df_cbzs_elg %>%
mutate(gender = ifelse(is.na(gender) | gender == "","other",gender)) %>%
group_by(gender) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
arrange(desc(Perc)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| gender | N | Perc |
|---|---|---|
| woman | 103 | 51.24 |
| man | 95 | 47.26 |
| other | 3 | 1.49 |
| race | N | Perc |
|---|---|---|
| White | 140 | 69.65 |
| Black or African American | 25 | 12.44 |
| multiracial | 16 | 7.96 |
| Asian | 9 | 4.48 |
| Hispanic, Latino, or Spanish origin | 8 | 3.98 |
| Other (please specify) | 2 | 1.00 |
| NA | 1 | 0.50 |
Mean age: 38.49.
median_income_num <- df_cbzs_elg %>%
mutate(income_num = as.numeric(income)) %>%
summarise(median = median(income_num, na.rm = TRUE)) %>%
pull(median)
df_cbzs_elg %>%
ggplot(aes(x = income)) +
geom_bar() +
geom_vline(xintercept = median_income_num,
color = "lightblue", linetype = "dashed") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black", face = "bold"),
axis.title.x = element_blank(),
axis.title.y = element_blank()) +
coord_flip()
| edu | N | Perc |
|---|---|---|
| noHS | 6 | 2.99 |
| GED | 124 | 61.69 |
| 2yearColl | 52 | 25.87 |
| 4yearColl | 15 | 7.46 |
| MA | 1 | 0.50 |
| PHD | 1 | 0.50 |
| NA | 2 | 1.00 |
| ses | N | Perc |
|---|---|---|
| Lower Class | 38 | 18.91 |
| Lower Middle Class | 69 | 34.33 |
| Middle Class | 82 | 40.80 |
| Upper Middle Class | 12 | 5.97 |
Participants were asked about the extent to which they subscribe to the following ideologies on a scale of 1-7 (select NA if unfamiliar): Conservatism, Liberalism, Democratic Socialism, Libertarianism, Progressivism.
means <- df_cbzs_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
group_by(ideo) %>%
summarise(score = mean(score)) %>%
ungroup()
df_cbzs_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
ggplot() +
geom_density(aes(x = score), fill = "lightblue",color = NA) +
scale_x_continuous(limits = c(1,7),
breaks = seq(1,7,1)) +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~ideo,nrow = 2)
| party_id | N | Perc |
|---|---|---|
| Independent | 76 | 37.81 |
| Democrat | 66 | 32.84 |
| Republican | 59 | 29.35 |
alpha = 0.91
df_cbzs_elg %>%
ggplot(aes(x = zs_class)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$zs_class,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
alpha = 0.88
df_cbzs_elg %>%
ggplot(aes(x = soli)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$soli,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
Participants answered all 8 items below. Then, for the mean score, I excluded the racial in-group items (participants who did not identify as one of the four categories got a mean score of all 8 items). The alpha below is for all 8 items.
alpha = 0.86
df_cbzs_elg %>%
ggplot(aes(x = cr_soli)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$cr_soli,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
broken by participant racial group:
means <- df_cbzs_elg %>%
group_by(racialgroup) %>%
summarise(score = mean(c(cr_soli,na.rm = T))) %>%
ungroup()
df_cbzs_elg %>%
ggplot(aes(x = cr_soli)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~racialgroup)
alpha = 0.83
df_cbzs_elg %>%
ggplot(aes(x = cr_soli_short)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$cr_soli_short,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
broken by participant racial group:
means <- df_cbzs_elg %>%
group_by(racialgroup) %>%
summarise(score = mean(c(cr_soli_short,na.rm = T))) %>%
ungroup()
df_cbzs_elg %>%
ggplot(aes(x = cr_soli_short)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~racialgroup)
alpha = 0.78
df_cbzs_elg %>%
ggplot(aes(x = reldep)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$reldep,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
We want to know what you think is the racial and ethnic makeup of the working class in the United States. Before we begin, for reference, this is the racial and ethnic makeup of the entire population of the Unites States (US Census, 2023):
| Group | Share |
|---|---|
| White (non-Hispanic) | 57.5% |
| Hispanic/Latino (any race) | 19.5% |
| Black (non-Hispanic) | 12.6% |
| Asian (non-Hispanic) | 6.7% |
| Two races or more (non-Hispanic) | 2.5% |
| Other race (non-Hispanic) | 1.2% |
What is the racial and ethnic makeup of the American working class?
