e-03  3.057e+02  -0.773  0.44029    
game_result1             6.371e-03  1.551e-02  1.212e+03   0.411  0.68139    
s_game_c                -1.043e-03  3.405e-03  1.189e+03  -0.306  0.75948    
area_classification1    -6.028e-02  2.594e-02  7.481e+02  -2.324  0.02041 *  
tenure_year_c           -6.197e-04  1.816e-03  1.147e+03  -0.341  0.73303    
total_revenues_cgm_z     2.029e-01  1.268e-02  1.704e+02  15.996  < 2e-16 ***
conferenceBig10         -1.274e-01  3.203e-02  1.466e+01  -3.978  0.00126 ** 
conferenceBig12         -4.605e-01  5.526e-02  1.816e+01  -8.334 1.28e-07 ***
conferencePac12          2.729e-01  7.269e-02  1.005e+01   3.754  0.00372 ** 
conferenceSEC           -2.230e-01  6.747e-02  1.531e+01  -3.305  0.00470 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.212                                                        
attndnc_c__ -0.015 -0.088                                                 
game_reslt1 -0.249  0.028  0.065                                          
s_game_c    -0.282  0.139 -0.046  0.164                                   
ar_clssfct1 -0.584  0.016 -0.034 -0.126 -0.025                            
tenure_yr_c -0.230  0.015  0.090  0.014  0.009 -0.143                     
ttl_rvns_c_  0.492 -0.077  0.013 -0.150 -0.054 -0.196 -0.440              
confrncBg10 -0.679  0.041  0.042  0.009 -0.010  0.188  0.097 -0.371       
confrncBg12 -0.453 -0.014  0.026  0.042  0.026  0.062  0.196 -0.415  0.731
confrncPc12 -0.323 -0.043  0.010  0.007  0.007  0.063 -0.052  0.088  0.234
conferncSEC -0.543 -0.056  0.054  0.019 -0.013  0.007  0.117 -0.155  0.711
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12 -0.061       
conferncSEC  0.445  0.560
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')

Create a model

model_year_r <-lmer(
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+attendance_cwc_school_z|year),
data = data_clean
)
summary(model_year_r)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
s_diversion ~ game_time_num_c_2 + attendance_cwc_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +  
    conference + (1 + attendance_cwc_school_z | year)
   Data: data_clean

REML criterion at convergence: 118

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.7506 -0.7363 -0.1900  0.7381  2.8095 

Random effects:
 Groups   Name                    Variance Std.Dev. Corr
 year     (Intercept)             0.002394 0.04893      
          attendance_cwc_school_z 0.002976 0.05456  0.78
 Residual                         0.058862 0.24261      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              6.024e-01  4.337e-02  2.050e+02  13.889  < 2e-16 ***
game_time_num_c_2       -3.447e-03  2.426e-03  1.214e+03  -1.421    0.156    
attendance_cwc_school_z -6.092e-03  1.676e-02  7.558e+00  -0.364    0.726    
game_result1            -9.594e-03  1.602e-02  1.223e+03  -0.599    0.549    
s_game_c                -2.335e-03  3.581e-03  1.200e+03  -0.652    0.514    
area_classification1    -2.840e-02  2.707e-02  1.025e+03  -1.049    0.294    
tenure_year_c           -2.912e-03  1.887e-03  1.114e+03  -1.544    0.123    
total_revenues_cgm_z     2.038e-01  1.318e-02  1.437e+02  15.466  < 2e-16 ***
conferenceBig10         -1.292e-01  2.488e-02  6.412e+02  -5.191 2.81e-07 ***
conferenceBig12         -4.505e-01  4.267e-02  6.554e+02 -10.559  < 2e-16 ***
conferencePac12          2.054e-01  2.863e-02  1.220e+03   7.176 1.24e-12 ***
conferenceSEC           -3.003e-01  2.683e-02  9.619e+02 -11.196  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 att___ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl___ cnfB10
gm_tm_nm__2 -0.208                                                        
attndnc_c__  0.143 -0.067                                                 
game_reslt1 -0.253  0.007  0.047                                          
s_game_c    -0.294  0.126 -0.011  0.155                                   
ar_clssfct1 -0.636  0.020 -0.041 -0.100 -0.011                            
tenure_yr_c -0.251 -0.004  0.065  0.001 -0.003 -0.127                     
ttl_rvns_c_  0.528 -0.039 -0.013 -0.139 -0.049 -0.207 -0.459              
confrncBg10 -0.653  0.062 -0.006 -0.002 -0.010  0.286  0.154 -0.503       
confrncBg12 -0.486 -0.027 -0.033  0.041  0.035  0.139  0.267 -0.573  0.622
confrncPc12 -0.302 -0.111  0.008  0.014  0.009  0.199 -0.184  0.114  0.433
conferncSEC -0.474 -0.104  0.005  0.017 -0.028  0.070  0.298 -0.454  0.695
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_c__              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
ttl_rvns_c_              
confrncBg10              
confrncBg12              
confrncPc12  0.206       
conferncSEC  0.551  0.358
performance::icc(model_year_r)
Warning: Can't compute random effect variances. Some variance components equal
  zero. Your model may suffer from singularity (see `?lme4::isSingular`
  and `?performance::check_singularity`).
  Decrease the `tolerance` level to force the calculation of random effect
  variances, or impose priors on your random effects parameters (using
  packages like `brms` or `glmmTMB`).
[1] NA

