Introduction:

In this homework, you will apply logistic regression to a real-world dataset: the Pima Indians Diabetes Database. This dataset contains medical records from 768 women of Pima Indian heritage, aged 21 or older, and is used to predict the onset of diabetes (binary outcome: 0 = no diabetes, 1 = diabetes) based on physiological measurements.

The data is publicly available from the UCI Machine Learning Repository and can be imported directly.

Dataset URL: https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv

Columns (no header in the CSV, so we need to assign them manually):

  1. Pregnancies: Number of times pregnant
  2. Glucose: Plasma glucose concentration (2-hour test)
  3. BloodPressure: Diastolic blood pressure (mm Hg)
  4. SkinThickness: Triceps skin fold thickness (mm)
  5. Insulin: 2-hour serum insulin (mu U/ml)
  6. BMI: Body mass index (weight in kg/(height in m)^2)
  7. DiabetesPedigreeFunction: Diabetes pedigree function (a function scoring genetic risk)
  8. Age: Age in years
  9. Outcome: Class variable (0 = no diabetes, 1 = diabetes)

Task Overview: You will load the data, build a logistic regression model to predict diabetes onset using a subset of predictors (Glucose, BMI, Age), interpret the model, evaluate it with a confusion matrix and metrics, and analyze the ROC curve and AUC.

Cleaning the dataset Don’t change the following code

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   4.0.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(pROC)
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## 
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
url <- "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"

data <- read.csv(url, header = FALSE)

colnames(data) <- c("Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age", "Outcome")

data$Outcome <- as.factor(data$Outcome)

# Handle missing values (replace 0s with NA because 0 makes no sense here)
data$Glucose[data$Glucose == 0] <- NA
data$BloodPressure[data$BloodPressure == 0] <- NA
data$BMI[data$BMI == 0] <- NA


colSums(is.na(data))
##              Pregnancies                  Glucose            BloodPressure 
##                        0                        5                       35 
##            SkinThickness                  Insulin                      BMI 
##                        0                        0                       11 
## DiabetesPedigreeFunction                      Age                  Outcome 
##                        0                        0                        0

Question 1: Create and Interpret a Logistic Regression Model - Fit a logistic regression model to predict Outcome using Glucose, BMI, and Age.

logistic <- glm(Outcome ~ Glucose + BMI + Age, data=data, family="binomial")

summary(logistic)
## 
## Call:
## glm(formula = Outcome ~ Glucose + BMI + Age, family = "binomial", 
##     data = data)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -9.032377   0.711037 -12.703  < 2e-16 ***
## Glucose      0.035548   0.003481  10.212  < 2e-16 ***
## BMI          0.089753   0.014377   6.243  4.3e-10 ***
## Age          0.028699   0.007809   3.675 0.000238 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 974.75  on 751  degrees of freedom
## Residual deviance: 724.96  on 748  degrees of freedom
##   (16 observations deleted due to missingness)
## AIC: 732.96
## 
## Number of Fisher Scoring iterations: 4
r_square <- 1 - (logistic$deviance/logistic$null.deviance)

r_square
## [1] 0.25626

What does the intercept represent (log-odds of diabetes when predictors are zero)?

The intercept of -9.032 represents the probability of someone who is zero years old, has a BMI of zero, and a glucose concentration of zero having diabetes.

For each predictor (Glucose, BMI, Age), does a one-unit increase raise or lower the odds of diabetes? Are they significant (p-value < 0.05)?

For all the predictors, a one-unit increase will raise the odds of diabetes because all of the estimates are positive. All of the p-values were smaller than 0.05, indicating that all predictors are statistically significant.

R² Interpretation:

The R² of 0.256 means that the model could explain 25.6% of the deviance in diabetes outcome.

Question 2: Confusion Matrix and Important Metric

Calculate and report the metrics:

Accuracy: (TP + TN) / Total Sensitivity (Recall): TP / (TP + FN) Specificity: TN / (TN + FP) Precision: TP / (TP + FP)

Use the following starter code

# Keep only rows with no missing values in Glucose, BMI, or Age
data_subset <- data[complete.cases(data[, c("Glucose", "BMI", "Age")]), ]

#Create a numeric version of the outcome (0 = no diabetes, 1 = diabetes).This is required for calculating confusion matrices.
data_subset$Outcome_num <- ifelse(data_subset$Outcome == "1", 1, 0)


# Predicted probabilities

predicted.probs <- logistic$fitted.values

# Predicted classes

predicted.classes <- ifelse(predicted.probs > 0.5, 1, 0)

#Confusion matrix
confusion <- table(
  Predicted = factor(predicted.classes, levels = c(0, 1)),
  Actual = factor(data_subset$Outcome_num, levels = c(0, 1))
)
  confusion
##          Actual
## Predicted   0   1
##         0 429 114
##         1  59 150
#Extract Values:
TN <- 429
FP <- 59
FN <- 114
TP <- 150

#Metrics    
accuracy <- (TP + TN) / (TP + TN + FP + FN)
sensitivity <- TP / (TP + FN)   # also called recall or true positive rate
specificity <- TN / (TN + FP)   # true negative rate
precision <- TP / (TP + FP)     # positive predictive value
f1_score <- 2 * (precision * sensitivity) / (precision + sensitivity)

cat("Accuracy:", round(accuracy, 3), "\nSensitivity:", round(sensitivity, 3), "\nSpecificity:", round(specificity, 3), "\nPrecision:", round(precision, 3))
## Accuracy: 0.77 
## Sensitivity: 0.568 
## Specificity: 0.879 
## Precision: 0.718

Interpret: How well does the model perform? Is it better at detecting diabetes (sensitivity) or non-diabetes (specificity)? Why might this matter for medical diagnosis?

The model performs well with an accuracy rate of 77%, and it is better at detecting non-diabetes cases. This matters for medical diagnosis because if a patient is identified as not having diabetes, we can have confidence that the result is accurate. However, there is still a risk that a patient may have diabetes and our diagnosis could miss it.

Question 3: ROC Curve, AUC, and Interpretation

roc_obj <- roc(response = data_subset$Outcome,
               predictor = logistic$fitted.values,
               levels = c("0", "1"),
               direction = "<") 

auc_val <- auc(roc_obj); auc_val
## Area under the curve: 0.828
plot.roc(roc_obj, print.auc = TRUE, legacy.axes = TRUE,
         xlab = "False Positive Rate (1 - Specificity)",
         ylab = "True Positive Rate (Sensitivity)")

What does AUC indicate (0.5 = random, 1.0 = perfect)?

The AUC of 0.828 suggests that our model can distinguish between people with and without diabetes 82.8% of the time.

For diabetes diagnosis, prioritize sensitivity (catching cases) or specificity (avoiding false positives)? Suggest a threshold and explain.

For diabetes diagnosis, prioritizing sensitivity is more important because we want to catch people who do have diabetes so we can provide proper treatment as soon as possible, rather than leaving them untreated. A threshold of 0.3 could be used since it balances reducing false negatives while not causing too many false positives. Using 0.3 will also increase sensitivity.