library(tidyverse)
library(modelr)
library(dplyr)
library(readxl)
Agronomic_Yields <- read_excel("~/Agronomic Yields.xlsx")
View(Agronomic_Yields)
Agronomic_Yields_Model2 <- lm(formula = yield_kg_ha ~ treatment, data = Agronomic_Yields)
summary(Agronomic_Yields_Model2)
Call:
lm(formula = yield_kg_ha ~ treatment, data = Agronomic_Yields)
Residuals:
Min 1Q Median 3Q Max
-5706.7 -2582.7 -792.5 2276.2 7814.4
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4781.34 205.95 23.22 <2e-16 ***
treatment 354.04 36.61 9.67 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3244 on 1178 degrees of freedom
(16 observations deleted due to missingness)
Multiple R-squared: 0.07355, Adjusted R-squared: 0.07276
F-statistic: 93.52 on 1 and 1178 DF, p-value: < 2.2e-16
Agronomic_Yields_Model4 <- lm(formula = yield_kg_ha ~ fertilizer_rate_kg_ha, data = Agronomic_Yields)
summary(Agronomic_Yields_Model4)
Call:
lm(formula = yield_kg_ha ~ fertilizer_rate_kg_ha, data = Agronomic_Yields)
Residuals:
Min 1Q Median 3Q Max
-7598.2 -2034.6 -580.7 2009.8 7872.8
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4437.6658 140.8019 31.52 <2e-16 ***
fertilizer_rate_kg_ha 20.0739 0.9933 20.21 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2951 on 1035 degrees of freedom
(159 observations deleted due to missingness)
Multiple R-squared: 0.2829, Adjusted R-squared: 0.2823
F-statistic: 408.4 on 1 and 1035 DF, p-value: < 2.2e-16
Agronomic_Yields_Model5 <- lm(formula = yield_kg_ha ~ fertilizer_rate_kg_ha + treatment, data = Agronomic_Yields)
summary(Agronomic_Yields_Model5)
Call:
lm(formula = yield_kg_ha ~ fertilizer_rate_kg_ha + treatment,
data = Agronomic_Yields)
Residuals:
Min 1Q Median 3Q Max
-7583 -2319 -363 1917 7171
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5772.25 197.39 29.242 <2e-16 ***
fertilizer_rate_kg_ha 30.94 1.51 20.489 <2e-16 ***
treatment -501.27 53.97 -9.288 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2836 on 1034 degrees of freedom
(159 observations deleted due to missingness)
Multiple R-squared: 0.3382, Adjusted R-squared: 0.3369
F-statistic: 264.2 on 2 and 1034 DF, p-value: < 2.2e-16
Agronomic_Yields_Model3 <- lm(formula = yield_kg_ha ~ fertilizer_rate_kg_ha + crop, data = Agronomic_Yields)
summary(Agronomic_Yields_Model3)
Call:
lm(formula = yield_kg_ha ~ fertilizer_rate_kg_ha + crop, data = Agronomic_Yields)
Residuals:
Min 1Q Median 3Q Max
-7880.9 -1354.0 84.9 1157.5 5767.9
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3386.4662 161.0970 21.021 < 2e-16 ***
fertilizer_rate_kg_ha 12.9836 0.8993 14.438 < 2e-16 ***