Year level- Game Time (Categorical)

After testing one by one, we found that the Random effects Variance for all predictors is close to 0.

Test one by one

summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+game_time_chars_c_1|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Warning: Model failed to converge with 1 negative eigenvalue: -5.2e-02
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + game_time_chars_c_1 |      year)
   Data: data_clean

REML criterion at convergence: 136.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4416 -0.7325 -0.1713  0.7557  2.8731 

Random effects:
 Groups   Name                 Variance  Std.Dev. Corr          
 year     (Intercept)          0.0004560 0.02135                
          game_time_chars_c_12 0.0002598 0.01612  1.00          
          game_time_chars_c_13 0.0005257 0.02293  0.69 0.69     
          game_time_chars_c_14 0.0032535 0.05704  0.66 0.66 1.00
 Residual                      0.0600644 0.24508                
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.566e-01  5.357e-02  1.388e+02  10.390  < 2e-16 ***
game_time_chars_c_12     1.662e-02  3.279e-02  4.157e+02   0.507    0.613    
game_time_chars_c_13    -1.047e-02  3.358e-02  2.171e+02  -0.312    0.755    
game_time_chars_c_14     2.489e-03  3.681e-02  5.349e+01   0.068    0.946    
attendance_cwc_school_z -8.866e-03  7.571e-03  2.139e+02  -1.171    0.243    
game_result1            -6.631e-03  1.618e-02  1.225e+03  -0.410    0.682    
s_game_c                -2.196e-03  3.605e-03  1.203e+03  -0.609    0.543    
area_classification1    -1.516e-02  2.751e-02  9.909e+02  -0.551    0.582    
tenure_year_c           -2.461e-03  1.917e-03  1.143e+03  -1.284    0.199    
total_revenues_cgm_z     1.867e-01  1.282e-02  1.030e+02  14.555  < 2e-16 ***
conferenceBig10         -1.184e-01  2.535e-02  7.390e+02  -4.672 3.54e-06 ***
conferenceBig12         -4.369e-01  4.321e-02  6.196e+02 -10.110  < 2e-16 ***
conferencePac12          1.953e-01  2.914e-02  1.222e+03   6.701 3.15e-11 ***
conferenceSEC           -2.923e-01  2.704e-02  9.489e+02 -10.810  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference +(1+attendance_cwc_year_z|year),
data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + attendance_cwc_year_z |      year)
   Data: data_clean

REML criterion at convergence: 108.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6863 -0.7019 -0.1656  0.7671  2.8158 

