# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2021-01-01
# Choose stocks
symbols <- c("CRWD", "AMZN", "SHOP", "TTD", "NVDA")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2021-01-01")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.25,
0.25,
0.20,
0.20,
0.10)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 32 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.0254
## 2 2013-06-28 0.0293
## 3 2013-09-30 0.0512
## 4 2013-12-31 0.0678
## 5 2014-03-31 -0.0194
## 6 2014-06-30 -0.000933
## 7 2014-09-30 -0.00190
## 8 2014-12-31 0.00792
## 9 2015-03-31 0.0547
## 10 2015-06-30 0.0315
## # ℹ 22 more rows
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
# "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(x = date, y = returns)) +
geom_point(color = "cornflower blue") +
# Formatting
scale_x_date(breaks = scales::breaks_pretty(n = 6)) +
labs(title = "Portfolio Returns Scatter",
y = "monthly return")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.005) +
labs(title = "Portfolio Returns Distribution",
y = "count",
x = "returns")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.01) +
geom_density(aes(returns)) +
labs(title = "Portfolio Histogram and Density",
y = "distribution",
x = "monthly returns")
What return should you expect from the portfolio in a typical quarter?
You would expect about a 3 percent return with about a pretty high risk. With the average return being anywhere from -2 to 10 percent.