*must equal 100%
*bars are anchored on the general population shares shown in the previous screen
showing the means of participants responses below
| group | share |
|---|---|
| white | 51.975124 |
| hisp | 19.860696 |
| black | 15.029851 |
| asian | 7.950249 |
| multi | 3.626866 |
| other | 1.557214 |
Ok, so there’s a bunch of ways to operationalize this. I’ll propose two simple options:
We can also look at the variance between the six responses. So, I just took the SD of the six items. Let’s see the distribution.
df_cbzs_elg %>%
ggplot(aes(x = wc_cat_var)) +
geom_density(fill = "lightblue",
color = NA) +
# scale_x_continuous(breaks = seq(1,7,1),
# limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$wc_cat_var,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
For the following American people, please indicate the likelihood that you believe they belong to the working class. (0 = Certainly NOT in the working class to 100 = Certainly in the working class)
means <- df_cbzs_elg %>%
select(wc_likely_white:wc_likely_hisp) %>%
pivot_longer(wc_likely_white:wc_likely_hisp,
names_to = "group",
names_prefix = "wc_likely_",
values_to = "likelihood") %>%
group_by(group) %>%
summarise(score = mean(likelihood,na.rm = T)) %>%
ungroup()
df_cbzs_elg %>%
select(wc_likely_white:wc_likely_hisp) %>%
pivot_longer(wc_likely_white:wc_likely_hisp,
names_to = "group",
names_prefix = "wc_likely_",
values_to = "likelihood") %>%
ggplot(aes(x = likelihood)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(0,100,10),
limits = c(0,100)) +
ylab("density") +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~group)
Model 1:
m1 <- lm(soli ~ zs_class + reldep,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 5.11 | [4.69, 5.53] | 24.03 | 198 | < .001 |
| Zs class | 0.23 | [0.16, 0.31] | 6.32 | 198 | < .001 |
| Reldep | -0.07 | [-0.16, 0.03] | -1.40 | 198 | .164 |
Model 2:
m1 <- lm(soli ~ zs_class + reldep + ideo_con,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 5.76 | [5.10, 6.41] | 17.41 | 184 | < .001 |
| Zs class | 0.18 | [0.10, 0.26] | 4.33 | 184 | < .001 |
| Reldep | -0.09 | [-0.18, 0.01] | -1.85 | 184 | .066 |
| Ideo con | -0.08 | [-0.15, -0.02] | -2.45 | 184 | .015 |
Model 3:
m1 <- lm(soli ~ zs_class + reldep + ideo_con + income_num + edu_num + ses_num + age + white + man,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 6.59 | [5.52, 7.66] | 12.20 | 168 | < .001 |
| Zs class | 0.17 | [0.08, 0.25] | 3.86 | 168 | < .001 |
| Reldep | -0.13 | [-0.23, -0.03] | -2.54 | 168 | .012 |
| Ideo con | -0.07 | [-0.14, 0.00] | -2.01 | 168 | .046 |
| Income num | 0.05 | [-0.01, 0.12] | 1.60 | 168 | .112 |
| Edu num | -0.03 | [-0.20, 0.13] | -0.42 | 168 | .678 |
| Ses num | -0.23 | [-0.41, -0.05] | -2.56 | 168 | .011 |
| Age | 0.00 | [-0.01, 0.01] | 0.10 | 168 | .924 |
| White | -0.09 | [-0.35, 0.16] | -0.71 | 168 | .481 |