Random effects:
 Groups   Name                  Variance Std.Dev. Corr
 year     (Intercept)           0.001486 0.03855      
          attendance_cwc_year_z 0.004668 0.06832  0.93
 Residual                       0.057996 0.24082      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.417e-01  5.388e-02  2.230e+02  10.053  < 2e-16 ***
game_time_chars_c_12     2.979e-02  3.229e-02  1.202e+03   0.922   0.3565    
game_time_chars_c_13     4.118e-03  3.289e-02  1.189e+03   0.125   0.9004    
game_time_chars_c_14     8.795e-03  3.397e-02  1.190e+03   0.259   0.7958    
attendance_cwc_school_z -1.814e-02  7.443e-03  2.190e+02  -2.437   0.0156 *  
game_result1            -1.493e-02  1.599e-02  1.226e+03  -0.934   0.3507    
s_game_c                -1.834e-03  3.544e-03  1.198e+03  -0.518   0.6048    
area_classification1    -1.309e-02  2.804e-02  4.190e+02  -0.467   0.6408    
tenure_year_c           -5.356e-03  2.015e-03  8.820e+02  -2.658   0.0080 ** 
total_revenues_cgm_z     1.704e-01  1.309e-02  5.296e+01  13.016  < 2e-16 ***
conferenceBig10         -1.088e-01  2.699e-02  3.828e+02  -4.031 6.70e-05 ***
conferenceBig12         -4.368e-01  4.276e-02  4.349e+02 -10.216  < 2e-16 ***
conferencePac12          2.130e-01  2.893e-02  1.168e+03   7.362 3.41e-13 ***
conferenceSEC           -2.935e-01  2.822e-02  8.806e+02 -10.399  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+game_result|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Warning: Model failed to converge with 1 negative eigenvalue: -3.7e+00
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + game_result | year)
   Data: data_clean

REML criterion at convergence: 138.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6128 -0.7105 -0.1716  0.7825  2.8376 

Random effects:
 Groups   Name         Variance Std.Dev. Corr
 year     (Intercept)  0.000000 0.00000      
          game_result1 0.003539 0.05949   NaN
 Residual              0.060203 0.24536      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.489e-01  5.248e-02  3.914e+02  10.460  < 2e-16 ***
game_time_chars_c_12     1.968e-02  3.276e-02  1.209e+03   0.601    0.548    
game_time_chars_c_13    -1.036e-02  3.333e-02  1.215e+03  -0.311    0.756    
game_time_chars_c_14    -1.893e-03  3.443e-02  1.219e+03  -0.055    0.956    
attendance_cwc_school_z -8.607e-03  7.535e-03  1.882e+02  -1.142    0.255    
game_result1            -6.729e-03  2.164e-02  7.806e+00  -0.311    0.764    
s_game_c                -1.595e-03  3.608e-03  1.199e+03  -0.442    0.659    
area_classification1    -1.021e-02  2.717e-02  8.162e+02  -0.376    0.707    
tenure_year_c           -2.819e-03  1.927e-03  1.151e+03  -1.463    0.144    
total_revenues_cgm_z     1.851e-01  1.276e-02  7.361e+01  14.512  < 2e-16 ***
conferenceBig10         -1.156e-01  2.511e-02  5.321e+02  -4.603 5.21e-06 ***
conferenceBig12         -4.355e-01  4.292e-02  4.579e+02 -10.146  < 2e-16 ***
conferencePac12          2.001e-01  2.908e-02  1.211e+03   6.880 9.58e-12 ***
conferenceSEC           -2.898e-01  2.690e-02  9.010e+02 -10.770  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+s_game_c|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + s_game_c | year)
   Data: data_clean

REML criterion at convergence: 140.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4477 -0.7401 -0.1714  0.7681  2.8791 

Random effects:
 Groups   Name        Variance  Std.Dev. Corr
 year     (Intercept) 1.816e-03 0.042619     
          s_game_c    1.362e-06 0.001167 1.00
 Residual             6.039e-02 0.245745     
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.522e-01  5.527e-02  3.196e+02   9.991  < 2e-16 ***
game_time_chars_c_12     1.806e-02  3.295e-02  1.229e+03   0.548    0.584    
game_time_chars_c_13    -1.009e-02  3.348e-02  1.229e+03  -0.301    0.763    
game_time_chars_c_14    -2.326e-03  3.456e-02  1.230e+03  -0.067    0.946    
attendance_cwc_school_z -8.011e-03  7.467e-03  1.798e+02  -1.073    0.285    
game_result1            -7.395e-03  1.621e-02  1.224e+03  -0.456    0.648    
s_game_c                -1.766e-03  3.621e-03  6.019e+02  -0.488    0.626    
area_classification1    -1.248e-02  2.763e-02  1.047e+03  -0.452    0.652    
tenure_year_c           -2.354e-03  1.919e-03  1.151e+03  -1.227    0.220    
total_revenues_cgm_z     1.864e-01  1.295e-02  1.042e+02  14.394  < 2e-16 ***
conferenceBig10         -1.184e-01  2.543e-02  7.818e+02  -4.656 3.79e-06 ***
conferenceBig12         -4.396e-01  4.349e-02  6.726e+02 -10.108  < 2e-16 ***
conferencePac12          1.958e-01  2.916e-02  1.222e+03   6.713 2.92e-11 ***
conferenceSEC           -2.902e-01  2.696e-02  9.616e+02 -10.764  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+s_game_c|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + s_game_c | year)
   Data: data_clean

