Analysis prepared by Wesley J.B. Vaught & Makiah P. Torres | secondary data analysis of AI participants’ EEG data from T1000 and K99.

1 Preparation

1.1 Packages

library(psych) # for descriptive statistics and internacy consistency calcs
library(huxtable) # converting simple slopes into a table
library(gmodels) # for frequency calculation and tables for categorical variables
library(dplyr) # for creating tibbles and matrices for correlation matrices
library(corrr) # for calculating (Spearman's) correlations
library(corrplot) # for visualizing correlation plots
library(interactions) # for creating a Johnson-Neyman plot
library(ggplot2) # for data visualization with scatterplots and histograms
library(ggpmisc) # an extension of ggplot2
library(ggpubr) # for data visualization simplified
library(car) # for calculating VIF (variance inflation factor)
library(boot.pval) # for bootstrapping the multiple linear regression and moderation
library(stringr) # for replacing the written scoring for the HLS to numbers and replacing the binary code for sex from "1" to "Female" for Table 1
library(QuantPsyc) # for standardized betas in linear modeling
library(table1) # to create Table 1

1.2 Setting Working Directory & Reading in Dataframes

setwd("~/01. EEG CORE/05. Papers/Culture & Cognition/finalAnalysis")
dfSST<-read.csv("df_FinalK99Dataset(n59)_051723.csv",header=TRUE)
dfMID<-read.csv("dfMID.csv",header=TRUE)
dfSSTdemo<-read.csv("T1000_redcap_wide-S.T0-2022-01-24.csv",header=TRUE)
dfSSTaies<-read.csv("dfSSTaies.csv",header=TRUE)
dfSSTnass<-read.csv("dfSSTnass.csv",header=TRUE)
dfSSTnaas<-read.csv("dfSSTnaas.csv",header=TRUE)
dfSSThls<-read.csv("dfSSThls.csv",header=TRUE)
dfMIDaies<-read.csv("dfMIDaies.csv",header=TRUE)
dfMIDnass<-read.csv("dfMIDnass.csv",header=TRUE)
dfMIDnaas<-read.csv("dfMIDnaas.csv",header=TRUE)
dfMIDhls<-read.csv("dfMIDhls.csv",header=TRUE)
dfMerged<-read.csv("dfMerged.csv",header=TRUE)
dfMergedAies<-read.csv("dfMergedAies.csv",header=TRUE)
dfMergedNass<-read.csv("dfMergedNass.csv",header=TRUE)
dfMergedNaas<-read.csv("dfMergedNaas.csv",header=TRUE)
dfMergedHls<-read.csv("dfMergedHls.csv",header=TRUE)
# tibble for SST, clinical, and cultural variables
simpleTibble4SST<-tibble(
  id=dfSST$id,
  SexSST=dfSST$Gender,
  AgeSST=dfSST$Age,
  goIncorrERN_FCz=dfSST$ERNFCz_GoIncorr, 
  goCorrERN_FCz=dfSST$ERNFCz_GoCorr,
  allIncorrN2_FCz=dfSST$N2FCz_AllIncorrn59,
  allCorrN2_FCz=dfSST$N2FCz_AllCorrn59,
  allIncorrP3_Pz=dfSST$P3Pz_AllIncorrn59,
  allCorrP3_Pz=dfSST$P3Pz_AllCorrn59,
  goIncorrPe_Pz=dfSST$PePz_GoIncorr,
  goCorrPe_Pz=dfSST$PePz_GoCorr,
  sstPROMISanx=dfSST$PROMIS_AnxietyTscore,
  sstPROMISalcUse=dfSST$PROMIS_AlcoUseTscore,
  sstPROMISdepress=dfSST$PROMIS_DepressTscore,
  sstAIES=dfSST$AIES_scale,
  sstNAAS=dfSST$NAAS_scale,
  sstNASS=dfSST$NASS_scale,
  sstHLS=dfSST$HLS_scale
)
cleanedSimpleTibble4SST<-na.omit(simpleTibble4SST) # retains 51 participants
# residualized ERN
residual_incorrectFCzERN<-lm(goIncorrERN_FCz~goCorrERN_FCz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$ERNresid<-resid(residual_incorrectFCzERN)
# residualized correct N2
residual_correctFCzN2<-lm(allCorrN2_FCz~allIncorrN2_FCz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$N2corrResid<-resid(residual_correctFCzN2)
# residualized incorrect N2
residual_incorrectFCzN2<-lm(allIncorrN2_FCz~allCorrN2_FCz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$N2resid<-resid(residual_incorrectFCzN2)
# residualized correct P3
residual_correctPzP3<-lm(allCorrP3_Pz~allIncorrP3_Pz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$P3corrResid<-resid(residual_correctPzP3)
# residualized incorrect P3
residual_incorrectPzP3<-lm(allIncorrP3_Pz~allCorrP3_Pz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$P3resid<-resid(residual_incorrectPzP3)
# residualized Pe
residual_incorrectPzPe<-lm(goIncorrPe_Pz~goCorrPe_Pz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$PeResid<-resid(residual_incorrectPzPe)
# tibble for MID, clinical, and cultural variables
simpleTibble4MID<-tibble(
  id=dfMID$id,
  SexMID=dfMID$Gender,
  AgeMID=dfMID$Age,
  P3pzMIDcueLoss=dfMID$P3pzMIDcueLoss,
  P3pzMIDcueNogain=dfMID$P3pzMIDcueNogain,
  P3pzMIDcueGain=dfMID$P3pzMIDcueGain,
  SPNfzMIDfeedbackSuccess=dfMID$SPNfzMIDfeedbackSuccess,
  SPNfzMIDfeedbackFail=dfMID$SPNfzMIDfeedbackFail,
  RewPfczMIDfeedbackGain=dfMID$RewPfczMIDfeedbackGain,
  midPROMISanx=dfMID$PROMIS_AnxietyTscore,
  midPROMISalcUse=dfMID$PROMIS_AlcoUseTscore,
  midPROMISdepress=dfMID$PROMIS_DepressTscore,
  midAIES=dfMID$AIES_scale,
  midNAAS=dfMID$NAAS_scale,
  midNASS=dfMID$NASS_scale,
  midHLS=dfMID$HLS_scale
)
cleanedSimpleTibble4MID<-na.omit(simpleTibble4MID) # retains 44 participants
# merging tibbles by "id" 
dfERPsMerged<-merge(cleanedSimpleTibble4SST,cleanedSimpleTibble4MID,by='id') # retains 39 participants total

2 Descriptive Statistics

2.1 Descriptives in SST sample

Descriptive statistics of Age in SST

describeAgeSST<-describe(cleanedSimpleTibble4SST$AgeSST)
describeAgeSST
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
15135.410.43335.111.218.454.936.50.204-1.131.46

Descriptive statistics of Sex in SST

freqSexSST<-CrossTable(cleanedSimpleTibble4SST$SexSST, format="SPSS")

   Cell Contents
|-------------------------|
|                   Count |
|             Row Percent |
|-------------------------|

Total Observations in Table:  51 

          |   Female  |     Male  | 
          |-----------|-----------|
          |       41  |       10  | 
          |   80.392% |   19.608% | 
          |-----------|-----------|

 
freqSexSST
NULL

Descriptive statistics of AIES in SST

describeAIESsst<-describe(cleanedSimpleTibble4SST$sstAIES)
describeAIESsst
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
15137.414353613.31875570.811-0.005151.96

Descriptive statistics of NASS in SST

describeNASSsst<-describe(cleanedSimpleTibble4SST$sstNASS)
describeNASSsst
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
151358.373735.65.93115039-0.7550.11.17

Descriptive statistics of NAAS in SST

describeNAASsst<-describe(cleanedSimpleTibble4SST$sstNAAS)
describeNAASsst
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1513.860.3453.93.860.3713.054.451.4-0.121-0.7710.0482

Descriptive statistics of HLS in SST

describeHLSsst<-describe(cleanedSimpleTibble4SST$sstHLS)
describeHLSsst
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
15142.14.684142.35.93305020-0.326-0.3980.656

Descriptive statistics of PROMIS Depression in SST

describePROMISdepSST<-describe(cleanedSimpleTibble4SST$sstPROMISdepress)
describePROMISdepSST
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
15155.37.6156.355.96.3834.269.535.3-0.5960.1091.07

Descriptive statistics of PROMIS Anxiety in SST

describePROMISanxSST<-describe(cleanedSimpleTibble4SST$sstPROMISanx)
describePROMISanxSST
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
15157.49.095858.27.8632.975.342.4-0.7480.5681.27

Descriptive statistics of PROMIS Alcohol Use in SST

describePROMISalcUseSST<-describe(cleanedSimpleTibble4SST$sstPROMISalcUse)
describePROMISalcUseSST
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
15149.25.075049.3037.562.424.9-0.096810.71

Descriptive statistics of Correct-Stop N200 amplitudes in SST

describeCorrN2<-describe(cleanedSimpleTibble4SST$allCorrN2_FCz)
describeCorrN2
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
151-4.124.53-3.51-3.864.41-15.7419.7-0.498-0.3560.634

Descriptive statistics of Residualized Incorrect-Stop N200 amplitudes in SST

describeResidIncorrN2<-describe(cleanedSimpleTibble4SST$N2resid)
describeResidIncorrN2
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
151-3.26e-173.38-0.151-0.03283.17-10.47.7618.2-0.1250.5680.473

Descriptive statistics of Correct-Stop P300 amplitudes in SST

describeCorrP3<-describe(cleanedSimpleTibble4SST$allCorrP3_Pz)
describeCorrP3
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1515.324.525.225.125.57-2.8417.119.90.388-0.5290.632

Descriptive statistics of Residualized Incorrect-Stop P300 amplitudes in SST

describeResidIncorrP3<-describe(cleanedSimpleTibble4SST$P3resid)
describeResidIncorrP3
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
151-4.37e-172.98-0.36-0.09492.74-8.47.3615.80.1540.1240.418

Descriptive statistics of CRN amplitudes in SST

describeCRN<-describe(cleanedSimpleTibble4SST$goCorrERN_FCz)
describeCRN
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
151-1.783.27-1.26-1.492.73-15.93.2619.2-1.594.810.458

Descriptive statistics of Residualized ERN amplitudes in SST

describeResidERN<-describe(cleanedSimpleTibble4SST$ERNresid)
describeResidERN
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1511.65e-165.41-0.00317-0.08955.1-14.514.228.70.1070.4350.758

Descriptive statistics of Correct-Pe amplitudes in SST

describeCorrPe<-describe(cleanedSimpleTibble4SST$goCorrPe_Pz)
describeCorrPe
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
151-0.2732.42-0.457-0.2811.74-6.426.1512.60.01040.7980.339

Descriptive statistics of Residualized Incorrect-Pe in SST

describeResidIncorrPe<-describe(cleanedSimpleTibble4SST$PeResid)
describeResidIncorrPe
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
151-2.9e-166.261.560.7334.12-21.59.3230.8-1.382.390.876

2.2 Descriptive statistics in MID sample

Descriptive statistics of Age in MID

describeAgeMID<-describe(cleanedSimpleTibble4MID$AgeMID)
describeAgeMID
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
14434.310.232.833.912.118.454.936.50.242-1.021.54

Descriptive statistics of Sex in MID

freqSexMID<-CrossTable(cleanedSimpleTibble4MID$SexMID, format="SPSS")

   Cell Contents
|-------------------------|
|                   Count |
|             Row Percent |
|-------------------------|

Total Observations in Table:  44 

          |   Female  |     Male  | 
          |-----------|-----------|
          |       34  |       10  | 
          |   77.273% |   22.727% | 
          |-----------|-----------|

 
freqSexMID
NULL

Descriptive statistics of AIES in MID

describeAIESmid<-describe(cleanedSimpleTibble4MID$midAIES)
describeAIESmid
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
14434.311.73233.111.91966470.8180.08281.76

Descriptive statistics NASS in MID

describeNASSmid<-describe(cleanedSimpleTibble4MID$midNASS)
describeNASSmid
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
14433.49.313634.36.6794940-0.9480.1951.4

Descriptive statistics NAAS in MID

describeNAASmid<-describe(cleanedSimpleTibble4MID$midNAAS)
describeNAASmid
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1443.950.33143.950.3713.34.51.2-0.181-1.040.0499

Descriptive statistics of HLS in MID

describeHLSmid<-describe(cleanedSimpleTibble4MID$midHLS)
describeHLSmid
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
14442.14.7941.542.45.19305020-0.436-0.450.721

Descriptive statistics of PROMIS Depression in MID

describePROMISdepMID<-describe(cleanedSimpleTibble4MID$midPROMISdepress)
describePROMISdepMID
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
14456.37.7957.456.77.193969.530.5-0.461-0.5061.17