| Man | -0.34 | [-0.58, -0.11] | -2.86 | 168 | .005 |
Model 1:
m1 <- lm(cr_soli ~ zs_class + reldep,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 4.02 | [3.38, 4.67] | 12.28 | 198 | < .001 |
| Zs class | 0.17 | [0.06, 0.28] | 3.00 | 198 | .003 |
| Reldep | -0.06 | [-0.20, 0.09] | -0.77 | 198 | .441 |
Model 2:
m1 <- lm(cr_soli ~ zs_class + reldep + ideo_con,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 4.50 | [3.46, 5.53] | 8.60 | 184 | < .001 |
| Zs class | 0.14 | [0.01, 0.28] | 2.18 | 184 | .031 |
| Reldep | -0.08 | [-0.23, 0.07] | -1.03 | 184 | .305 |
| Ideo con | -0.07 | [-0.17, 0.04] | -1.26 | 184 | .210 |
Model 3:
m1 <- lm(cr_soli ~ zs_class + reldep + ideo_con + income_num + edu_num + ses_num + age + white + man,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 4.11 | [2.38, 5.84] | 4.70 | 168 | < .001 |
| Zs class | 0.19 | [0.06, 0.33] | 2.77 | 168 | .006 |
| Reldep | -0.04 | [-0.21, 0.12] | -0.51 | 168 | .609 |
| Ideo con | -0.03 | [-0.14, 0.08] | -0.52 | 168 | .605 |
| Income num | 0.04 | [-0.06, 0.15] | 0.82 | 168 | .414 |
| Edu num | -0.02 | [-0.28, 0.24] | -0.13 | 168 | .894 |
| Ses num | 0.02 | [-0.26, 0.31] | 0.17 | 168 | .866 |
| Age | 0.00 | [-0.02, 0.01] | -0.13 | 168 | .894 |
| White | -0.19 | [-0.60, 0.23] | -0.88 | 168 | .379 |
| Man | -0.12 | [-0.50, 0.27] | -0.60 | 168 | .552 |
Model 1:
m1 <- lm(wc_likely_black ~ zs_class + reldep,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 58.29 | [46.97, 69.62] | 10.15 | 197 | < .001 |
| Zs class | 2.06 | [0.10, 4.03] | 2.07 | 197 | .040 |
| Reldep | -0.27 | [-2.78, 2.24] | -0.21 | 197 | .833 |
Model 2:
m1 <- lm(wc_likely_black ~ zs_class + reldep + ideo_con,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 60.30 | [42.10, 78.51] | 6.54 | 184 | < .001 |
| Zs class | 1.89 | [-0.42, 4.21] | 1.62 | 184 | .108 |
| Reldep | -0.28 | [-2.91, 2.36] | -0.21 | 184 | .837 |
| Ideo con | -0.31 | [-2.15, 1.53] | -0.33 | 184 | .739 |
Model 3:
m1 <- lm(wc_likely_black ~ zs_class + reldep + ideo_con + income_num + edu_num + ses_num + age + white + man,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 56.46 | [25.64, 87.28] | 3.62 | 168 | < .001 |
| Zs class | 1.78 | [-0.68, 4.23] | 1.43 | 168 | .155 |
| Reldep | -1.66 | [-4.58, 1.25] | -1.13 | 168 | .262 |
| Ideo con | -0.25 | [-2.20, 1.71] | -0.25 | 168 | .803 |
| Income num | 0.32 | [-1.58, 2.21] | 0.33 | 168 | .743 |
| Edu num | -1.23 | [-5.90, 3.45] | -0.52 | 168 | .605 |
| Ses num | -1.22 | [-6.33, 3.90] | -0.47 | 168 | .639 |
| Age | 0.34 | [0.05, 0.62] | 2.35 | 168 | .020 |
| White | -1.37 | [-8.80, 6.06] | -0.36 | 168 | .716 |
| Man | 4.57 | [-2.30, 11.44] | 1.31 | 168 | .191 |
Model 1:
m1 <- lm(wc_likely_asian ~ zs_class + reldep,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 49.83 | [36.22, 63.44] | 7.22 | 197 | < .001 |
| Zs class | 2.88 | [0.51, 5.24] | 2.40 | 197 | .017 |