REML criterion at convergence: 140.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4477 -0.7401 -0.1714  0.7681  2.8791 

Random effects:
 Groups   Name        Variance  Std.Dev. Corr
 year     (Intercept) 1.816e-03 0.042619     
          s_game_c    1.362e-06 0.001167 1.00
 Residual             6.039e-02 0.245745     
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.522e-01  5.527e-02  3.196e+02   9.991  < 2e-16 ***
game_time_chars_c_12     1.806e-02  3.295e-02  1.229e+03   0.548    0.584    
game_time_chars_c_13    -1.009e-02  3.348e-02  1.229e+03  -0.301    0.763    
game_time_chars_c_14    -2.326e-03  3.456e-02  1.230e+03  -0.067    0.946    
attendance_cwc_school_z -8.011e-03  7.467e-03  1.798e+02  -1.073    0.285    
game_result1            -7.395e-03  1.621e-02  1.224e+03  -0.456    0.648    
s_game_c                -1.766e-03  3.621e-03  6.019e+02  -0.488    0.626    
area_classification1    -1.248e-02  2.763e-02  1.047e+03  -0.452    0.652    
tenure_year_c           -2.354e-03  1.919e-03  1.151e+03  -1.227    0.220    
total_revenues_cgm_z     1.864e-01  1.295e-02  1.042e+02  14.394  < 2e-16 ***
conferenceBig10         -1.184e-01  2.543e-02  7.818e+02  -4.656 3.79e-06 ***
conferenceBig12         -4.396e-01  4.349e-02  6.726e+02 -10.108  < 2e-16 ***
conferencePac12          1.958e-01  2.916e-02  1.222e+03   6.713 2.92e-11 ***
conferenceSEC           -2.902e-01  2.696e-02  9.616e+02 -10.764  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+area_classification|year),
data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + area_classification |      year)
   Data: data_clean

REML criterion at convergence: 137.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.3999 -0.7321 -0.1822  0.7628  2.8157 

Random effects:
 Groups   Name                 Variance  Std.Dev. Corr 
 year     (Intercept)          0.0007083 0.02661       
          area_classification1 0.0042982 0.06556  -0.69
 Residual                      0.0601326 0.24522       
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.523e-01  5.309e-02  9.077e+01  10.403  < 2e-16 ***
game_time_chars_c_12     1.997e-02  3.292e-02  1.224e+03   0.606    0.544    
game_time_chars_c_13    -8.501e-03  3.345e-02  1.223e+03  -0.254    0.799    
game_time_chars_c_14    -2.560e-03  3.453e-02  1.224e+03  -0.074    0.941    
attendance_cwc_school_z -8.476e-03  7.603e-03  2.167e+02  -1.115    0.266    
game_result1            -9.123e-03  1.617e-02  1.226e+03  -0.564    0.573    
s_game_c                -2.018e-03  3.604e-03  1.201e+03  -0.560    0.576    
area_classification1    -7.329e-03  3.175e-02  9.513e+00  -0.231    0.822    
tenure_year_c           -2.701e-03  1.921e-03  1.174e+03  -1.406    0.160    
total_revenues_cgm_z     1.885e-01  1.296e-02  1.276e+02  14.546  < 2e-16 ***
conferenceBig10         -1.200e-01  2.526e-02  7.821e+02  -4.749 2.43e-06 ***
conferenceBig12         -4.443e-01  4.328e-02  7.038e+02 -10.268  < 2e-16 ***
conferencePac12          1.925e-01  2.925e-02  1.210e+03   6.581 6.96e-11 ***
conferenceSEC           -2.919e-01  2.692e-02  1.014e+03 -10.840  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+tenure_year_c|year),
data = data_clean
))
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00349725 (tol = 0.002, component 1)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + tenure_year_c |      year)
   Data: data_clean

REML criterion at convergence: 91

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6491 -0.6934 -0.1964  0.6691  2.5360 