Descriptive statistics of PROMIS Anxiety in MID

describePROMISanxMID<-describe(cleanedSimpleTibble4MID$midPROMISanx)
describePROMISanxMID
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
14457.69.4157.9588.0832.975.342.4-0.424-0.2241.42

Descriptive statistics of PROMIS Alcohol Use in MID

describePROMISalcUseMID<-describe(cleanedSimpleTibble4MID$midPROMISalcUse)
describePROMISalcUseMID
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
14449.54.695049.5038.261.223-0.09171.040.707

Descriptive statistics of P300 amplitudes to Loss Cues in MID

describeCueLossP3<-describe(cleanedSimpleTibble4MID$P3pzMIDcueLoss)
describeCueLossP3
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1442.352.772.422.182.65-3.3310.814.20.7621.020.418

Descriptive statistics of P300 amplitudes to No Gain Cues in MID

describeCueNoGainP3<-describe(cleanedSimpleTibble4MID$P3pzMIDcueNogain)
describeCueNoGainP3
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1442.342.42.212.242.12-2.439.9212.40.5040.7950.362

Descriptive statistics of P300 amplitudes to Gain Cues in MID

describeCueGainP3<-describe(cleanedSimpleTibble4MID$P3pzMIDcueGain)
describeCueGainP3
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1442.332.791.751.981.98-2.2911.413.71.422.380.42

Descriptive statistics of SPN amplitudes to successful trials in MID

describeSuccessSPN<-describe(cleanedSimpleTibble4MID$SPNfzMIDfeedbackSuccess)
describeSuccessSPN
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1442.862.942.612.862.75-4.059.313.30.0778-0.3970.443

Descriptive statistics of SPN amplitudes to failed trials in MID

describeFailSPN<-describe(cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail)
describeFailSPN
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1441.64.341.491.683.73-149.6223.6-0.6722.180.654

Descriptive statistics of RewP amplitudes to Gain trials in MID

describeGainRewP<-describe(cleanedSimpleTibble4MID$RewPfczMIDfeedbackGain)
describeGainRewP
varsnmeansdmediantrimmedmadminmaxrangeskewkurtosisse
1443.332.752.993.172.5-1.4710.311.80.518-0.008140.415

3 Tests of Normality

3.1 Shapiro-Wilk test and QQ plots in SST sample

American Indian Enculturation Scale

shapiro.test(cleanedSimpleTibble4SST$sstAIES)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$sstAIES
W = 0.93353, p-value = 0.006813
qqnorm(cleanedSimpleTibble4SST$sstAIES)
qqline(cleanedSimpleTibble4SST$sstAIES)

Native American Acculturation Scale

shapiro.test(cleanedSimpleTibble4SST$sstNAAS)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$sstNAAS
W = 0.97666, p-value = 0.408
qqnorm(cleanedSimpleTibble4SST$sstNAAS)
qqline(cleanedSimpleTibble4SST$sstNAAS)

Native American Spirituality Scale

shapiro.test(cleanedSimpleTibble4SST$sstNASS)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$sstNASS
W = 0.94552, p-value = 0.02057
qqnorm(cleanedSimpleTibble4SST$sstNASS)
qqline(cleanedSimpleTibble4SST$sstNASS)

Historical Loss Scale

shapiro.test(cleanedSimpleTibble4SST$sstHLS)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$sstHLS
W = 0.96236, p-value = 0.1052
qqnorm(cleanedSimpleTibble4SST$sstHLS)
qqline(cleanedSimpleTibble4SST$sstHLS)

PROMIS Anxiety

shapiro.test(cleanedSimpleTibble4SST$sstPROMISanx)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$sstPROMISanx
W = 0.94945, p-value = 0.02989
qqnorm(cleanedSimpleTibble4SST$sstPROMISanx)
qqline(cleanedSimpleTibble4SST$sstPROMISanx)

PROMIS Alcohol Use

shapiro.test(cleanedSimpleTibble4SST$sstPROMISalcUse)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$sstPROMISalcUse
W = 0.86064, p-value = 2.589e-05
qqnorm(cleanedSimpleTibble4SST$sstPROMISalcUse)
qqline(cleanedSimpleTibble4SST$sstPROMISalcUse)

PROMIS Depression

shapiro.test(cleanedSimpleTibble4SST$sstPROMISdepress)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$sstPROMISdepress
W = 0.96982, p-value = 0.2173
qqnorm(cleanedSimpleTibble4SST$sstPROMISdepress)
qqline(cleanedSimpleTibble4SST$sstPROMISdepress)

Correct-Stop N200 Amplitudes

shapiro.test(cleanedSimpleTibble4SST$allCorrN2_FCz)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$allCorrN2_FCz
W = 0.97078, p-value = 0.2383
qqnorm(cleanedSimpleTibble4SST$allCorrN2_FCz)
qqline(cleanedSimpleTibble4SST$allCorrN2_FCz)

Correct-Stop P300 Amplitudes

shapiro.test(cleanedSimpleTibble4SST$allCorrP3_Pz)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$allCorrP3_Pz
W = 0.97678, p-value = 0.4123
qqnorm(cleanedSimpleTibble4SST$allCorrP3_Pz)
qqline(cleanedSimpleTibble4SST$allCorrP3_Pz)

Correct-Related Negativity Amplitudes

shapiro.test(cleanedSimpleTibble4SST$goCorrERN_FCz)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$goCorrERN_FCz
W = 0.88863, p-value = 0.0001793
qqnorm(cleanedSimpleTibble4SST$goCorrERN_FCz)
qqline(cleanedSimpleTibble4SST$goCorrERN_FCz)

Correct Error Positivity Amplitudes

shapiro.test(cleanedSimpleTibble4SST$goCorrPe_Pz)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$goCorrPe_Pz
W = 0.9589, p-value = 0.07485
qqnorm(cleanedSimpleTibble4SST$goCorrPe_Pz)
qqline(cleanedSimpleTibble4SST$goCorrPe_Pz)

Residualized Incorrect-Stop N200 Amplitudes

shapiro.test(cleanedSimpleTibble4SST$N2resid)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$N2resid
W = 0.9765, p-value = 0.4026
qqnorm(cleanedSimpleTibble4SST$N2resid)
qqline(cleanedSimpleTibble4SST$N2resid)

Residualized Incorrect-Stop P300 Amplitudes

shapiro.test(cleanedSimpleTibble4SST$P3resid)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$P3resid
W = 0.97318, p-value = 0.2983
qqnorm(cleanedSimpleTibble4SST$P3resid)
qqline(cleanedSimpleTibble4SST$P3resid)

Residualized Error-Related Negativity Amplitudes

shapiro.test(cleanedSimpleTibble4SST$ERNresid)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$ERNresid
W = 0.9871, p-value = 0.8495
qqnorm(cleanedSimpleTibble4SST$ERNresid)
qqline(cleanedSimpleTibble4SST$ERNresid)

Residualized Error Positivity Amplitudes

shapiro.test(cleanedSimpleTibble4SST$PeResid)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4SST$PeResid
W = 0.88705, p-value = 0.0001598
qqnorm(cleanedSimpleTibble4SST$PeResid)
qqline(cleanedSimpleTibble4SST$PeResid)

3.2 Shapiro-Wilk test and QQ plots in MID sample

American Indian Enculturation Scale

shapiro.test(cleanedSimpleTibble4MID$midAIES)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$midAIES
W = 0.92831, p-value = 0.009119
qqnorm(cleanedSimpleTibble4MID$midAIES)
qqline(cleanedSimpleTibble4MID$midAIES)

Native American Acculturation Scale

shapiro.test(cleanedSimpleTibble4MID$midNAAS)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$midNAAS
W = 0.96191, p-value = 0.1533
qqnorm(cleanedSimpleTibble4MID$midNAAS)
qqline(cleanedSimpleTibble4MID$midNAAS)

Native American Spirituality Scale

shapiro.test(cleanedSimpleTibble4MID$midNASS)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$midNASS
W = 0.90795, p-value = 0.001927
qqnorm(cleanedSimpleTibble4MID$midNASS)
qqline(cleanedSimpleTibble4MID$midNASS)

Historical Loss Scale

shapiro.test(cleanedSimpleTibble4MID$midHLS)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$midHLS
W = 0.96182, p-value = 0.1521
qqnorm(cleanedSimpleTibble4MID$midHLS)
qqline(cleanedSimpleTibble4MID$midHLS)

PROMIS Anxiety

shapiro.test(cleanedSimpleTibble4MID$midPROMISanx)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$midPROMISanx
W = 0.97504, p-value = 0.4492
qqnorm(cleanedSimpleTibble4MID$midPROMISanx)
qqline(cleanedSimpleTibble4MID$midPROMISanx)

PROMIS Alcohol Use

shapiro.test(cleanedSimpleTibble4MID$midPROMISalcUse)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$midPROMISalcUse
W = 0.849, p-value = 4.12e-05
qqnorm(cleanedSimpleTibble4MID$midPROMISalcUse)
qqline(cleanedSimpleTibble4MID$midPROMISalcUse)

PROMIS Depression

shapiro.test(cleanedSimpleTibble4MID$midPROMISdepress)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$midPROMISdepress
W = 0.96353, p-value = 0.1762
qqnorm(cleanedSimpleTibble4MID$midPROMISdepress)
qqline(cleanedSimpleTibble4MID$midPROMISdepress)

Loss Cue P300 Amplitudes

shapiro.test(cleanedSimpleTibble4MID$P3pzMIDcueLoss)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$P3pzMIDcueLoss
W = 0.9562, p-value = 0.09381
qqnorm(cleanedSimpleTibble4MID$P3pzMIDcueLoss)
qqline(cleanedSimpleTibble4MID$P3pzMIDcueLoss)

No Gain Cue P300 Amplitudes

shapiro.test(cleanedSimpleTibble4MID$P3pzMIDcueNogain)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$P3pzMIDcueNogain
W = 0.97488, p-value = 0.4441
qqnorm(cleanedSimpleTibble4MID$P3pzMIDcueNogain)
qqline(cleanedSimpleTibble4MID$P3pzMIDcueNogain)

Gain Cue P300 Amplitudes

shapiro.test(cleanedSimpleTibble4MID$P3pzMIDcueGain)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$P3pzMIDcueGain
W = 0.87887, p-value = 0.0002594
qqnorm(cleanedSimpleTibble4MID$P3pzMIDcueGain)
qqline(cleanedSimpleTibble4MID$P3pzMIDcueGain)

Success SPN Amplitudes

shapiro.test(cleanedSimpleTibble4MID$SPNfzMIDfeedbackSuccess)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$SPNfzMIDfeedbackSuccess
W = 0.98571, p-value = 0.8537
qqnorm(cleanedSimpleTibble4MID$SPNfzMIDfeedbackSuccess)
qqline(cleanedSimpleTibble4MID$SPNfzMIDfeedbackSuccess)

Failure SPN Amplitudes

shapiro.test(cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail
W = 0.93923, p-value = 0.02217
qqnorm(cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail)
qqline(cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail)

Gain RewP Amplitudes

shapiro.test(cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail)

    Shapiro-Wilk normality test

data:  cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail
W = 0.93923, p-value = 0.02217
qqnorm(cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail)
qqline(cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail)

3.3 Shapiro-Wilk test and QQ plots in Merged sample

American Indian Enculturation Scale

shapiro.test(dfERPsMerged$midAIES)

    Shapiro-Wilk normality test

data:  dfERPsMerged$midAIES
W = 0.93706, p-value = 0.03046
qqnorm(dfERPsMerged$midAIES)
qqline(dfERPsMerged$midAIES)

Native American Acculturation Scale

shapiro.test(dfERPsMerged$midNAAS)

    Shapiro-Wilk normality test

data:  dfERPsMerged$midNAAS
W = 0.96086, p-value = 0.1905
qqnorm(dfERPsMerged$midNAAS)
qqline(dfERPsMerged$midNAAS)

Native American Spirituality Scale

shapiro.test(dfERPsMerged$midNASS)

    Shapiro-Wilk normality test

data:  dfERPsMerged$midNASS
W = 0.9345, p-value = 0.02511
qqnorm(dfERPsMerged$midNASS)
qqline(dfERPsMerged$midNASS)

Historical Loss Scale

shapiro.test(dfERPsMerged$midHLS)

    Shapiro-Wilk normality test

data:  dfERPsMerged$midHLS
W = 0.96318, p-value = 0.2274
qqnorm(dfERPsMerged$midHLS)
qqline(dfERPsMerged$midHLS)

PROMIS Anxiety

shapiro.test(dfERPsMerged$midPROMISanx)

    Shapiro-Wilk normality test

data:  dfERPsMerged$midPROMISanx
W = 0.97314, p-value = 0.4661
qqnorm(dfERPsMerged$midPROMISanx)
qqline(dfERPsMerged$midPROMISanx)

PROMIS Alcohol Use

shapiro.test(dfERPsMerged$midPROMISalcUse)