cropTriticum aestivum L. (*) -916.5881 238.4176 -3.844 0.000128 ***
cropZea mays L. (*) 3397.2160 212.2105 16.009 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2337 on 1033 degrees of freedom
(159 observations deleted due to missingness)
Multiple R-squared: 0.5513, Adjusted R-squared: 0.55
F-statistic: 423 on 3 and 1033 DF, p-value: < 2.2e-16
ggplot(data = Agronomic_Yields,
mapping = aes(x = as.factor(treatment), y = yield_kg_ha)) +
stat_summary(fun = "mean",
geom = "bar",
fill = "grey",
color = "black") +
stat_summary(fun.data = "mean_se",
geom = "errorbar",
width = 0.2) +
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
labs(x = "Treatment",
y = "Yield (kg/ha)")

ggplot(data = Agronomic_Yields,
mapping = aes(x = fertilizer_rate_kg_ha, y = yield_kg_ha, color = factor(treatment))) +
stat_summary(fun = "mean", geom = "point", size = 2) +
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
labs(x = "Fertilizer Rate (kg/ha)",
y = "Yield (kg/ha)",
color = "Treatment")

ggplot(data = Agronomic_Yields,
mapping = aes(x = fertilizer_rate_kg_ha, y = yield_kg_ha)) +
stat_summary(fun = "mean", geom = "point", size = 2) +
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
labs(x = "Fertilizer Rate (kg/ha)",
y = "Yield (kg/ha)")

ggplot(data = Agronomic_Yields,
mapping = aes(x = fertilizer_rate_kg_ha, y = yield_kg_ha, color = crop)) +
stat_summary(fun = "mean", geom = "point", size = 2) +
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
labs(x = "Fertilizer Rate (kg/ha)",
y = "Yield (kg/ha)",
color = "Crop Type")

LS0tDQp0aXRsZTogIkFncm9ub21pYyBHcm93dGgyIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkobW9kZWxyKQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkocmVhZHhsKQ0KQWdyb25vbWljX1lpZWxkcyA8LSByZWFkX2V4Y2VsKCJ+L0Fncm9ub21pYyBZaWVsZHMueGxzeCIpDQpWaWV3KEFncm9ub21pY19ZaWVsZHMpDQpgYGANCg0KYGBge3J9DQpBZ3Jvbm9taWNfWWllbGRzX01vZGVsMiA8LSBsbShmb3JtdWxhID0geWllbGRfa2dfaGEgfiB0cmVhdG1lbnQsIGRhdGEgPSBBZ3Jvbm9taWNfWWllbGRzKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShBZ3Jvbm9taWNfWWllbGRzX01vZGVsMikNCmBgYA0KDQpgYGB7cn0NCkFncm9ub21pY19ZaWVsZHNfTW9kZWw0IDwtIGxtKGZvcm11bGEgPSB5aWVsZF9rZ19oYSB+IGZlcnRpbGl6ZXJfcmF0ZV9rZ19oYSwgZGF0YSA9IEFncm9ub21pY19ZaWVsZHMpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KEFncm9ub21pY19ZaWVsZHNfTW9kZWw0KQ0KYGBgDQoNCmBgYHtyfQ0KQWdyb25vbWljX1lpZWxkc19Nb2RlbDUgPC0gbG0oZm9ybXVsYSA9IHlpZWxkX2tnX2hhIH4gZmVydGlsaXplcl9yYXRlX2tnX2hhICsgdHJlYXRtZW50LCBkYXRhID0gQWdyb25vbWljX1lpZWxkcykNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkoQWdyb25vbWljX1lpZWxkc19Nb2RlbDUpDQpgYGANCmBgYHtyfQ0KQWdyb25vbWljX1lpZWxkc19Nb2RlbDMgPC0gbG0oZm9ybXVsYSA9IHlpZWxkX2tnX2hhIH4gZmVydGlsaXplcl9yYXRlX2tnX2hhICsgY3JvcCwgZGF0YSA9IEFncm9ub21pY19ZaWVsZHMpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KEFncm9ub21pY19ZaWVsZHNfTW9kZWwzKQ0KYGBgDQoNCg0KDQpgYGB7ciwgd2FybmluZz1GQUxTRX0NCmdncGxvdChkYXRhID0gQWdyb25vbWljX1lpZWxkcywNCiAgICAgICBtYXBwaW5nID0gYWVzKHggPSBhcy5mYWN0b3IodHJlYXRtZW50KSwgeSA9IHlpZWxkX2tnX2hhKSkgKw0Kc3RhdF9zdW1tYXJ5KGZ1biA9ICJtZWFuIiwNCiAgICAgICAgICAgICBnZW9tID0gImJhciIsDQogICAgICAgICAgICAgZmlsbCA9ICJncmV5IiwNCiAgICAgICAgICAgICBjb2xvciA9ICJibGFjayIpICsNCiAgc3RhdF9zdW1tYXJ5KGZ1bi5kYXRhID0gIm1lYW5fc2UiLCANCiAgICAgICAgICAgICAgIGdlb20gPSAiZXJyb3JiYXIiLA0KICAgICAgICAgICAgICAgd2lkdGggPSAwLjIpICsNCiAgdGhlbWVfYncoKSArDQogIHRoZW1lKHBhbmVsLmdyaWQubWFqb3IgPSBlbGVtZW50X2JsYW5rKCksIA0KICAgIHBhbmVsLmdyaWQubWlub3IgPSBlbGVtZW50X2JsYW5rKCkpICsNCmxhYnMoeCA9ICJUcmVhdG1lbnQiLA0KICAgICB5ID0gIllpZWxkIChrZy9oYSkiKQ0KYGBgDQoNCg0KDQpgYGB7ciwgd2FybmluZz1GQUxTRX0NCmdncGxvdChkYXRhID0gQWdyb25vbWljX1lpZWxkcywNCiAgICAgICBtYXBwaW5nID0gYWVzKHggPSBmZXJ0aWxpemVyX3JhdGVfa2dfaGEsIHkgPSB5aWVsZF9rZ19oYSwgY29sb3IgPSBmYWN0b3IodHJlYXRtZW50KSkpICsNCiAgc3RhdF9zdW1tYXJ5KGZ1biA9ICJtZWFuIiwgZ2VvbSA9ICJwb2ludCIsIHNpemUgPSAyKSArDQogIHRoZW1lX2J3KCkgKw0KICB0aGVtZShwYW5lbC5ncmlkLm1ham9yID0gZWxlbWVudF9ibGFuaygpLCANCiAgICBwYW5lbC5ncmlkLm1pbm9yID0gZWxlbWVudF9ibGFuaygpKSArDQpsYWJzKHggPSAiRmVydGlsaXplciBSYXRlIChrZy9oYSkiLA0KICAgICB5ID0gIllpZWxkIChrZy9oYSkiLA0KICAgICBjb2xvciA9ICJUcmVhdG1lbnQiKQ0KYGBgDQoNCg0KYGBge3IsIHdhcm5pbmc9RkFMU0V9DQpnZ3Bsb3QoZGF0YSA9IEFncm9ub21pY19ZaWVsZHMsDQogICAgICAgbWFwcGluZyA9IGFlcyh4ID0gZmVydGlsaXplcl9yYXRlX2tnX2hhLCB5ID0geWllbGRfa2dfaGEpKSArDQogIHN0YXRfc3VtbWFyeShmdW4gPSAibWVhbiIsIGdlb20gPSAicG9pbnQiLCBzaXplID0gMikgKw0KICB0aGVtZV9idygpICsNCiAgdGhlbWUocGFuZWwuZ3JpZC5tYWpvciA9IGVsZW1lbnRfYmxhbmsoKSwgDQogICAgcGFuZWwuZ3JpZC5taW5vciA9IGVsZW1lbnRfYmxhbmsoKSkgKw0KbGFicyh4ID0gIkZlcnRpbGl6ZXIgUmF0ZSAoa2cvaGEpIiwNCiAgICAgeSA9ICJZaWVsZCAoa2cvaGEpIikNCmBgYA0KDQoNCmBgYHtyLCB3YXJuaW5nPUZBTFNFfQ0KZ2dwbG90KGRhdGEgPSBBZ3Jvbm9taWNfWWllbGRzLCANCiAgICAgICBtYXBwaW5nID0gYWVzKHggPSBmZXJ0aWxpemVyX3JhdGVfa2dfaGEsIHkgPSB5aWVsZF9rZ19oYSwgY29sb3IgPSBjcm9wKSkgKw0KICBzdGF0X3N1bW1hcnkoZnVuID0gIm1lYW4iLCBnZW9tID0gInBvaW50Iiwgc2l6ZSA9IDIpICsNCiAgdGhlbWVfYncoKSArDQogIHRoZW1lKHBhbmVsLmdyaWQubWFqb3IgPSBlbGVtZW50X2JsYW5rKCksIA0KICAgIHBhbmVsLmdyaWQubWlub3IgPSBlbGVtZW50X2JsYW5rKCkpICsNCmxhYnMoeCA9ICJGZXJ0aWxpemVyIFJhdGUgKGtnL2hhKSIsDQogICAgIHkgPSAiWWllbGQgKGtnL2hhKSIsDQogICAgIGNvbG9yID0gIkNyb3AgVHlwZSIpDQpgYGANCg0KDQo=