# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “CRWD”, “AMZN”, “SHOP”, “TTD”, “NVDA”
from 2012-12-31 to 2021-01-01
# Choose stocks
symbols <- c("CRWD", "AMZN", "SHOP", "TTD", "NVDA")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2021-01-01")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.25,
0.25,
0.20,
0.20,
0.10)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 32 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.0254
## 2 2013-06-28 0.0293
## 3 2013-09-30 0.0512
## 4 2013-12-31 0.0678
## 5 2014-03-31 -0.0194
## 6 2014-06-30 -0.000933
## 7 2014-09-30 -0.00190
## 8 2014-12-31 0.00792
## 9 2015-03-31 0.0547
## 10 2015-06-30 0.0315
## # ℹ 22 more rows
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
# "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4) * 100)
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.128 12.8
# Figure 4.1 Dispersion of Portfolio Returns ----
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(date, returns)) +
geom_point(color = "cornflowerblue", size = 2) +
labs(title = "Scatterplot of Returns by Date") +
theme(plot.title = element_text(hjust = 0.5))
# Figure 4.2 Scatter of Returns Colored by Distance from Mean ----
sd_plot <- sd(portfolio_returns_rebalanced_monthly_tbl$returns)
mean_plot <- mean(portfolio_returns_rebalanced_monthly_tbl$returns)
portfolio_returns_rebalanced_monthly_tbl %>%
mutate(hist_col = case_when(
returns > mean_plot + sd_plot ~ "high",
returns < mean_plot - sd_plot ~ "middle",
TRUE ~ "low"
)) %>%
# Plot
ggplot(aes(date, returns, col = hist_col)) +
geom_point(size = 2) +
labs(title = "Colored Scatter") +
theme(plot.title = element_text(hjust = 0.5))
# Figure 4.3 Scatter of Returns with Line at Standard Deviation ----
sd_plot <- sd(portfolio_returns_rebalanced_monthly_tbl$returns)
mean_plot <- mean(portfolio_returns_rebalanced_monthly_tbl$returns)
portfolio_returns_rebalanced_monthly_tbl %>%
mutate(hist_col = case_when(
returns > mean_plot + sd_plot ~ "high",
returns < mean_plot - sd_plot ~ "middle",
TRUE ~ "low"
)) %>%
# Plot
ggplot(aes(date, returns, col = hist_col)) +
geom_point(size = 2) +
labs(title = "Colored Scatter with Line") +
theme(plot.title = element_text(hjust = 0.5)) +
# Add lines
geom_hline(yintercept = mean_plot + sd_plot, linetype = "dotted", color = "purple") +
geom_hline(yintercept = mean_plot - sd_plot, linetype = "dotted", color = "purple")
# Figure 4.4 Asset and Portfolio Standard Deviation Comparison ----
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 32 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.0254
## 2 2013-06-28 0.0293
## 3 2013-09-30 0.0512
## 4 2013-12-31 0.0678
## 5 2014-03-31 -0.0194
## 6 2014-06-30 -0.000933
## 7 2014-09-30 -0.00190
## 8 2014-12-31 0.00792
## 9 2015-03-31 0.0547
## 10 2015-06-30 0.0315
## # ℹ 22 more rows
asset_returns_sd_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(asset, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Stdev = sd(portfolio_returns_rebalanced_monthly_tbl$returns)))
asset_returns_sd_tbl %>%
# Plot
ggplot(aes(asset, Stdev, col = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_sd_tbl %>%
filter(asset == "Portfolio")) +
labs(title = "")
# Figure 4.5 Expected Returns versus Risk ----
asset_returns_sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(asset, Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
add_row(tibble(asset = "Portfolio",
Mean = mean(portfolio_returns_rebalanced_monthly_tbl$returns),
Stdev = sd(portfolio_returns_rebalanced_monthly_tbl$returns)))
asset_returns_sd_mean_tbl %>%
ggplot(aes(Stdev, Mean, col = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
# 3 Rolling standard deviation ----
# Why rolling sd?
# Suppose that we have 10 years of data and calculated standard deviation for every six months.
# Consider two different scenarios: 1) sd of each six-month period is always 3% and
# 2) sd for each six-month period fluctuated between 0% and 6%.
# It's possible that both scenarios have the same 3% sd for the entire period, which are not the same
# Rolling sd can show us what might have caused spikes in volatility
# and consider dynamically rebalancing the portfolio to better manage the volatility
# Assign a value to winder
window <- 24
port_rolling_sd_tbl <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = sd,
col_rename = "rolling_sd") %>%
select(date, rolling_sd) %>%
na.omit()
# Figure 4.7 Rolling Volatility ggplot ----
port_rolling_sd_tbl %>%
ggplot(aes(date, rolling_sd)) +
geom_line(color = "cornflowerblue") +
scale_y_continuous(labels = scales::percent) +
scale_x_date(breaks = scales::breaks_pretty(n = 7))+
labs(title = "24-Month Rolling Volatility",
x = NULL,
y = NULL) +
theme(plot.title = element_text(hjust = 0.5))
What return should you expect from the portfolio in a typical
quarter?
You would expect about a 3 percent return with about a pretty high risk. With the average return being anywhere from -2 to 10 percent.