    Shapiro-Wilk normality test

data:  dfERPsMerged$midPROMISalcUse
W = 0.84736, p-value = 9.358e-05
qqnorm(dfERPsMerged$midPROMISalcUse)
qqline(dfERPsMerged$midPROMISalcUse)

PROMIS Depression

shapiro.test(dfERPsMerged$midPROMISdepress)

    Shapiro-Wilk normality test

data:  dfERPsMerged$midPROMISdepress
W = 0.96386, p-value = 0.2394
qqnorm(dfERPsMerged$midPROMISdepress)
qqline(dfERPsMerged$midPROMISdepress)

Correct-Stop N200 Amplitudes

shapiro.test(dfERPsMerged$allCorrN2_FCz)

    Shapiro-Wilk normality test

data:  dfERPsMerged$allCorrN2_FCz
W = 0.96846, p-value = 0.3364
qqnorm(dfERPsMerged$allCorrN2_FCz)
qqline(dfERPsMerged$allCorrN2_FCz)

Correct-Stop P300 Amplitudes

shapiro.test(dfERPsMerged$allCorrP3_Pz)

    Shapiro-Wilk normality test

data:  dfERPsMerged$allCorrP3_Pz
W = 0.97147, p-value = 0.4163
qqnorm(dfERPsMerged$allCorrP3_Pz)
qqline(dfERPsMerged$allCorrP3_Pz)

Correct-Related Negativity Amplitudes

shapiro.test(dfERPsMerged$goCorrERN_FCz)

    Shapiro-Wilk normality test

data:  dfERPsMerged$goCorrERN_FCz
W = 0.97161, p-value = 0.4203
qqnorm(dfERPsMerged$goCorrERN_FCz)
qqline(dfERPsMerged$goCorrERN_FCz)

Correct Error Positivity Amplitudes

shapiro.test(dfERPsMerged$goCorrPe_Pz)

    Shapiro-Wilk normality test

data:  dfERPsMerged$goCorrPe_Pz
W = 0.94972, p-value = 0.08039
qqnorm(dfERPsMerged$goCorrPe_Pz)
qqline(dfERPsMerged$goCorrPe_Pz)

Residualized Incorrect-Stop N200 Amplitudes

shapiro.test(dfERPsMerged$N2resid)

    Shapiro-Wilk normality test

data:  dfERPsMerged$N2resid
W = 0.97491, p-value = 0.5231
qqnorm(dfERPsMerged$N2resid)
qqline(dfERPsMerged$N2resid)

Residualized Incorrect-Stop P300 Amplitudes

shapiro.test(dfERPsMerged$P3resid)

    Shapiro-Wilk normality test

data:  dfERPsMerged$P3resid
W = 0.97422, p-value = 0.5007
qqnorm(dfERPsMerged$P3resid)
qqline(dfERPsMerged$P3resid)

Residualized Error-Related Negativity Amplitudes

shapiro.test(dfERPsMerged$ERNresid)

    Shapiro-Wilk normality test

data:  dfERPsMerged$ERNresid
W = 0.97476, p-value = 0.5183
qqnorm(dfERPsMerged$ERNresid)
qqline(dfERPsMerged$ERNresid)

Residualized Error Positivity Amplitudes

shapiro.test(dfERPsMerged$PeResid)

    Shapiro-Wilk normality test

data:  dfERPsMerged$PeResid
W = 0.88606, p-value = 0.0009001
qqnorm(dfERPsMerged$PeResid)
qqline(dfERPsMerged$PeResid)

Loss Cue P300 Amplitudes

shapiro.test(dfERPsMerged$P3pzMIDcueLoss)

    Shapiro-Wilk normality test

data:  dfERPsMerged$P3pzMIDcueLoss
W = 0.94213, p-value = 0.04479
qqnorm(dfERPsMerged$P3pzMIDcueLoss)
qqline(dfERPsMerged$P3pzMIDcueLoss)

No Gain Cue P300 Amplitudes

shapiro.test(dfERPsMerged$P3pzMIDcueNogain)

    Shapiro-Wilk normality test

data:  dfERPsMerged$P3pzMIDcueNogain
W = 0.98886, p-value = 0.9612
qqnorm(dfERPsMerged$P3pzMIDcueNogain)
qqline(dfERPsMerged$P3pzMIDcueNogain)

Gain Cue P300 Amplitudes

shapiro.test(dfERPsMerged$P3pzMIDcueGain)

    Shapiro-Wilk normality test

data:  dfERPsMerged$P3pzMIDcueGain
W = 0.88553, p-value = 0.0008709
qqnorm(dfERPsMerged$P3pzMIDcueGain)
qqline(dfERPsMerged$P3pzMIDcueGain)

Success SPN Amplitudes

shapiro.test(dfERPsMerged$SPNfzMIDfeedbackSuccess)

    Shapiro-Wilk normality test

data:  dfERPsMerged$SPNfzMIDfeedbackSuccess
W = 0.96812, p-value = 0.3283
qqnorm(dfERPsMerged$SPNfzMIDfeedbackSuccess)
qqline(dfERPsMerged$SPNfzMIDfeedbackSuccess)

Failure SPN Amplitudes

shapiro.test(dfERPsMerged$SPNfzMIDfeedbackFail)

    Shapiro-Wilk normality test

data:  dfERPsMerged$SPNfzMIDfeedbackFail
W = 0.91059, p-value = 0.004504
qqnorm(dfERPsMerged$SPNfzMIDfeedbackFail)
qqline(dfERPsMerged$SPNfzMIDfeedbackFail)

Gain RewP Amplitudes

shapiro.test(dfERPsMerged$RewPfczMIDfeedbackGain)

    Shapiro-Wilk normality test

data:  dfERPsMerged$RewPfczMIDfeedbackGain
W = 0.95985, p-value = 0.1762
qqnorm(dfERPsMerged$P3pzMIDcueGain)
qqline(dfERPsMerged$P3pzMIDcueGain)

4 Internal consistency

4.1 Cronbach’s alpha and MacDonald’s omega in SST sample for cultural self-reports

American Indian Enculturation Scale

omega(dfSSTaies)
Loading required namespace: GPArotation

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.89 
G.6:                   0.94 
Omega Hierarchical:    0.56 
Omega H asymptotic:    0.6 
Omega Total            0.93 

Schmid Leiman Factor loadings greater than  0.2 
           g   F1*   F2*   F3*   h2   h2   u2   p2  com
aies_1  0.31  0.40             0.27 0.27 0.73 0.36 1.99
aies_2  0.60  0.67             0.82 0.82 0.18 0.43 2.03
aies_3  0.59  0.55             0.67 0.67 0.33 0.53 2.07
aies_4  0.42        0.54       0.49 0.49 0.51 0.36 2.01
aies_5  0.46  0.22        0.27 0.37 0.37 0.63 0.58 2.52
aies_6  0.37        0.39       0.31 0.31 0.69 0.44 2.22
aies_7  0.57  0.60             0.69 0.69 0.31 0.47 2.01
aies_8  0.52  0.31        0.21 0.45 0.45 0.55 0.60 2.34
aies_9  0.43  0.45             0.41 0.41 0.59 0.46 2.18
aies_10 0.44              0.67 0.65 0.65 0.35 0.30 1.78
aies_11 0.55  0.37        0.35 0.56 0.56 0.44 0.53 2.54
aies_12 0.37              0.83 0.83 0.83 0.17 0.16 1.40
aies_13 0.47        0.46       0.46 0.46 0.54 0.48 2.30
aies_14 0.60  0.65             0.79 0.79 0.21 0.45 2.02
aies_15 0.28        0.44       0.27 0.27 0.73 0.28 1.73
aies_16 0.49        0.56  0.20 0.60 0.60 0.40 0.40 2.25
aies_17 0.24        0.68       0.54 0.54 0.46 0.11 1.38

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.7 2.3 1.7 1.5 5.5 

general/max  0.67   max/min =   3.68
mean percent general =  0.41    with sd =  0.14 and cv of  0.33 
Explained Common Variance of the general factor =  0.4 

The degrees of freedom are 88  and the fit is  3.23 
The number of observations was  52  with Chi Square =  137.38  with prob <  6e-04
The root mean square of the residuals is  0.07 
The df corrected root mean square of the residuals is  0.09
RMSEA index =  0.102  and the 90 % confidence intervals are  0.069 0.138
BIC =  -210.33

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 119  and the fit is  6.62 
The number of observations was  52  with Chi Square =  289.97  with prob <  2.7e-16
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.165  and the 90 % confidence intervals are  0.143 0.192
BIC =  -180.23 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.76 0.77 0.82 0.88
Multiple R square of scores with factors      0.57 0.59 0.68 0.78
Minimum correlation of factor score estimates 0.14 0.19 0.35 0.56

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.93 0.90 0.81 0.79
Omega general for total scores and subscales  0.56 0.47 0.29 0.27
Omega group for total scores and subscales    0.27 0.43 0.52 0.52

Historical Loss Scale

omega(dfSSThls)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.93 
G.6:                   0.95 
Omega Hierarchical:    0.77 
Omega H asymptotic:    0.81 
Omega Total            0.95 

Schmid Leiman Factor loadings greater than  0.2 
          g   F1*   F2*   F3*   h2   h2   u2   p2  com
hls_1  0.57  0.57             0.67 0.67 0.33 0.49 2.08
hls_2  0.60  0.55             0.67 0.67 0.33 0.54 2.00
hls_3  0.60  0.60             0.73 0.73 0.27 0.49 2.03
hls_4  0.67  0.51             0.72 0.72 0.28 0.61 1.97
hls_5  0.71        0.28  0.23 0.63 0.63 0.37 0.79 1.55
hls_6  0.60        0.36       0.50 0.50 0.50 0.72 1.70
hls_7  0.66        0.57       0.76 0.76 0.24 0.57 1.97
hls_8  0.67        0.40       0.62 0.62 0.38 0.72 1.71
hls_9  0.70              0.45 0.70 0.70 0.30 0.71 1.70
hls_10 0.79              0.56 0.94 0.94 0.06 0.66 1.81
hls_11 0.67              0.40 0.62 0.62 0.38 0.73 1.66
hls_12 0.68        0.29       0.58 0.58 0.42 0.79 1.56

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
5.26 1.31 0.81 0.76 5.65 

general/max  0.93   max/min =   7.43
mean percent general =  0.65    with sd =  0.11 and cv of  0.17 
Explained Common Variance of the general factor =  0.65 

The degrees of freedom are 33  and the fit is  1.28 
The number of observations was  52  with Chi Square =  56.36  with prob <  0.0069
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0.115  and the 90 % confidence intervals are  0.062 0.169
BIC =  -74.03

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  3.29 
The number of observations was  52  with Chi Square =  149.54  with prob <  6.6e-11
The root mean square of the residuals is  0.14 
The df corrected root mean square of the residuals is  0.15 

RMSEA index =  0.183  and the 90 % confidence intervals are  0.151 0.222
BIC =  -63.83 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.89 0.81 0.74 0.73
Multiple R square of scores with factors      0.79 0.66 0.55 0.54
Minimum correlation of factor score estimates 0.59 0.32 0.09 0.07

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.95 0.90 0.86 0.89
Omega general for total scores and subscales  0.77 0.49 0.65 0.63
Omega group for total scores and subscales    0.13 0.41 0.21 0.27

Native American Spirituality Scale

omega(dfSSTnass)
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
The estimated weights for the factor scores are probably incorrect.  Try a
different factor score estimation method.
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
ultra-Heywood case was detected.  Examine the results carefully

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.83 
G.6:                   0.88 
Omega Hierarchical:    0.53 
Omega H asymptotic:    0.6 
Omega Total            0.89 

Schmid Leiman Factor loadings greater than  0.2 
           g   F1*   F2*   F3*    h2   h2   u2   p2  com
nass_1  0.63        0.48        0.66 0.66 0.34 0.59 2.10
nass_2  0.72        0.62        0.92 0.92 0.08 0.57 2.00
nass_3  0.29 -0.21  0.40        0.29 0.29 0.71 0.29 2.41
nass_4  0.35  0.56              0.44 0.44 0.56 0.28 1.74
nass_5  0.47  0.61              0.61 0.61 0.39 0.37 1.96
nass_6  0.49  0.67              0.72 0.72 0.28 0.33 1.99
nass_7  0.21              0.98  1.00 1.00 0.00 0.04 1.09
nass_8  0.34  0.38              0.28 0.28 0.72 0.41 2.22
nass_9  0.47  0.64              0.64 0.64 0.36 0.35 1.89
nass_10 0.28        0.31        0.21 0.21 0.79 0.37 2.85
nass_11 0.59  0.51              0.65 0.65 0.35 0.54 2.20
nass_12 0.30        0.22  0.21       0.18 0.82 0.49 2.69