Random effects:
 Groups   Name          Variance  Std.Dev. Corr 
 year     (Intercept)   0.0144579 0.12024       
          tenure_year_c 0.0003292 0.01814  -0.95
 Residual               0.0566151 0.23794       
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.542e-01  6.414e-02  1.592e+02   8.641 5.60e-15 ***
game_time_chars_c_12     3.435e-02  3.212e-02  1.217e+03   1.070   0.2850    
game_time_chars_c_13     1.233e-02  3.274e-02  1.218e+03   0.377   0.7066    
game_time_chars_c_14     1.805e-02  3.380e-02  1.221e+03   0.534   0.5935    
attendance_cwc_school_z -1.144e-02  7.340e-03  1.427e+02  -1.559   0.1213    
game_result1            -1.910e-02  1.588e-02  1.219e+03  -1.203   0.2292    
s_game_c                -2.300e-03  3.502e-03  1.184e+03  -0.657   0.5115    
area_classification1     5.079e-03  2.816e-02  1.019e+03   0.180   0.8569    
tenure_year_c           -8.518e-03  4.865e-03  1.634e+01  -1.751   0.0987 .  
total_revenues_cgm_z     1.938e-01  1.444e-02  1.566e+02  13.425  < 2e-16 ***
conferenceBig10         -1.384e-01  2.643e-02  7.449e+02  -5.236 2.13e-07 ***
conferenceBig12         -4.824e-01  4.498e-02  7.095e+02 -10.727  < 2e-16 ***
conferencePac12          1.923e-01  2.907e-02  1.202e+03   6.616 5.56e-11 ***
conferenceSEC           -3.171e-01  2.745e-02  1.043e+03 -11.549  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 0.00349725 (tol = 0.002, component 1)
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+total_revenues_cgm_z|year),
data = data_clean
))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + total_revenues_cgm_z |      year)
   Data: data_clean

REML criterion at convergence: 131.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5833 -0.7179 -0.1601  0.7495  2.8202 

Random effects:
 Groups   Name                 Variance Std.Dev. Corr
 year     (Intercept)          0.003873 0.06224      
          total_revenues_cgm_z 0.003010 0.05486  0.78
 Residual                      0.059157 0.24322      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.951e-01  5.843e-02  2.132e+02  10.186  < 2e-16 ***
game_time_chars_c_12     2.367e-02  3.274e-02  1.222e+03   0.723    0.470    
game_time_chars_c_13    -4.983e-03  3.324e-02  1.219e+03  -0.150    0.881    
game_time_chars_c_14     3.690e-03  3.442e-02  1.230e+03   0.107    0.915    
attendance_cwc_school_z -1.317e-02  8.722e-03  1.702e+02  -1.510    0.133    
game_result1            -1.194e-02  1.613e-02  1.223e+03  -0.740    0.459    
s_game_c                -1.943e-03  3.581e-03  1.192e+03  -0.543    0.588    
area_classification1    -3.358e-02  2.796e-02  6.587e+02  -1.201    0.230    
tenure_year_c           -1.884e-03  1.927e-03  1.145e+03  -0.978    0.329    
total_revenues_cgm_z     2.085e-01  2.084e-02  1.259e+01  10.008 2.35e-07 ***
conferenceBig10         -1.419e-01  2.644e-02  5.077e+02  -5.369 1.21e-07 ***
conferenceBig12         -4.674e-01  4.406e-02  7.231e+02 -10.609  < 2e-16 ***
conferencePac12          2.000e-01  2.904e-02  1.187e+03   6.885 9.36e-12 ***
conferenceSEC           -3.121e-01  2.770e-02  8.911e+02 -11.265  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
summary(lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+conference|year),
data = data_clean
))
boundary (singular) fit: see help('isSingular')
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + conference | year)
   Data: data_clean

REML criterion at convergence: 33.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.2370 -0.7040 -0.1172  0.5732  2.5631 

