# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309983 -0.0029354859  0.0366062228  0.052133210  4.992304e-02
## 2013-02-28  0.0058912506 -0.0231053479 -0.0129693818  0.016175451  1.267818e-02
## 2013-03-28  0.0009848158 -0.0102348806  0.0129693818  0.040257987  3.726825e-02
## 2013-04-30  0.0096391950  0.0120847766  0.0489681652  0.001222641  1.902987e-02
## 2013-05-31 -0.0202142782 -0.0494834017 -0.0306559493  0.041976094  2.333572e-02
## 2013-06-28 -0.0157780355 -0.0547284694 -0.0271444361 -0.001402705 -1.343466e-02
## 2013-07-31  0.0026877036  0.0131597987  0.0518603060  0.063541236  5.038628e-02
## 2013-08-30 -0.0082982762 -0.0257055769 -0.0197463333 -0.034743290 -3.045156e-02
## 2013-09-30  0.0111438381  0.0695888329  0.0753385261  0.063873346  3.115603e-02
## 2013-10-31  0.0082928762  0.0408613531  0.0320817420  0.034234173  4.526704e-02
## 2013-11-29 -0.0025106932 -0.0025943098  0.0054495999  0.041661333  2.920626e-02
## 2013-12-31 -0.0055827482 -0.0040740045  0.0215282490  0.012892377  2.559626e-02
## 2014-01-31  0.0152916865 -0.0903227073 -0.0534135125 -0.035775981 -3.588476e-02
## 2014-02-28  0.0037563601  0.0332204176  0.0595049284  0.045257933  4.451036e-02
## 2014-03-31 -0.0014809767  0.0380213991 -0.0046023343  0.013315229  8.261699e-03
## 2014-04-30  0.0081834506  0.0077731510  0.0165292640 -0.023184434  6.927159e-03
## 2014-05-30  0.0117210747  0.0290909579  0.0158288312  0.006205122  2.294136e-02
## 2014-06-30 -0.0005757455  0.0237340576  0.0091651831  0.037718899  2.043464e-02
## 2014-07-31 -0.0025117759  0.0135554649 -0.0263798879 -0.052009586 -1.352869e-02
## 2014-08-29  0.0114307137  0.0279047188  0.0018005551  0.043658032  3.870468e-02
## 2014-09-30 -0.0061669737 -0.0808566622 -0.0395986151 -0.061260146 -1.389209e-02
## 2014-10-31  0.0105838902  0.0140965713 -0.0026548517  0.068874552  2.327770e-02
## 2014-11-28  0.0065490813 -0.0155413238  0.0006250840  0.004773416  2.710140e-02
## 2014-12-31  0.0014748787 -0.0404424187 -0.0407463986  0.025296145 -2.539557e-03
## 2015-01-30  0.0203152636 -0.0068955130  0.0062265351 -0.054628043 -3.007737e-02
## 2015-02-27 -0.0089882999  0.0431361421  0.0614504983  0.056914762  5.468222e-02
## 2015-03-31  0.0037401673 -0.0150863009 -0.0143887929  0.010156464 -1.583067e-02
## 2015-04-30 -0.0032328685  0.0662814639  0.0358164232 -0.018418029  9.786137e-03
## 2015-05-29 -0.0043836266 -0.0419112674  0.0019529451  0.007510015  1.277407e-02
## 2015-06-30 -0.0108254143 -0.0297461675 -0.0316789980  0.004171360 -2.052132e-02
## 2015-07-31  0.0085846828 -0.0651786359  0.0201144168 -0.027375348  2.233793e-02
## 2015-08-31 -0.0033637835 -0.0925123454 -0.0771524261 -0.047268187 -6.288709e-02
## 2015-09-30  0.0080814364 -0.0318248178 -0.0451947606 -0.038465003 -2.584661e-02
## 2015-10-30  0.0006859117  0.0618082789  0.0640259062  0.063589771  8.163472e-02
## 2015-11-30 -0.0038987171 -0.0255604049 -0.0075558957  0.024415117  3.648595e-03
## 2015-12-31 -0.0019189002 -0.0389470640 -0.0235949659 -0.052156767 -1.743350e-02
## 2016-01-29  0.0123294699 -0.0516366195 -0.0567577867 -0.060307067 -5.106859e-02
## 2016-02-29  0.0088319512 -0.0082117688 -0.0339140163  0.020605645 -8.267999e-04
## 2016-03-31  0.0087087760  0.1218792426  0.0637455795  0.089910276  6.510062e-02
## 2016-04-29  0.0025458496  0.0040789675  0.0219751066  0.021044009  3.933516e-03
## 2016-05-31  0.0001355098 -0.0376282539 -0.0008559986  0.004397027  1.686825e-02
## 2016-06-30  0.0191673343  0.0445823504 -0.0244914386  0.008292248  3.470100e-03
## 2016-07-29  0.0054295930  0.0524418378  0.0390002385  0.049348575  3.582199e-02
## 2016-08-31 -0.0021561781  0.0087989828  0.0053267596  0.011261058  1.197056e-03
## 2016-09-30  0.0005163042  0.0248726635  0.0132791635  0.008614523  5.769854e-05
## 2016-10-31 -0.0082055376 -0.0083118882 -0.0224037517 -0.038134815 -1.748931e-02
## 2016-11-30 -0.0259899740 -0.0451622001 -0.0179744890  0.125246596  3.617624e-02
## 2016-12-30  0.0025377867 -0.0025297203  0.0267030747  0.031491736  2.006914e-02
## 2017-01-31  0.0021265771  0.0644314669  0.0323817445 -0.012144082  1.773617e-02
## 2017-02-28  0.0064378699  0.0172576504  0.0118364324  0.013428647  3.853949e-02
## 2017-03-31 -0.0005528599  0.0361889731  0.0318056735 -0.006532997  1.249270e-03
## 2017-04-28  0.0090287240  0.0168662927  0.0239524080  0.005107578  9.877007e-03
## 2017-05-31  0.0068475361  0.0280601262  0.0348100674 -0.022862427  1.401464e-02
## 2017-06-30 -0.0001822132  0.0092236596  0.0029560741  0.029151832  6.354576e-03
## 2017-07-31  0.0033340535  0.0565944241  0.0261878060  0.007481590  2.034558e-02
## 2017-08-31  0.0093698531  0.0232440232 -0.0004483592 -0.027564394  2.913569e-03
## 2017-09-29 -0.0057324363 -0.0004464642  0.0233428833  0.082321419  1.994907e-02
## 2017-10-31  0.0009778271  0.0322785008  0.0166536509  0.005916215  2.329081e-02
## 2017-11-30 -0.0014839721 -0.0038971182  0.0068698930  0.036913032  3.010801e-02
## 2017-12-29  0.0047397269  0.0369256184  0.0133984122 -0.003731078  1.205482e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398433e-05 0.0001042115 4.178258e-05 -7.812303e-05 -9.031383e-06
## EEM  1.042115e-04 0.0017547124 1.039017e-03  6.437714e-04  6.795443e-04
## EFA  4.178258e-05 0.0010390172 1.064238e-03  6.490297e-04  6.975419e-04
## IJS -7.812303e-05 0.0006437714 6.490297e-04  1.565450e-03  8.290271e-04
## SPY -9.031383e-06 0.0006795443 6.975419e-04  8.290271e-04  7.408328e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874108 0.009257151 0.005815636 0.005684458 0.002330255
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309983 -0.0029354859  0.0366062228  0.052133210  4.992304e-02
## 2013-02-28  0.0058912506 -0.0231053479 -0.0129693818  0.016175451  1.267818e-02
## 2013-03-28  0.0009848158 -0.0102348806  0.0129693818  0.040257987  3.726825e-02
## 2013-04-30  0.0096391950  0.0120847766  0.0489681652  0.001222641  1.902987e-02
## 2013-05-31 -0.0202142782 -0.0494834017 -0.0306559493  0.041976094  2.333572e-02
## 2013-06-28 -0.0157780355 -0.0547284694 -0.0271444361 -0.001402705 -1.343466e-02
## 2013-07-31  0.0026877036  0.0131597987  0.0518603060  0.063541236  5.038628e-02
## 2013-08-30 -0.0082982762 -0.0257055769 -0.0197463333 -0.034743290 -3.045156e-02
## 2013-09-30  0.0111438381  0.0695888329  0.0753385261  0.063873346  3.115603e-02
## 2013-10-31  0.0082928762  0.0408613531  0.0320817420  0.034234173  4.526704e-02
## 2013-11-29 -0.0025106932 -0.0025943098  0.0054495999  0.041661333  2.920626e-02
## 2013-12-31 -0.0055827482 -0.0040740045  0.0215282490  0.012892377  2.559626e-02
## 2014-01-31  0.0152916865 -0.0903227073 -0.0534135125 -0.035775981 -3.588476e-02
## 2014-02-28  0.0037563601  0.0332204176  0.0595049284  0.045257933  4.451036e-02
## 2014-03-31 -0.0014809767  0.0380213991 -0.0046023343  0.013315229  8.261699e-03
## 2014-04-30  0.0081834506  0.0077731510  0.0165292640 -0.023184434  6.927159e-03
## 2014-05-30  0.0117210747  0.0290909579  0.0158288312  0.006205122  2.294136e-02
## 2014-06-30 -0.0005757455  0.0237340576  0.0091651831  0.037718899  2.043464e-02
## 2014-07-31 -0.0025117759  0.0135554649 -0.0263798879 -0.052009586 -1.352869e-02
## 2014-08-29  0.0114307137  0.0279047188  0.0018005551  0.043658032  3.870468e-02
## 2014-09-30 -0.0061669737 -0.0808566622 -0.0395986151 -0.061260146 -1.389209e-02
## 2014-10-31  0.0105838902  0.0140965713 -0.0026548517  0.068874552  2.327770e-02
## 2014-11-28  0.0065490813 -0.0155413238  0.0006250840  0.004773416  2.710140e-02
## 2014-12-31  0.0014748787 -0.0404424187 -0.0407463986  0.025296145 -2.539557e-03
## 2015-01-30  0.0203152636 -0.0068955130  0.0062265351 -0.054628043 -3.007737e-02
## 2015-02-27 -0.0089882999  0.0431361421  0.0614504983  0.056914762  5.468222e-02
## 2015-03-31  0.0037401673 -0.0150863009 -0.0143887929  0.010156464 -1.583067e-02
## 2015-04-30 -0.0032328685  0.0662814639  0.0358164232 -0.018418029  9.786137e-03
## 2015-05-29 -0.0043836266 -0.0419112674  0.0019529451  0.007510015  1.277407e-02
## 2015-06-30 -0.0108254143 -0.0297461675 -0.0316789980  0.004171360 -2.052132e-02
## 2015-07-31  0.0085846828 -0.0651786359  0.0201144168 -0.027375348  2.233793e-02
## 2015-08-31 -0.0033637835 -0.0925123454 -0.0771524261 -0.047268187 -6.288709e-02
## 2015-09-30  0.0080814364 -0.0318248178 -0.0451947606 -0.038465003 -2.584661e-02
## 2015-10-30  0.0006859117  0.0618082789  0.0640259062  0.063589771  8.163472e-02
## 2015-11-30 -0.0038987171 -0.0255604049 -0.0075558957  0.024415117  3.648595e-03
## 2015-12-31 -0.0019189002 -0.0389470640 -0.0235949659 -0.052156767 -1.743350e-02
## 2016-01-29  0.0123294699 -0.0516366195 -0.0567577867 -0.060307067 -5.106859e-02
## 2016-02-29  0.0088319512 -0.0082117688 -0.0339140163  0.020605645 -8.267999e-04
## 2016-03-31  0.0087087760  0.1218792426  0.0637455795  0.089910276  6.510062e-02
## 2016-04-29  0.0025458496  0.0040789675  0.0219751066  0.021044009  3.933516e-03
## 2016-05-31  0.0001355098 -0.0376282539 -0.0008559986  0.004397027  1.686825e-02
## 2016-06-30  0.0191673343  0.0445823504 -0.0244914386  0.008292248  3.470100e-03
## 2016-07-29  0.0054295930  0.0524418378  0.0390002385  0.049348575  3.582199e-02
## 2016-08-31 -0.0021561781  0.0087989828  0.0053267596  0.011261058  1.197056e-03
## 2016-09-30  0.0005163042  0.0248726635  0.0132791635  0.008614523  5.769854e-05
## 2016-10-31 -0.0082055376 -0.0083118882 -0.0224037517 -0.038134815 -1.748931e-02
## 2016-11-30 -0.0259899740 -0.0451622001 -0.0179744890  0.125246596  3.617624e-02
## 2016-12-30  0.0025377867 -0.0025297203  0.0267030747  0.031491736  2.006914e-02
## 2017-01-31  0.0021265771  0.0644314669  0.0323817445 -0.012144082  1.773617e-02
## 2017-02-28  0.0064378699  0.0172576504  0.0118364324  0.013428647  3.853949e-02
## 2017-03-31 -0.0005528599  0.0361889731  0.0318056735 -0.006532997  1.249270e-03
## 2017-04-28  0.0090287240  0.0168662927  0.0239524080  0.005107578  9.877007e-03
## 2017-05-31  0.0068475361  0.0280601262  0.0348100674 -0.022862427  1.401464e-02
## 2017-06-30 -0.0001822132  0.0092236596  0.0029560741  0.029151832  6.354576e-03
## 2017-07-31  0.0033340535  0.0565944241  0.0261878060  0.007481590  2.034558e-02
## 2017-08-31  0.0093698531  0.0232440232 -0.0004483592 -0.027564394  2.913569e-03
## 2017-09-29 -0.0057324363 -0.0004464642  0.0233428833  0.082321419  1.994907e-02
## 2017-10-31  0.0009778271  0.0322785008  0.0166536509  0.005916215  2.329081e-02
## 2017-11-30 -0.0014839721 -0.0038971182  0.0068698930  0.036913032  3.010801e-02
## 2017-12-29  0.0047397269  0.0369256184  0.0133984122 -0.003731078  1.205482e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)

    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a         single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)

    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()

    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution((w = c(.25, .25, .2, .2, .1)))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .3)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")
    
plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and weight

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .3)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    # Add weight
    add_column(weight = c(.25, .25, .2, .2, .3)) %>%

    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
    
plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", 
        y = "Percent",
        x = NULL)

6 Rolling Component Contribution