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
2.48 2.02 0.96 1.14 4.43 

general/max  0.56   max/min =   4.63
mean percent general =  0.39    with sd =  0.15 and cv of  0.4 
Explained Common Variance of the general factor =  0.38 

The degrees of freedom are 33  and the fit is  0.6 
The number of observations was  52  with Chi Square =  26.38  with prob <  0.79
The root mean square of the residuals is  0.04 
The df corrected root mean square of the residuals is  0.06
RMSEA index =  0  and the 90 % confidence intervals are  0 0.07
BIC =  -104.01

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  2.7 
The number of observations was  52  with Chi Square =  123.03  with prob <  2.6e-07
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.21 

RMSEA index =  0.156  and the 90 % confidence intervals are  0.121 0.195
BIC =  -90.34 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.79 0.83 0.71 1.00
Multiple R square of scores with factors      0.62 0.68 0.50 1.00
Minimum correlation of factor score estimates 0.24 0.36 0.01 0.99

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.89 0.87 0.75 1.00
Omega general for total scores and subscales  0.53 0.34 0.41 0.04
Omega group for total scores and subscales    0.33 0.53 0.34 0.96

NAtive American Acculturation Scale

omega(dfSSTnaas)
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
The estimated weights for the factor scores are probably incorrect.  Try a
different factor score estimation method.
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
ultra-Heywood case was detected.  Examine the results carefully
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cov2cor(t(w) %*% r %*% w): diag(V) had non-positive or NA entries;
the non-finite result may be dubious
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.79 
G.6:                   0.88 
Omega Hierarchical:    0.61 
Omega H asymptotic:    0.71 
Omega Total            0.86 

Schmid Leiman Factor loadings greater than  0.2 
           g   F1* F2*   F3*   h2   h2   u2   p2  com
naas_1  0.33  0.49           0.36 0.36 0.64 0.30 1.77
naas_2  0.52  0.37           0.41 0.41 0.59 0.66 1.80
naas_3                  0.88 0.78 0.78 0.22 0.00 1.01
naas_4                  0.62 0.40 0.40 0.60 0.00 1.02
naas_5-                -0.20      0.06 0.94 0.33 1.81
naas_6  0.39 -0.32           0.25 0.25 0.75 0.62 1.94
naas_7  0.51 -0.29           0.35 0.35 0.65 0.74 1.65
naas_8  0.45            0.26 0.27 0.27 0.73 0.74 1.60
naas_9  0.39                      0.17 0.83 0.87 1.40
naas_10 0.40            0.23 0.22 0.22 0.78 0.71 1.67
naas_11                 0.51 0.27 0.27 0.73 0.03 1.12
naas_12 0.54                 0.34 0.34 0.66 0.87 1.27
naas_13 0.73  0.25           0.60 0.60 0.40 0.89 1.24
naas_14 0.62                 0.40 0.40 0.60 0.97 1.07
naas_15       0.87           0.77 0.77 0.23 0.02 1.05
naas_16 0.29  0.78           0.70 0.70 0.30 0.12 1.29
naas_17       0.87           0.77 0.77 0.23 0.02 1.05
naas_18 0.30            0.42 0.27 0.27 0.73 0.32 2.02
naas_19 0.24            0.75 0.62 0.62 0.38 0.10 1.22
naas_20 0.74                 0.58 0.58 0.42 0.93 1.13

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.4 2.8 0.0 2.4 4.6 

general/max  0.73   max/min =   Inf
mean percent general =  0.46    with sd =  0.37 and cv of  0.8 
Explained Common Variance of the general factor =  0.39 

The degrees of freedom are 133  and the fit is  24.3 
The number of observations was  52  with Chi Square =  1008.36  with prob <  2e-134
The root mean square of the residuals is  0.09 
The df corrected root mean square of the residuals is  0.1
RMSEA index =  0.355  and the 90 % confidence intervals are  0.339 0.38
BIC =  482.84

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 170  and the fit is  28.77 
The number of observations was  52  with Chi Square =  1232.5  with prob <  1.8e-160
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.346  and the 90 % confidence intervals are  0.332 0.369
BIC =  560.79 

Measures of factor score adequacy             
                                                 g  F1* F2*  F3*
Correlation of scores with factors            0.92 0.95   0 0.94
Multiple R square of scores with factors      0.85 0.91   0 0.89
Minimum correlation of factor score estimates 0.70 0.81  -1 0.79

 Total, General and Subset omega for each subset
                                                 g  F1* F2*  F3*
Omega total for total scores and subscales    0.86 0.83  NA 0.76
Omega general for total scores and subscales  0.61 0.60  NA 0.21
Omega group for total scores and subscales    0.27 0.23  NA 0.55

4.2 Cronbach’s alpha and MacDonald’s omega in MID sample for cultural self-reports

American Indian Enculturation Scale

omega(dfMIDaies)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.87 
G.6:                   0.94 
Omega Hierarchical:    0.53 
Omega H asymptotic:    0.59 
Omega Total            0.91 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*    h2   h2   u2   p2  com
aies_1   0.29        0.36 -0.29  0.30 0.30 0.70 0.29 2.91
aies_2   0.62        0.66        0.83 0.83 0.17 0.47 2.02
aies_3   0.59        0.56        0.66 0.66 0.34 0.52 2.04
aies_4   0.46        0.43  0.30  0.49 0.49 0.51 0.44 2.72
aies_5   0.45  0.49        0.24  0.50 0.50 0.50 0.40 2.46
aies_6   0.29  0.39        0.34  0.36 0.36 0.64 0.24 2.96
aies_7   0.54        0.61        0.67 0.67 0.33 0.43 1.99
aies_8   0.41  0.39        0.28  0.40 0.40 0.60 0.42 2.81
aies_9   0.47  0.55              0.55 0.55 0.45 0.40 2.22
aies_10  0.39  0.54              0.46 0.46 0.54 0.32 1.95
aies_11  0.55  0.47  0.25        0.60 0.60 0.40 0.50 2.51
aies_12  0.39  0.65              0.61 0.61 0.39 0.25 1.78
aies_13  0.31              0.42  0.31 0.31 0.69 0.32 2.22
aies_14  0.55  0.20  0.46        0.57 0.57 0.43 0.54 2.30
aies_15                    0.34       0.19 0.81 0.11 2.36
aies_16  0.46  0.33        0.47  0.55 0.55 0.45 0.38 2.90
aies_17                    0.64  0.43 0.43 0.57 0.03 1.09

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.2 2.0 1.8 1.5 4.6 

general/max  0.7   max/min =   3.18
mean percent general =  0.36    with sd =  0.14 and cv of  0.39 
Explained Common Variance of the general factor =  0.38 

The degrees of freedom are 88  and the fit is  3.76 
The number of observations was  44  with Chi Square =  129.85  with prob <  0.0025
The root mean square of the residuals is  0.08 
The df corrected root mean square of the residuals is  0.1
RMSEA index =  0.101  and the 90 % confidence intervals are  0.064 0.142
BIC =  -203.16

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 119  and the fit is  6.65 
The number of observations was  44  with Chi Square =  238.3  with prob <  5.4e-10
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.149  and the 90 % confidence intervals are  0.124 0.181
BIC =  -212.01 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.75 0.81 0.75 0.84
Multiple R square of scores with factors      0.57 0.66 0.57 0.70
Minimum correlation of factor score estimates 0.13 0.32 0.13 0.40

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.91 0.84 0.87 0.58
Omega general for total scores and subscales  0.53 0.35 0.44 0.13
Omega group for total scores and subscales    0.27 0.49 0.44 0.44

Historical Loss Scale

omega(dfMIDhls)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.94 
G.6:                   0.96 
Omega Hierarchical:    0.8 
Omega H asymptotic:    0.83 
Omega Total            0.96 

Schmid Leiman Factor loadings greater than  0.2 
          g   F1*   F2*   F3*   h2   h2   u2   p2  com
hls_1  0.59        0.54       0.65 0.65 0.35 0.54 2.02
hls_2  0.58        0.59       0.69 0.69 0.31 0.49 2.02
hls_3  0.59        0.62       0.75 0.75 0.25 0.47 2.03
hls_4  0.65        0.48       0.66 0.66 0.34 0.64 1.90
hls_5  0.73  0.20        0.22 0.63 0.63 0.37 0.85 1.37
hls_6  0.59  0.31             0.45 0.45 0.55 0.78 1.53
hls_7  0.75  0.52             0.83 0.83 0.17 0.67 1.79
hls_8  0.75  0.38             0.72 0.72 0.28 0.79 1.51
hls_9  0.75              0.46 0.77 0.77 0.23 0.73 1.66
hls_10 0.81              0.55 0.96 0.96 0.04 0.68 1.77
hls_11 0.71              0.30 0.62 0.62 0.38 0.81 1.47
hls_12 0.72  0.36             0.66 0.66 0.34 0.79 1.52

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
5.71 0.70 1.30 0.67 6.02 

general/max  0.95   max/min =   8.98
mean percent general =  0.69    with sd =  0.13 and cv of  0.19 
Explained Common Variance of the general factor =  0.68 

The degrees of freedom are 33  and the fit is  1.67 
The number of observations was  44  with Chi Square =  60.5  with prob <  0.0024
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0.136  and the 90 % confidence intervals are  0.082 0.194
BIC =  -64.37

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  3.77 
The number of observations was  44  with Chi Square =  141.36  with prob <  9.4e-10
The root mean square of the residuals is  0.13 
The df corrected root mean square of the residuals is  0.15 

RMSEA index =  0.19  and the 90 % confidence intervals are  0.155 0.233
BIC =  -62.98 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.91 0.71 0.83 0.76
Multiple R square of scores with factors      0.83 0.50 0.69 0.58
Minimum correlation of factor score estimates 0.66 0.00 0.38 0.16

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.96 0.89 0.89 0.91
Omega general for total scores and subscales  0.80 0.68 0.48 0.72
Omega group for total scores and subscales    0.12 0.21 0.41 0.19

Native American Spirituality Scale

omega(dfMIDnass)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.85 
G.6:                   0.91 
Omega Hierarchical:    0.64 
Omega H asymptotic:    0.71 
Omega Total            0.91 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*    h2   h2   u2   p2  com
nass_1   0.53        0.62        0.69 0.69 0.31 0.40 2.16
nass_2   0.58        0.70        0.85 0.85 0.15 0.40 2.05
nass_3               0.30 -0.23       0.16 0.84 0.00 2.31
nass_4   0.50  0.33              0.37 0.37 0.63 0.67 1.84
nass_5   0.63  0.44              0.59 0.59 0.41 0.67 1.79
nass_6   0.74  0.49              0.81 0.81 0.19 0.68 1.81
nass_7   0.20              0.69  0.52 0.52 0.48 0.08 1.17
nass_8   0.47  0.40              0.40 0.40 0.60 0.55 2.16
nass_9   0.68  0.45              0.69 0.69 0.31 0.68 1.81
nass_10  0.60        0.59        0.73 0.73 0.27 0.49 2.10
nass_11  0.70  0.30  0.33        0.68 0.68 0.32 0.71 1.83
nass_12  0.31        0.29  0.38  0.32 0.32 0.68 0.30 2.86

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.5 1.0 1.5 0.8 4.4 

general/max  0.8   max/min =   5.48
mean percent general =  0.47    with sd =  0.24 and cv of  0.52 
Explained Common Variance of the general factor =  0.51 

The degrees of freedom are 33  and the fit is  1.22 
The number of observations was  44  with Chi Square =  43.96  with prob <  0.096
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0.084  and the 90 % confidence intervals are  0 0.151
BIC =  -80.91

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  3.17 
The number of observations was  44  with Chi Square =  118.72  with prob <  9.3e-07
The root mean square of the residuals is  0.16 
The df corrected root mean square of the residuals is  0.17 

RMSEA index =  0.163  and the 90 % confidence intervals are  0.126 0.208
BIC =  -85.63 

Measures of factor score adequacy             
                                                 g   F1*  F2*  F3*
Correlation of scores with factors            0.83  0.61 0.83 0.82
Multiple R square of scores with factors      0.69  0.37 0.70 0.66
Minimum correlation of factor score estimates 0.38 -0.26 0.39 0.33

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.91 0.86 0.87 0.53
Omega general for total scores and subscales  0.64 0.58 0.41 0.10
Omega group for total scores and subscales    0.22 0.28 0.46 0.43