| Reldep | -2.48 | [-5.50, 0.54] | -1.62 | 197 | .107 |
Model 2:
m1 <- lm(wc_likely_asian ~ zs_class + reldep + ideo_con,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 53.00 | [31.56, 74.44] | 4.88 | 184 | < .001 |
| Zs class | 2.79 | [0.07, 5.52] | 2.02 | 184 | .045 |
| Reldep | -2.87 | [-5.97, 0.23] | -1.83 | 184 | .070 |
| Ideo con | -0.40 | [-2.57, 1.77] | -0.36 | 184 | .716 |
Model 3:
m1 <- lm(wc_likely_asian ~ zs_class + reldep + ideo_con + income_num + edu_num + ses_num + age + white + man,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 48.58 | [11.50, 85.66] | 2.59 | 168 | .011 |
| Zs class | 2.80 | [-0.15, 5.75] | 1.87 | 168 | .063 |
| Reldep | -3.47 | [-6.98, 0.03] | -1.95 | 168 | .052 |
| Ideo con | -0.60 | [-2.95, 1.75] | -0.51 | 168 | .613 |
| Income num | 0.54 | [-1.74, 2.83] | 0.47 | 168 | .639 |
| Edu num | -3.63 | [-9.26, 1.99] | -1.28 | 168 | .203 |
| Ses num | 2.16 | [-3.99, 8.31] | 0.69 | 168 | .489 |
| Age | 0.22 | [-0.13, 0.56] | 1.25 | 168 | .213 |
| White | -2.57 | [-11.51, 6.36] | -0.57 | 168 | .570 |
| Man | 4.87 | [-3.39, 13.12] | 1.16 | 168 | .247 |
Model 1:
m1 <- lm(wc_likely_hisp ~ zs_class + reldep,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 60.33 | [49.37, 71.29] | 10.86 | 197 | < .001 |
| Zs class | 3.15 | [1.25, 5.06] | 3.27 | 197 | .001 |
| Reldep | -1.78 | [-4.21, 0.66] | -1.44 | 197 | .151 |
Model 2:
m1 <- lm(wc_likely_hisp ~ zs_class + reldep + ideo_con,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 58.21 | [40.90, 75.52] | 6.63 | 184 | < .001 |
| Zs class | 3.47 | [1.27, 5.67] | 3.11 | 184 | .002 |
| Reldep | -1.88 | [-4.38, 0.63] | -1.48 | 184 | .141 |
| Ideo con | 0.26 | [-1.49, 2.01] | 0.29 | 184 | .772 |
Model 3:
m1 <- lm(wc_likely_hisp ~ zs_class + reldep + ideo_con + income_num + edu_num + ses_num + age + white + man,data = df_cbzs_elg)
apa_lm <- apa_print(m1)
kbl(apa_lm$table) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value |
|---|---|---|---|---|---|
| Intercept | 80.78 | [51.80, 109.76] | 5.50 | 168 | < .001 |
| Zs class | 2.84 | [0.53, 5.15] | 2.43 | 168 | .016 |
| Reldep | -3.92 | [-6.66, -1.17] | -2.82 | 168 | .005 |
| Ideo con | 0.35 | [-1.49, 2.18] | 0.37 | 168 | .708 |
| Income num | 1.50 | [-0.29, 3.28] | 1.65 | 168 | .100 |
| Edu num | -5.98 | [-10.37, -1.59] | -2.69 | 168 | .008 |
| Ses num | -3.91 | [-8.72, 0.90] | -1.60 | 168 | .111 |
| Age | 0.13 | [-0.14, 0.39] | 0.94 | 168 | .346 |
| White | -0.74 | [-7.72, 6.25] | -0.21 | 168 | .836 |
| Man | 3.75 | [-2.71, 10.20] | 1.15 | 168 | .253 |
Hmm, based on the correlations, only likelihood of working class Hispanic makes sense as a mediator. Let’s see.
Predictor: Class ZSB
Mediator: WC Likelihood Hispanic
Outcome: Solidarity
m1 <- psych::mediate(soli ~ zs_class + (wc_likely_hisp),data = df_cbzs_elg)
oh, nothing left for the b-path. ok.