Random effects:
 Groups   Name            Variance Std.Dev. Corr                   
 year     (Intercept)     0.004855 0.06968                         
          conferenceBig10 0.008251 0.09083  -0.83                  
          conferenceBig12 0.025671 0.16022  -0.52  0.88            
          conferencePac12 0.060958 0.24690  -0.59  0.18 -0.29      
          conferenceSEC   0.057088 0.23893  -1.00  0.80  0.47  0.64
 Residual                 0.053143 0.23053                         
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.680e-01  5.304e-02  2.443e+02  10.709  < 2e-16 ***
game_time_chars_c_12     1.862e-02  3.123e-02  1.184e+03   0.596  0.55115    
game_time_chars_c_13    -1.938e-03  3.169e-02  1.173e+03  -0.061  0.95125    
game_time_chars_c_14    -1.520e-03  3.295e-02  1.197e+03  -0.046  0.96321    
attendance_cwc_school_z -6.458e-03  7.755e-03  3.148e+02  -0.833  0.40564    
game_result1             5.479e-03  1.554e-02  1.210e+03   0.353  0.72449    
s_game_c                -9.642e-04  3.402e-03  1.186e+03  -0.283  0.77687    
area_classification1    -5.966e-02  2.643e-02  7.290e+02  -2.257  0.02430 *  
tenure_year_c           -6.508e-04  1.838e-03  1.130e+03  -0.354  0.72329    
total_revenues_cgm_z     2.042e-01  1.276e-02  1.813e+02  15.997  < 2e-16 ***
conferenceBig10         -1.280e-01  3.252e-02  1.463e+01  -3.936  0.00138 ** 
conferenceBig12         -4.684e-01  5.609e-02  1.794e+01  -8.352 1.35e-07 ***
conferencePac12          2.738e-01  7.231e-02  1.020e+01   3.787  0.00344 ** 
conferenceSEC           -2.270e-01  6.767e-02  1.526e+01  -3.354  0.00426 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')

Create a model

model_year_cat_r <- lmer(
s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_cgm_z +conference + (1+attendance_cwc_year_z|year),
data = data_clean
)
summary(model_year_cat_r)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: s_diversion ~ game_time_chars_c_1 + attendance_cwc_school_z +  
    game_result + s_game_c + area_classification + tenure_year_c +  
    total_revenues_cgm_z + conference + (1 + attendance_cwc_year_z |      year)
   Data: data_clean

REML criterion at convergence: 108.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6863 -0.7019 -0.1656  0.7671  2.8158 

Random effects:
 Groups   Name                  Variance Std.Dev. Corr
 year     (Intercept)           0.001486 0.03855      
          attendance_cwc_year_z 0.004668 0.06832  0.93
 Residual                       0.057996 0.24082      
Number of obs: 1245, groups:  year, 20

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              5.417e-01  5.388e-02  2.230e+02  10.053  < 2e-16 ***
game_time_chars_c_12     2.979e-02  3.229e-02  1.202e+03   0.922   0.3565    
game_time_chars_c_13     4.118e-03  3.289e-02  1.189e+03   0.125   0.9004    
game_time_chars_c_14     8.795e-03  3.397e-02  1.190e+03   0.259   0.7958    
attendance_cwc_school_z -1.814e-02  7.443e-03  2.190e+02  -2.437   0.0156 *  
game_result1            -1.493e-02  1.599e-02  1.226e+03  -0.934   0.3507    
s_game_c                -1.834e-03  3.544e-03  1.198e+03  -0.518   0.6048    
area_classification1    -1.309e-02  2.804e-02  4.190e+02  -0.467   0.6408    
tenure_year_c           -5.356e-03  2.015e-03  8.820e+02  -2.658   0.0080 ** 
total_revenues_cgm_z     1.704e-01  1.309e-02  5.296e+01  13.016  < 2e-16 ***
conferenceBig10         -1.088e-01  2.699e-02  3.828e+02  -4.031 6.70e-05 ***
conferenceBig12         -4.368e-01  4.276e-02  4.349e+02 -10.216  < 2e-16 ***
conferencePac12          2.130e-01  2.893e-02  1.168e+03   7.362 3.41e-13 ***
conferenceSEC           -2.935e-01  2.822e-02  8.806e+02 -10.399  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
performance::icc(model_year_cat_r)
Warning: Can't compute random effect variances. Some variance components equal
  zero. Your model may suffer from singularity (see `?lme4::isSingular`
  and `?performance::check_singularity`).
  Decrease the `tolerance` level to force the calculation of random effect
  variances, or impose priors on your random effects parameters (using
  packages like `brms` or `glmmTMB`).
Warning: Random slopes not present as fixed effects. This artificially inflates
  the conditional random effect variances.
  Respecify the fixed effects structure of your model (add random slopes
  as fixed effects).
[1] NA