Native American Acculturation Scale

omega(dfMIDnaas)
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.79 
G.6:                   0.89 
Omega Hierarchical:    0.22 
Omega H asymptotic:    0.25 
Omega Total            0.86 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*    h2   h2   u2   p2  com
naas_1         0.43              0.20 0.20 0.80 0.03 1.13
naas_2         0.93              0.90 0.90 0.10 0.04 1.09
naas_3   0.31        0.84        0.81 0.81 0.19 0.12 1.27
naas_4               0.44        0.21 0.21 0.79 0.10 1.22
naas_5               0.37             0.18 0.82 0.07 1.71
naas_6   0.23              0.63  0.48 0.48 0.52 0.11 1.40
naas_7   0.25              0.64  0.48 0.48 0.52 0.13 1.36
naas_8   0.30        0.32  0.40  0.36 0.36 0.64 0.26 2.82
naas_9                     0.34       0.13 0.87 0.14 1.36
naas_10  0.28        0.26  0.34  0.28 0.28 0.72 0.28 3.24
naas_11              0.58        0.39 0.39 0.61 0.06 1.32
naas_12  0.21              0.37       0.19 0.81 0.23 1.82
naas_13  0.20  0.45        0.26  0.32 0.32 0.68 0.13 2.08
naas_14  0.33              0.62  0.52 0.52 0.48 0.21 1.62
naas_15        0.66              0.51 0.51 0.49 0.05 1.32
naas_16        0.73              0.56 0.56 0.44 0.03 1.12
naas_17        0.93              0.90 0.90 0.10 0.04 1.09
naas_18  0.23        0.44        0.28 0.28 0.72 0.19 1.95
naas_19  0.27        0.78        0.68 0.68 0.32 0.11 1.25
naas_20  0.30  0.41        0.39  0.41 0.41 0.59 0.21 2.91

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
0.98 3.40 2.42 1.99 4.93 

general/max  0.2   max/min =   2.47
mean percent general =  0.13    with sd =  0.08 and cv of  0.62 
Explained Common Variance of the general factor =  0.11 

The degrees of freedom are 133  and the fit is  23.86 
The number of observations was  44  with Chi Square =  799.32  with prob <  1.2e-95
The root mean square of the residuals is  0.09 
The df corrected root mean square of the residuals is  0.11
RMSEA index =  0.337  and the 90 % confidence intervals are  0.319 0.364
BIC =  296.03

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 170  and the fit is  30.47 
The number of observations was  44  with Chi Square =  1061.38  with prob <  9.2e-129
The root mean square of the residuals is  0.23 
The df corrected root mean square of the residuals is  0.25 

RMSEA index =  0.344  and the 90 % confidence intervals are  0.329 0.369
BIC =  418.07 

Measures of factor score adequacy             
                                                  g  F1*  F2*  F3*
Correlation of scores with factors             0.49 0.96 0.91 0.83
Multiple R square of scores with factors       0.24 0.92 0.83 0.69
Minimum correlation of factor score estimates -0.51 0.84 0.66 0.38

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.86 0.86 0.81 0.74
Omega general for total scores and subscales  0.22 0.06 0.09 0.16
Omega group for total scores and subscales    0.54 0.80 0.72 0.58

4.3 Cronbach’s alpha and MacDonald’s omega in Merged smaple for cultural self-reports

American Indian Enculturation Scale

omega(dfMergedAies)
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.88 
G.6:                   0.94 
Omega Hierarchical:    0.71 
Omega H asymptotic:    0.78 
Omega Total            0.92 

Schmid Leiman Factor loadings greater than  0.2 
             g   F1*   F2*   F3*    h2   h2   u2   p2  com
aies_1-   0.24 -0.26                   0.15 0.85 0.37 2.73
aies_2          0.72        0.28  0.59 0.59 0.41 0.00 1.31
aies_3-        -0.70              0.52 0.52 0.48 0.06 1.13
aies_4-   0.27 -0.57              0.42 0.42 0.58 0.17 1.62
aies_5-   0.24 -0.60              0.44 0.44 0.56 0.13 1.42
aies_6-   0.27 -0.35              0.22 0.22 0.78 0.34 2.25
aies_7          0.75        0.27  0.63 0.63 0.37 0.00 1.26
aies_8-        -0.48              0.27 0.27 0.73 0.05 1.35
aies_9-   0.23 -0.49              0.31 0.31 0.69 0.17 1.56
aies_10-       -0.41        0.34  0.30 0.30 0.70 0.03 2.04
aies_11         0.69              0.49 0.49 0.51 0.01 1.05
aies_12-       -0.38        0.38  0.31 0.31 0.69 0.07 2.30
aies_13         0.46              0.25 0.25 0.75 0.05 1.27
aies_14-       -0.76              0.59 0.59 0.41 0.01 1.06
aies_15   0.25             -0.21       0.12 0.88 0.52 2.36
aies_16-       -0.59              0.39 0.39 0.61 0.02 1.19
aies_17         0.24                   0.08 0.92 0.02 1.71
naas_1         -0.21        0.43  0.24 0.24 0.76 0.01 1.48
naas_2    0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_3         -0.20       -0.37       0.17 0.83 0.00 1.55
naas_4                                 0.05 0.95 0.21 1.70
naas_5-   0.25              0.22       0.11 0.89 0.53 2.22
naas_6-   0.25                         0.10 0.90 0.65 1.85
naas_7-   0.33  0.31              0.21 0.21 0.79 0.53 2.01
naas_8-         0.29                   0.09 0.91 0.09 1.28
naas_9         -0.26                   0.10 0.90 0.08 1.91
naas_10   0.40                         0.19 0.81 0.83 1.41
naas_11                    -0.22       0.08 0.92 0.05 2.00
naas_12-        0.43              0.20 0.20 0.80 0.02 1.24
naas_13        -0.63        0.20  0.48 0.48 0.52 0.06 1.37
naas_14        -0.37                   0.14 0.86 0.03 1.08
naas_15   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_16   0.46 -0.32        0.45  0.52 0.52 0.48 0.41 2.79
naas_17   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_18   0.23 -0.46       -0.31  0.35 0.35 0.65 0.15 2.27
naas_19   0.23 -0.23       -0.47  0.32 0.32 0.68 0.16 1.96
naas_20        -0.87              0.76 0.76 0.24 0.00 1.01
nass_1-   0.41             -0.53  0.47 0.47 0.53 0.36 2.05
nass_2-   0.33             -0.62  0.51 0.51 0.49 0.21 1.57
nass_3-                                0.04 0.96 0.14 1.48
nass_4-   0.29 -0.33       -0.36  0.32 0.32 0.68 0.26 2.91
nass_5-        -0.25       -0.51  0.35 0.35 0.65 0.09 1.72
nass_6-   0.24             -0.60  0.43 0.43 0.57 0.13 1.38
nass_7-        -0.75              0.57 0.57 0.43 0.00 1.01
nass_8-        -0.35       -0.34  0.24 0.24 0.76 0.02 2.09
nass_9-        -0.31       -0.48  0.34 0.34 0.66 0.05 1.87
nass_10-  0.51             -0.41  0.44 0.44 0.56 0.59 2.04
nass_11-  0.30             -0.65  0.53 0.53 0.47 0.16 1.53
nass_12-  0.33 -0.21       -0.20       0.19 0.81 0.58 2.38
hls_1     0.67                    0.47 0.47 0.53 0.95 1.11
hls_2     0.66 -0.20        0.25  0.53 0.53 0.47 0.81 1.48
hls_3     0.66                    0.45 0.45 0.55 0.97 1.07
hls_4     0.72                    0.55 0.55 0.45 0.95 1.11
hls_5     0.77             -0.21  0.66 0.66 0.34 0.91 1.20
hls_6     0.56  0.28              0.40 0.40 0.60 0.78 1.54
hls_7     0.74             -0.28  0.64 0.64 0.36 0.87 1.29
hls_8     0.74                    0.58 0.58 0.42 0.94 1.12
hls_9     0.70                    0.51 0.51 0.49 0.96 1.08
hls_10    0.78                    0.63 0.63 0.37 0.96 1.08
hls_11    0.77                    0.61 0.61 0.39 0.99 1.03
hls_12    0.78             -0.21  0.65 0.65 0.35 0.92 1.16

With Sums of squares  of:
    g   F1*   F2*   F3*    h2 
 9.04  8.94  0.04  5.07 10.98 

general/max  0.82   max/min =   262.82
mean percent general =  0.34    with sd =  0.35 and cv of  1.03 
Explained Common Variance of the general factor =  0.39 

The degrees of freedom are 1650  and the fit is  497.67 
The number of observations was  40  with Chi Square =  7879.75  with prob <  0
The root mean square of the residuals is  0.11 
The df corrected root mean square of the residuals is  0.12
RMSEA index =  0.306  and the 90 % confidence intervals are  0.304 0.318
BIC =  1793.1

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 1769  and the fit is  512.35 
The number of observations was  40  with Chi Square =  8795.28  with prob <  0
The root mean square of the residuals is  0.2 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.314  and the 90 % confidence intervals are  0.313 0.326
BIC =  2269.65 

Measures of factor score adequacy             
                                                 g  F1*   F2*  F3*
Correlation of scores with factors            0.97 0.97  0.07 0.95
Multiple R square of scores with factors      0.95 0.95  0.00 0.90
Minimum correlation of factor score estimates 0.90 0.90 -0.99 0.80

 Total, General and Subset omega for each subset
                                                 g  F1* F2*  F3*
Omega total for total scores and subscales    0.92 0.77  NA 0.72
Omega general for total scores and subscales  0.71 0.58  NA 0.63
Omega group for total scores and subscales    0.08 0.19  NA 0.09

Historical Loss Scale

omega(dfMergedHls)
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.88 
G.6:                   0.94 
Omega Hierarchical:    0.71 
Omega H asymptotic:    0.78 
Omega Total            0.92 

Schmid Leiman Factor loadings greater than  0.2 
             g   F1*   F2*   F3*    h2   h2   u2   p2  com
aies_1-   0.24 -0.26                   0.15 0.85 0.37 2.73
aies_2          0.72        0.28  0.59 0.59 0.41 0.00 1.31
aies_3-        -0.70              0.52 0.52 0.48 0.06 1.13
aies_4-   0.27 -0.57              0.42 0.42 0.58 0.17 1.62
aies_5-   0.24 -0.60              0.44 0.44 0.56 0.13 1.42
aies_6-   0.27 -0.35              0.22 0.22 0.78 0.34 2.25
aies_7          0.75        0.27  0.63 0.63 0.37 0.00 1.26
aies_8-        -0.48              0.27 0.27 0.73 0.05 1.35
aies_9-   0.23 -0.49              0.31 0.31 0.69 0.17 1.56
aies_10-       -0.41        0.34  0.30 0.30 0.70 0.03 2.04
aies_11         0.69              0.49 0.49 0.51 0.01 1.05
aies_12-       -0.38        0.38  0.31 0.31 0.69 0.07 2.30
aies_13         0.46              0.25 0.25 0.75 0.05 1.27
aies_14-       -0.76              0.59 0.59 0.41 0.01 1.06
aies_15   0.25             -0.21       0.12 0.88 0.52 2.36
aies_16-       -0.59              0.39 0.39 0.61 0.02 1.19
aies_17         0.24                   0.08 0.92 0.02 1.71
naas_1         -0.21        0.43  0.24 0.24 0.76 0.01 1.48
naas_2    0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_3         -0.20       -0.37       0.17 0.83 0.00 1.55
naas_4                                 0.05 0.95 0.21 1.70
naas_5-   0.25              0.22       0.11 0.89 0.53 2.22
naas_6-   0.25                         0.10 0.90 0.65 1.85
naas_7-   0.33  0.31              0.21 0.21 0.79 0.53 2.01
naas_8-         0.29                   0.09 0.91 0.09 1.28
naas_9         -0.26                   0.10 0.90 0.08 1.91
naas_10   0.40                         0.19 0.81 0.83 1.41
naas_11                    -0.22       0.08 0.92 0.05 2.00
naas_12-        0.43              0.20 0.20 0.80 0.02 1.24
naas_13        -0.63        0.20  0.48 0.48 0.52 0.06 1.37
naas_14        -0.37                   0.14 0.86 0.03 1.08
naas_15   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_16   0.46 -0.32        0.45  0.52 0.52 0.48 0.41 2.79
naas_17   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_18   0.23 -0.46       -0.31  0.35 0.35 0.65 0.15 2.27
naas_19   0.23 -0.23       -0.47  0.32 0.32 0.68 0.16 1.96
naas_20        -0.87              0.76 0.76 0.24 0.00 1.01
nass_1-   0.41             -0.53  0.47 0.47 0.53 0.36 2.05
nass_2-   0.33             -0.62  0.51 0.51 0.49 0.21 1.57
nass_3-                                0.04 0.96 0.14 1.48
nass_4-   0.29 -0.33       -0.36  0.32 0.32 0.68 0.26 2.91
nass_5-        -0.25       -0.51  0.35 0.35 0.65 0.09 1.72
nass_6-   0.24             -0.60  0.43 0.43 0.57 0.13 1.38
nass_7-        -0.75              0.57 0.57 0.43 0.00 1.01
nass_8-        -0.35       -0.34  0.24 0.24 0.76 0.02 2.09
nass_9-        -0.31       -0.48  0.34 0.34 0.66 0.05 1.87
nass_10-  0.51             -0.41  0.44 0.44 0.56 0.59 2.04
nass_11-  0.30             -0.65  0.53 0.53 0.47 0.16 1.53
nass_12-  0.33 -0.21       -0.20       0.19 0.81 0.58 2.38
hls_1     0.67                    0.47 0.47 0.53 0.95 1.11
hls_2     0.66 -0.20        0.25  0.53 0.53 0.47 0.81 1.48
hls_3     0.66                    0.45 0.45 0.55 0.97 1.07
hls_4     0.72                    0.55 0.55 0.45 0.95 1.11
hls_5     0.77             -0.21  0.66 0.66 0.34 0.91 1.20
hls_6     0.56  0.28              0.40 0.40 0.60 0.78 1.54
hls_7     0.74             -0.28  0.64 0.64 0.36 0.87 1.29
hls_8     0.74                    0.58 0.58 0.42 0.94 1.12
hls_9     0.70                    0.51 0.51 0.49 0.96 1.08
hls_10    0.78                    0.63 0.63 0.37 0.96 1.08
hls_11    0.77                    0.61 0.61 0.39 0.99 1.03
hls_12    0.78             -0.21  0.65 0.65 0.35 0.92 1.16

With Sums of squares  of:
    g   F1*   F2*   F3*    h2 
 9.04  8.94  0.04  5.07 10.98 

general/max  0.82   max/min =   262.82
mean percent general =  0.34    with sd =  0.35 and cv of  1.03 
Explained Common Variance of the general factor =  0.39 

The degrees of freedom are 1650  and the fit is  497.67 
The number of observations was  40  with Chi Square =  7879.75  with prob <  0
The root mean square of the residuals is  0.11 
The df corrected root mean square of the residuals is  0.12
RMSEA index =  0.306  and the 90 % confidence intervals are  0.304 0.318
BIC =  1793.1

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 1769  and the fit is  512.35 
The number of observations was  40  with Chi Square =  8795.28  with prob <  0
The root mean square of the residuals is  0.2 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.314  and the 90 % confidence intervals are  0.313 0.326
BIC =  2269.65 

Measures of factor score adequacy             
                                                 g  F1*   F2*  F3*
Correlation of scores with factors            0.97 0.97  0.07 0.95
Multiple R square of scores with factors      0.95 0.95  0.00 0.90
Minimum correlation of factor score estimates 0.90 0.90 -0.99 0.80

 Total, General and Subset omega for each subset
                                                 g  F1* F2*  F3*
Omega total for total scores and subscales    0.92 0.77  NA 0.72
Omega general for total scores and subscales  0.71 0.58  NA 0.63
Omega group for total scores and subscales    0.08 0.19  NA 0.09

Native American Spirituality Scale

omega(dfMergedNass)
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.88 
G.6:                   0.94 
Omega Hierarchical:    0.71 
Omega H asymptotic:    0.78 
Omega Total            0.92 

Schmid Leiman Factor loadings greater than  0.2 
             g   F1*   F2*   F3*    h2   h2   u2   p2  com
aies_1-   0.24 -0.26                   0.15 0.85 0.37 2.73
aies_2          0.72        0.28  0.59 0.59 0.41 0.00 1.31
aies_3-        -0.70              0.52 0.52 0.48 0.06 1.13
aies_4-   0.27 -0.57              0.42 0.42 0.58 0.17 1.62
aies_5-   0.24 -0.60              0.44 0.44 0.56 0.13 1.42
aies_6-   0.27 -0.35              0.22 0.22 0.78 0.34 2.25
aies_7          0.75        0.27  0.63 0.63 0.37 0.00 1.26
aies_8-        -0.48              0.27 0.27 0.73 0.05 1.35
aies_9-   0.23 -0.49              0.31 0.31 0.69 0.17 1.56
aies_10-       -0.41        0.34  0.30 0.30 0.70 0.03 2.04
aies_11         0.69              0.49 0.49 0.51 0.01 1.05
aies_12-       -0.38        0.38  0.31 0.31 0.69 0.07 2.30
aies_13         0.46              0.25 0.25 0.75 0.05 1.27
aies_14-       -0.76              0.59 0.59 0.41 0.01 1.06
aies_15   0.25             -0.21       0.12 0.88 0.52 2.36
aies_16-       -0.59              0.39 0.39 0.61 0.02 1.19
aies_17         0.24                   0.08 0.92 0.02 1.71
naas_1         -0.21        0.43  0.24 0.24 0.76 0.01 1.48
naas_2    0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_3         -0.20       -0.37       0.17 0.83 0.00 1.55
naas_4                                 0.05 0.95 0.21 1.70
naas_5-   0.25              0.22       0.11 0.89 0.53 2.22
naas_6-   0.25                         0.10 0.90 0.65 1.85
naas_7-   0.33  0.31              0.21 0.21 0.79 0.53 2.01
naas_8-         0.29                   0.09 0.91 0.09 1.28
naas_9         -0.26                   0.10 0.90 0.08 1.91
naas_10   0.40                         0.19 0.81 0.83 1.41
naas_11                    -0.22       0.08 0.92 0.05 2.00
naas_12-        0.43              0.20 0.20 0.80 0.02 1.24
naas_13        -0.63        0.20  0.48 0.48 0.52 0.06 1.37
naas_14        -0.37                   0.14 0.86 0.03 1.08
naas_15   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_16   0.46 -0.32        0.45  0.52 0.52 0.48 0.41 2.79
naas_17   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_18   0.23 -0.46       -0.31  0.35 0.35 0.65 0.15 2.27
naas_19   0.23 -0.23       -0.47  0.32 0.32 0.68 0.16 1.96
naas_20        -0.87              0.76 0.76 0.24 0.00 1.01
nass_1-   0.41             -0.53  0.47 0.47 0.53 0.36 2.05
nass_2-   0.33             -0.62  0.51 0.51 0.49 0.21 1.57
nass_3-                                0.04 0.96 0.14 1.48
nass_4-   0.29 -0.33       -0.36  0.32 0.32 0.68 0.26 2.91
nass_5-        -0.25       -0.51  0.35 0.35 0.65 0.09 1.72
nass_6-   0.24             -0.60  0.43 0.43 0.57 0.13 1.38
nass_7-        -0.75              0.57 0.57 0.43 0.00 1.01
nass_8-        -0.35       -0.34  0.24 0.24 0.76 0.02 2.09
nass_9-        -0.31       -0.48  0.34 0.34 0.66 0.05 1.87
nass_10-  0.51             -0.41  0.44 0.44 0.56 0.59 2.04
nass_11-  0.30             -0.65  0.53 0.53 0.47 0.16 1.53
nass_12-  0.33 -0.21       -0.20       0.19 0.81 0.58 2.38
hls_1     0.67                    0.47 0.47 0.53 0.95 1.11
hls_2     0.66 -0.20        0.25  0.53 0.53 0.47 0.81 1.48
hls_3     0.66                    0.45 0.45 0.55 0.97 1.07
hls_4     0.72                    0.55 0.55 0.45 0.95 1.11
hls_5     0.77             -0.21  0.66 0.66 0.34 0.91 1.20
hls_6     0.56  0.28              0.40 0.40 0.60 0.78 1.54
hls_7     0.74             -0.28  0.64 0.64 0.36 0.87 1.29
hls_8     0.74                    0.58 0.58 0.42 0.94 1.12
hls_9     0.70                    0.51 0.51 0.49 0.96 1.08
hls_10    0.78                    0.63 0.63 0.37 0.96 1.08
hls_11    0.77                    0.61 0.61 0.39 0.99 1.03
hls_12    0.78             -0.21  0.65 0.65 0.35 0.92 1.16

With Sums of squares  of:
    g   F1*   F2*   F3*    h2 
 9.04  8.94  0.04  5.07 10.98 

general/max  0.82   max/min =   262.82
mean percent general =  0.34    with sd =  0.35 and cv of  1.03 
Explained Common Variance of the general factor =  0.39 

The degrees of freedom are 1650  and the fit is  497.67 
The number of observations was  40  with Chi Square =  7879.75  with prob <  0
The root mean square of the residuals is  0.11 
The df corrected root mean square of the residuals is  0.12
RMSEA index =  0.306  and the 90 % confidence intervals are  0.304 0.318
BIC =  1793.1

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 1769  and the fit is  512.35 
The number of observations was  40  with Chi Square =  8795.28  with prob <  0
The root mean square of the residuals is  0.2 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.314  and the 90 % confidence intervals are  0.313 0.326
BIC =  2269.65 

Measures of factor score adequacy             
                                                 g  F1*   F2*  F3*
Correlation of scores with factors            0.97 0.97  0.07 0.95
Multiple R square of scores with factors      0.95 0.95  0.00 0.90
Minimum correlation of factor score estimates 0.90 0.90 -0.99 0.80

 Total, General and Subset omega for each subset
                                                 g  F1* F2*  F3*
Omega total for total scores and subscales    0.92 0.77  NA 0.72
Omega general for total scores and subscales  0.71 0.58  NA 0.63
Omega group for total scores and subscales    0.08 0.19  NA 0.09

Native American Acculturation Scale

omega(dfMergedNaas)
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.88 
G.6:                   0.94 
Omega Hierarchical:    0.71 
Omega H asymptotic:    0.78 
Omega Total            0.92 

Schmid Leiman Factor loadings greater than  0.2 
             g   F1*   F2*   F3*    h2   h2   u2   p2  com
aies_1-   0.24 -0.26                   0.15 0.85 0.37 2.73
aies_2          0.72        0.28  0.59 0.59 0.41 0.00 1.31
aies_3-        -0.70              0.52 0.52 0.48 0.06 1.13
aies_4-   0.27 -0.57              0.42 0.42 0.58 0.17 1.62
aies_5-   0.24 -0.60              0.44 0.44 0.56 0.13 1.42
aies_6-   0.27 -0.35              0.22 0.22 0.78 0.34 2.25
aies_7          0.75        0.27  0.63 0.63 0.37 0.00 1.26
aies_8-        -0.48              0.27 0.27 0.73 0.05 1.35
aies_9-   0.23 -0.49              0.31 0.31 0.69 0.17 1.56
aies_10-       -0.41        0.34  0.30 0.30 0.70 0.03 2.04
aies_11         0.69              0.49 0.49 0.51 0.01 1.05
aies_12-       -0.38        0.38  0.31 0.31 0.69 0.07 2.30
aies_13         0.46              0.25 0.25 0.75 0.05 1.27
aies_14-       -0.76              0.59 0.59 0.41 0.01 1.06
aies_15   0.25             -0.21       0.12 0.88 0.52 2.36
aies_16-       -0.59              0.39 0.39 0.61 0.02 1.19
aies_17         0.24                   0.08 0.92 0.02 1.71
naas_1         -0.21        0.43  0.24 0.24 0.76 0.01 1.48
naas_2    0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_3         -0.20       -0.37       0.17 0.83 0.00 1.55
naas_4                                 0.05 0.95 0.21 1.70
naas_5-   0.25              0.22       0.11 0.89 0.53 2.22
naas_6-   0.25                         0.10 0.90 0.65 1.85
naas_7-   0.33  0.31              0.21 0.21 0.79 0.53 2.01
naas_8-         0.29                   0.09 0.91 0.09 1.28
naas_9         -0.26                   0.10 0.90 0.08 1.91
naas_10   0.40                         0.19 0.81 0.83 1.41
naas_11                    -0.22       0.08 0.92 0.05 2.00
naas_12-        0.43              0.20 0.20 0.80 0.02 1.24
naas_13        -0.63        0.20  0.48 0.48 0.52 0.06 1.37
naas_14        -0.37                   0.14 0.86 0.03 1.08
naas_15   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_16   0.46 -0.32        0.45  0.52 0.52 0.48 0.41 2.79
naas_17   0.48 -0.41        0.45  0.61 0.61 0.39 0.38 2.95
naas_18   0.23 -0.46       -0.31  0.35 0.35 0.65 0.15 2.27
naas_19   0.23 -0.23       -0.47  0.32 0.32 0.68 0.16 1.96
naas_20        -0.87              0.76 0.76 0.24 0.00 1.01
nass_1-   0.41             -0.53  0.47 0.47 0.53 0.36 2.05
nass_2-   0.33             -0.62  0.51 0.51 0.49 0.21 1.57
nass_3-                                0.04 0.96 0.14 1.48
nass_4-   0.29 -0.33       -0.36  0.32 0.32 0.68 0.26 2.91
nass_5-        -0.25       -0.51  0.35 0.35 0.65 0.09 1.72
nass_6-   0.24             -0.60  0.43 0.43 0.57 0.13 1.38
nass_7-        -0.75              0.57 0.57 0.43 0.00 1.01
nass_8-        -0.35       -0.34  0.24 0.24 0.76 0.02 2.09
nass_9-        -0.31       -0.48  0.34 0.34 0.66 0.05 1.87
nass_10-  0.51             -0.41  0.44 0.44 0.56 0.59 2.04
nass_11-  0.30             -0.65  0.53 0.53 0.47 0.16 1.53
nass_12-  0.33 -0.21       -0.20       0.19 0.81 0.58 2.38
hls_1     0.67                    0.47 0.47 0.53 0.95 1.11
hls_2     0.66 -0.20        0.25  0.53 0.53 0.47 0.81 1.48
hls_3     0.66                    0.45 0.45 0.55 0.97 1.07
hls_4     0.72                    0.55 0.55 0.45 0.95 1.11
hls_5     0.77             -0.21  0.66 0.66 0.34 0.91 1.20
hls_6     0.56  0.28              0.40 0.40 0.60 0.78 1.54
hls_7     0.74             -0.28  0.64 0.64 0.36 0.87 1.29
hls_8     0.74                    0.58 0.58 0.42 0.94 1.12
hls_9     0.70                    0.51 0.51 0.49 0.96 1.08
hls_10    0.78                    0.63 0.63 0.37 0.96 1.08
hls_11    0.77                    0.61 0.61 0.39 0.99 1.03
hls_12    0.78             -0.21  0.65 0.65 0.35 0.92 1.16

With Sums of squares  of:
    g   F1*   F2*   F3*    h2 
 9.04  8.94  0.04  5.07 10.98 

general/max  0.82   max/min =   262.82
mean percent general =  0.34    with sd =  0.35 and cv of  1.03 
Explained Common Variance of the general factor =  0.39 

The degrees of freedom are 1650  and the fit is  497.67 
The number of observations was  40  with Chi Square =  7879.75  with prob <  0
The root mean square of the residuals is  0.11 
The df corrected root mean square of the residuals is  0.12
RMSEA index =  0.306  and the 90 % confidence intervals are  0.304 0.318
BIC =  1793.1

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 1769  and the fit is  512.35 
The number of observations was  40  with Chi Square =  8795.28  with prob <  0
The root mean square of the residuals is  0.2 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.314  and the 90 % confidence intervals are  0.313 0.326
BIC =  2269.65 

Measures of factor score adequacy             
                                                 g  F1*   F2*  F3*
Correlation of scores with factors            0.97 0.97  0.07 0.95
Multiple R square of scores with factors      0.95 0.95  0.00 0.90
Minimum correlation of factor score estimates 0.90 0.90 -0.99 0.80

 Total, General and Subset omega for each subset
                                                 g  F1* F2*  F3*
Omega total for total scores and subscales    0.92 0.77  NA 0.72
Omega general for total scores and subscales  0.71 0.58  NA 0.63
Omega group for total scores and subscales    0.08 0.19  NA 0.09

5 Bivariate correlations

5.1 Correlation matrix for SST

labelCleanedSimpleTibble4SST<-tibble(
  Age=cleanedSimpleTibble4SST$AgeSST,
  'Corr N2 FCz'=cleanedSimpleTibble4SST$allCorrN2_FCz,
  'Corr P3 Pz'=cleanedSimpleTibble4SST$allCorrP3_Pz,
  'CRN FCz FCz'=cleanedSimpleTibble4SST$goCorrERN_FCz,
  'Corr Pe Pz'=cleanedSimpleTibble4SST$goCorrPe_Pz,
  'Resid. Incorr N2 FCz'=cleanedSimpleTibble4SST$N2resid,
  'Resid. Incorr P3 Pz'=cleanedSimpleTibble4SST$P3resid,
  'Resid. ERN FCz'=cleanedSimpleTibble4SST$ERNresid,
  'Resid Pe Pz'=cleanedSimpleTibble4SST$PeResid,
  'AIES'=cleanedSimpleTibble4SST$sstAIES,
  'NAAS'=cleanedSimpleTibble4SST$sstNAAS,
  'NASS'=cleanedSimpleTibble4SST$sstNASS,
  'HLS'=cleanedSimpleTibble4SST$sstHLS,
  'PROMIS Anxiety'=cleanedSimpleTibble4SST$sstPROMISanx,
  'PROMIS Alcohol Use'=cleanedSimpleTibble4SST$sstPROMISalcUse,
  'PROMIS Depression'=cleanedSimpleTibble4SST$sstPROMISdepress
)
# correlate the measures in the tibble
pSST<-corr.test(labelCleanedSimpleTibble4SST,method='spearman',adjust='none')$p
# write.csv(rAllsub,file='r.csv')
rSST<-corr.test(labelCleanedSimpleTibble4SST,method='spearman',adjust='none')$r
# write.csv(pAllsub,file='p.csv')
# create correlation matrix for all variables
corrplot(rSST,p.mat=pSST,method='color',diag=FALSE,type='lower',sig.level = c(0.001,0.01,0.05),pch.cex = 0.75, insig = 'label_sig',pch.col = 'black')

5.2 Correlation matrix for MID

labelCleanedSimpleTibble4MID<-tibble(
  Age=cleanedSimpleTibble4MID$AgeMID,
  "Loss Cue P3 Pz"=cleanedSimpleTibble4MID$P3pzMIDcueLoss,
  "No Gain Cue P3 Pz"=cleanedSimpleTibble4MID$P3pzMIDcueNogain,
  "Gain Cue P3 Pz"=cleanedSimpleTibble4MID$P3pzMIDcueGain,
  "Success SPN Fz"=cleanedSimpleTibble4MID$SPNfzMIDfeedbackSuccess,
  "Failure SPN Fz"=cleanedSimpleTibble4MID$SPNfzMIDfeedbackFail,
  "Gain RewP FCz"=cleanedSimpleTibble4MID$RewPfczMIDfeedbackGain,
  "AIES"=cleanedSimpleTibble4MID$midAIES,
  "NAAS"=cleanedSimpleTibble4MID$midNAAS,
  "NASS"=cleanedSimpleTibble4MID$midNASS,
  "HLS"=cleanedSimpleTibble4MID$midHLS,
  "PROMIS Anxiety"=cleanedSimpleTibble4MID$midPROMISanx,
  "PROMIS Alcohol Use"=cleanedSimpleTibble4MID$midPROMISalcUse,
  "PROMIS Depression"=cleanedSimpleTibble4MID$midPROMISdepress,
)
# correlate the measures in the tibble
pMID<-corr.test(labelCleanedSimpleTibble4MID,method='spearman',adjust='none')$p
# write.csv(rAllsub,file='r.csv')
rMID<-corr.test(labelCleanedSimpleTibble4MID,method='spearman',adjust='none')$r
# write.csv(pAllsub,file='p.csv')
# create correlation matrix for all variables
corrplot(rMID,p.mat=pMID,method='color',diag=FALSE,type='lower',sig.level = c(0.001,0.01,0.05),pch.cex = 0.75, insig = 'label_sig',pch.col = 'black')

5.3 Correlation matrix for SST + MID

labelsDfERPsMerged<-tibble(
  'Age'=dfERPsMerged$AgeSST,
  'Corr N2 FCz'=dfERPsMerged$allCorrN2_FCz,
  'Corr P3 Pz'=dfERPsMerged$allCorrP3_Pz,
  'CRN FCz FCz'=dfERPsMerged$goCorrERN_FCz,
  'Corr Pe Pz'=dfERPsMerged$goCorrPe_Pz,
  'Resid. Incorr N2 FCz'=dfERPsMerged$N2resid,
  'Resid. Incorr P3 Pz'=dfERPsMerged$P3resid,
  'Resid. ERN FCz'=dfERPsMerged$ERNresid,
  'Resid Pe Pz'=dfERPsMerged$PeResid,
  'AIES'=dfERPsMerged$sstAIES,
  'NAAS'=dfERPsMerged$sstNAAS,
  'NASS'=dfERPsMerged$sstNASS,
  'HLS'=dfERPsMerged$sstHLS,
  'Loss Cue P3 Pz'=dfERPsMerged$P3pzMIDcueLoss,
  'No Gain Cue P3 Pz'=dfERPsMerged$P3pzMIDcueNogain,
  'Gain Cue P3 Pz'=dfERPsMerged$P3pzMIDcueGain,
  'Success SPN Fz'=dfERPsMerged$SPNfzMIDfeedbackSuccess,
  'Failure SPN Fz'=dfERPsMerged$SPNfzMIDfeedbackFail,
  'Gain RewP FCz'=dfERPsMerged$RewPfczMIDfeedbackGain,
  'PROMIS Anxiety'=dfERPsMerged$midPROMISanx,
  'PROMIS Alcohol Use'=dfERPsMerged$midPROMISalcUse,
  'PROMIS Depression'=dfERPsMerged$midPROMISdepress
)
# correlate the measures in the tibble
pMerged<-corr.test(labelsDfERPsMerged,method='spearman',adjust='none')$p
# write.csv(rAllsub,file='r.csv')
rMerged<-corr.test(labelsDfERPsMerged,method='spearman',adjust='none')$r
# write.csv(pAllsub,file='p.csv')
# create correlation matrix for all variables
corrplot(rMerged,p.mat=pMerged,method='color',diag=FALSE,type='lower',sig.level = c(0.001,0.01,0.05),pch.cex = 0.75, insig = 'label_sig',pch.col = 'black')

6 Table 1

# re/create tibble for SST ERP sample
simpleTibble4SST<-tibble(
  id=dfSST$id,
  SexSST=dfSST$Gender,
  AgeSST=dfSST$Age,
  goIncorrERN_FCz=dfSST$ERNFCz_GoIncorr, 
  goCorrERN_FCz=dfSST$ERNFCz_GoCorr,
  allIncorrN2_FCz=dfSST$N2FCz_AllIncorrn59,
  allCorrN2_FCz=dfSST$N2FCz_AllCorrn59,
  allIncorrP3_Pz=dfSST$P3Pz_AllIncorrn59,
  allCorrP3_Pz=dfSST$P3Pz_AllCorrn59,
  goIncorrPe_Pz=dfSST$PePz_GoIncorr,
  goCorrPe_Pz=dfSST$PePz_GoCorr,
  sstPROMISanx=dfSST$PROMIS_AnxietyTscore,
  sstPROMISalcUse=dfSST$PROMIS_AlcoUseTscore,
  sstPROMISdepress=dfSST$PROMIS_DepressTscore,
  sstAIES=dfSST$AIES_scale,
  sstNAAS=dfSST$NAAS_scale,
  sstNASS=dfSST$NASS_scale,
  sstHLS=dfSST$HLS_scale
)
cleanedSimpleTibble4SST<-na.omit(simpleTibble4SST) # retains 51 participants
# residualized ERN
residual_incorrectFCzERN<-lm(goIncorrERN_FCz~goCorrERN_FCz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$ERNresid<-resid(residual_incorrectFCzERN)
# residualized correct N2
residual_correctFCzN2<-lm(allCorrN2_FCz~allIncorrN2_FCz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$N2corrResid<-resid(residual_correctFCzN2)
# residualized incorrect N2
residual_incorrectFCzN2<-lm(allIncorrN2_FCz~allCorrN2_FCz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$N2resid<-resid(residual_incorrectFCzN2)
# residualized correct P3
residual_correctPzP3<-lm(allCorrP3_Pz~allIncorrP3_Pz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$P3corrResid<-resid(residual_correctPzP3)
# residualized incorrect P3
residual_incorrectPzP3<-lm(allIncorrP3_Pz~allCorrP3_Pz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$P3resid<-resid(residual_incorrectPzP3)
# residualized Pe
residual_incorrectPzPe<-lm(goIncorrPe_Pz~goCorrPe_Pz,data=cleanedSimpleTibble4SST)
cleanedSimpleTibble4SST$PeResid<-resid(residual_incorrectPzPe)
# re/create tibble for MID ERP sample
simpleTibble4MID<-tibble(
  id=dfMID$id,
  SexMID=dfMID$Gender,
  AgeMID=dfMID$Age,
  P3pzMIDcueLoss=dfMID$P3pzMIDcueLoss,
  P3pzMIDcueNogain=dfMID$P3pzMIDcueNogain,
  P3pzMIDcueGain=dfMID$P3pzMIDcueGain,
  SPNfzMIDfeedbackSuccess=dfMID$SPNfzMIDfeedbackSuccess,
  SPNfzMIDfeedbackFail=dfMID$SPNfzMIDfeedbackFail,
  RewPfczMIDfeedbackGain=dfMID$RewPfczMIDfeedbackGain,
  midPROMISanx=dfMID$PROMIS_AnxietyTscore,
  midPROMISalcUse=dfMID$PROMIS_AlcoUseTscore,
  midPROMISdepress=dfMID$PROMIS_DepressTscore,
  midAIES=dfMID$AIES_scale,
  midNAAS=dfMID$NAAS_scale,
  midNASS=dfMID$NASS_scale,
  midHLS=dfMID$HLS_scale
)
cleanedSimpleTibble4MID<-na.omit(simpleTibble4MID)
# re/merge tibble for SST + MID ERP sample
dfERPsMerged<-merge(cleanedSimpleTibble4SST,cleanedSimpleTibble4MID,by='id')
# loading appropriate, cleaned dataframes before tibbl'ing and merging
cleanedSimpleTibble4SST$Sample="SST"
cleanedSimpleTibble4MID$Sample="MID"
dfERPsMerged$Sample="SST+MID"
# merge dataframes by id 
dfTibble4TableSST<-merge(cleanedSimpleTibble4SST,dfSSTdemo,by='id')
dfTibble4TableMID<-merge(cleanedSimpleTibble4MID,dfSSTdemo,by='id')
dfTibble4TableMerged<-merge(dfERPsMerged,dfSSTdemo,by='id')
# create tibble combining the three dataframes
tibble4preTable1<-tibble(
  Sample=c(dfTibble4TableSST$Sample,dfTibble4TableMID$Sample,dfTibble4TableMerged$Sample),
  Education=c(dfTibble4TableSST$Education_4level,dfTibble4TableMID$Education_4level,dfTibble4TableMerged$Education_4level),
  Ethnicity=c(dfTibble4TableSST$Ethnicity,dfTibble4TableMID$Ethnicity,dfTibble4TableMerged$Ethnicity), 
    #RaceAI=c(dfTibble4TableSST$RACE_NativeAmerican,dfTibble4TableMID$RACE_NativeAmerican,dfTibble4TableMerged$raceAI),
  #RaceAlaskanNative=c(dfTibble4TableSST$RACE_AlaskanNative,dfTibble4TableMID$RACE_AlaskanNative,dfTibble4TableMerged$raceAI), # for dfTibble4TableMerged, it includes both AI and Alaska Native
  #RaceBlack=c(dfTibble4TableSST$RACE_AfricanAmerican,dfTibble4TableMID$RACE_AfricanAmerican,dfTibble4TableMerged$raceBlack),
  #RaceAsian=c(dfTibble4TableSST$RACE_Asian,dfTibble4TableMID$RACE_Asian,dfTibble4TableMerged$raceAsian),
  #RaceOther=c(dfTibble4TableSST$RACE_Other,dfTibble4TableMID$RACE_Other,dfTibble4TableMerged$raceOther),
  #RacePacificIslander=c(dfTibble4TableSST$RACE_PacificIslander,dfTibble4TableMID$RACE_PacificIslander,dfTibble4TableMerged$raceHawaii),
  #RaceWhite=c(dfTibble4TableSST$RACE_White,dfTibble4TableMID$RACE_White,dfTibble4TableMerged$raceWhite),
  #RaceEthnicity=c(dfTibble4TableSST$RaceEthnicity,dfTibble4TableMID$RaceEthnicity,dfTibble4TableMerged$raceAI),
  Sex=c(dfTibble4TableSST$SexSST,dfTibble4TableMID$SexMID,dfTibble4TableMerged$SexSST),
  Age=c(dfTibble4TableSST$Age,dfTibble4TableMID$Age,dfTibble4TableMerged$AgeMID),
  Income=c(dfTibble4TableSST$Income,dfTibble4TableMID$Income,dfTibble4TableMerged$Income),
  PROMIS_Anxiety=c(dfTibble4TableSST$sstPROMISanx,dfTibble4TableMID$midPROMISanx,dfTibble4TableMerged$midPROMISanx),
  PROMIS_Alcohol_Use=c(dfTibble4TableSST$sstPROMISalcUse,dfTibble4TableMID$midPROMISalcUse,dfTibble4TableMerged$midPROMISalcUse),
  PROMIS_Depression=c(dfTibble4TableSST$sstPROMISdepress,dfTibble4TableMID$midPROMISdepress,dfTibble4TableMerged$midPROMISdepress),
  AIES=c(dfTibble4TableSST$sstAIES,dfTibble4TableMID$midAIES,dfTibble4TableMerged$midAIES),
  NAAS=c(dfTibble4TableSST$sstNAAS,dfTibble4TableMID$midNAAS,dfTibble4TableMerged$midNAAS),
  HLS=c(dfTibble4TableSST$sstHLS,dfTibble4TableMID$midHLS,dfTibble4TableMerged$midHLS),
  NASS=c(dfTibble4TableSST$sstNASS,dfTibble4TableMID$midNASS,dfTibble4TableMerged$midNASS)
)
write.csv(tibble4preTable1,"C:\\Users\\wvaught\\OneDrive - Laureate Institute for Brain Research\\Documents\\01. EEG CORE\\05. Papers\\Culture & Cognition\\finalAnalysis\\tibble4preTable1.csv")
# reworking inside of the csv file to match reporting guidelines on race
dfTable1practice<-read.csv("tibble4preTable1.csv",header=TRUE)
# create correct labels for grouping and other categorical variables, another way to do this, see https://blog.djnavarro.net/posts/2024-06-21_table1/#table-annotations or https://benjaminrich.github.io/table1/vignettes/table1-examples.html for more
# function to apply only certain statistics to cont. variables 
my.render.cont <- function(x, ...) { with(stats.apply.rounding(stats.default(x), digits=3), c("", "Mean (SD)"=sprintf("%s (&plusmn; %s)", MEAN, SD))) }
no.missing <- function(x, ...) {
  c()
} # only use this function when you already know the number of missing values
# function to do an anova for cont. variables and to do a chi-squared test for cat. variables
pvalue<- function(x, ...) {
  y <- unlist(x)
  g <- factor(rep(1:length(x), times=sapply(x,length)))
  if (is.numeric(y)) {
    ano <- aov(y ~ g)
    p <- summary(ano)[[1]][[5]][1] # change to t.test from stats package to use for future, see https://stackoverflow.com/questions/67711459/anova-p-value-column-in-table1-package-r
  } else {
    p <- chisq.test(table(y,g))$p.value
  }
  c("", sub("<","&lt;",format.pval(p, digits = 3,eps=0.001)))
}
# updating labels for variables
table1::label(dfTable1practice$PROMIS_Depression) <- "PROMIS Depression (T score)"
table1::label(dfTable1practice$PROMIS_Anxiety) <- "PROMIS Anxiety (T score)"
table1::label(dfTable1practice$PROMIS_Alcohol_Use) <- "PROMIS Alcohol Use (T score)"
# code for Table 1
tab1<-table1(~ Age + Education + Sex + Ethnicity + PROMIS_Anxiety + PROMIS_Depression + PROMIS_Alcohol_Use + AIES + NAAS + HLS + NASS | Sample, 
  data=dfTable1practice,
  render.continuous = my.render.cont,
  render.missing = no.missing,
  caption = "Table 1. Demographic, clinical, and cultural characteristics per sample",
  footnote = "Note:",
  overall = F,
  extra.col = list(`p-value`=pvalue))
Warning in chisq.test(table(y, g)): Chi-squared approximation may be incorrect
Warning in chisq.test(table(y, g)): Chi-squared approximation may be incorrect
tab1
Table 1. Demographic, clinical, and cultural characteristics per sample
MID
(N=44)
SST
(N=51)
SST+MID
(N=39)
p-value

Note:

Age
Mean (SD) 34.3 (± 10.2) 35.4 (± 10.4) 34.9 (± 10.3) 0.886
Education
CollegeOrHigher 19 (43.2%) 24 (47.1%) 17 (43.6%) 0.999
HS 5 (11.4%) 5 (9.8%) 5 (12.8%)
NoHS 2 (4.5%) 2 (3.9%) 2 (5.1%)
SomeCollege 18 (40.9%) 20 (39.2%) 15 (38.5%)
Sex
Female 34 (77.3%) 41 (80.4%) 31 (79.5%) 0.931
Male 10 (22.7%) 10 (19.6%) 8 (20.5%)
Ethnicity
Hispanic or Latine 1 (2.3%) 2 (3.9%) 1 (2.6%) 0.751
Not Hispanic or Latine 43 (97.7%) 48 (94.1%) 38 (97.4%)
DON'T KNOW 0 (0%) 1 (2.0%) 0 (0%)
PROMIS Anxiety (T score)
Mean (SD) 57.6 (± 9.41) 57.4 (± 9.09) 57.4 (± 9.34) 0.996
PROMIS Depression (T score)
Mean (SD) 56.3 (± 7.79) 55.3 (± 7.61) 56.2 (± 7.59) 0.79
PROMIS Alcohol Use (T score)
Mean (SD) 49.5 (± 4.69) 49.2 (± 5.07) 49.3 (± 4.68) 0.946
AIES
Mean (SD) 34.3 (± 11.7) 37.4 (± 14.0) 35.1 (± 11.7) 0.455
NAAS
Mean (SD) 3.95 (± 0.331) 3.86 (± 0.345) 3.92 (± 0.323) 0.441
HLS
Mean (SD) 42.1 (± 4.79) 42.1 (± 4.68) 41.9 (± 4.92) 0.989
NASS
Mean (SD) 33.4 (± 9.31) 35.0 (± 8.37) 34.3 (± 8.26) 0.67

7 Scatterplots for significant correlations in SST

7.1 Residualied ERN amplitudes predicting PROMIS Depression scores

ggplot(cleanedSimpleTibble4SST, aes(x = ERNresid, y = sstPROMISdepress)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "blue") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  
    eq.with.lhs = "promisDep~~`=`~~",
    eq.x.rhs    = "ERNresid",
    parse = TRUE) +
  labs(x = "Residualized ERN Amplitudes @ FCz (μV)", y = "PROMIS Depression Score") +
  theme_classic(base_size = 15)
`geom_smooth()` using formula = 'y ~ x'

7.2 Spirituality prediciting PROMIS Depression scores

ggplot(cleanedSimpleTibble4SST, aes(x = sstNASS, y = sstPROMISdepress)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "red") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  
    eq.with.lhs = "promisDep~~`=`~~",
    eq.x.rhs    = "NASS",
    parse = TRUE) +
  labs(x = "NASS", y = "PROMIS Depression Score") +
  theme_classic(base_size = 15)
`geom_smooth()` using formula = 'y ~ x'

7.3 Residualized Incorrect-Stop P300 amplitudes predicting PROMIS Alcohol Use

ggplot(cleanedSimpleTibble4SST, aes(x = P3resid, y = sstPROMISalcUse)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "red") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  
    eq.with.lhs = "promisAlcUse~~`=`~~",
    eq.x.rhs    = "P3resid",
    parse = TRUE) +
  labs(x = "Residualized Incorrect-Stop P300 Amplitudes @ Pz (μV)", y = "PROMIS Alcohol Use Score") +
  theme_classic(base_size = 15)
`geom_smooth()` using formula = 'y ~ x'

8 Scatterplots for significant correlations in MID

8.1 Cue loss P300 amplitudes predicting Alcohol Use scores

ggplot(cleanedSimpleTibble4MID, aes(x = P3pzMIDcueLoss , y = midPROMISalcUse)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "blue") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  
    eq.with.lhs = "promisAlcUse~~`=`~~",
    eq.x.rhs    = "cueLossP3",
    parse = TRUE) +
  labs(x = "P300 Amplitudes to Loss Cues @ Pz (μV)", y = "PROMIS Alcohol Use Score") +
  theme_classic(base_size = 15)
`geom_smooth()` using formula = 'y ~ x'

8.2 Cue gain P300 amplitudes predicting Alcohol Use scores

ggplot(cleanedSimpleTibble4MID, aes(x = P3pzMIDcueGain, y = midPROMISalcUse)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "blue") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  
    eq.with.lhs = "promisAlcUse~~`=`~~",
    eq.x.rhs    = "cueGainP3",
    parse = TRUE) +
  labs(x = "P300 Amplitudes to Gain Cues @ Pz (μV)", y = "PROMIS Alcohol Use Score") +
  theme_classic(base_size = 15)
`geom_smooth()` using formula = 'y ~ x'

8.3 SPN to successful trials predicting NASS scores

ggplot(cleanedSimpleTibble4MID, aes(x = SPNfzMIDfeedbackSuccess, y = midNASS)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "red") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  
    eq.with.lhs = "NASS~~`=`~~",
    eq.x.rhs    = "successSPN",
    parse = TRUE) +
  labs(x = "SPN amplitudes to successful trials", y = "NASS") +
  theme_classic(base_size = 15)
`geom_smooth()` using formula = 'y ~ x'

9 Scatterplots for significant correlations in SST + MID

9.1 Gain RewP predicting Residualized Incorrect P300 amplitudes

9.2 SPN to successful trials predicting Residualized Incorrect Pe amplitudes

9.3 SPN to successful trials predicting NASS scores

9.4 Residualized Incorrect P300 amplitudes predicting PROMIS Alcohol Use

9.5 NAAS scores predicting PROMIS Alcohol Use scores

9.6 P300 to No gain trials predicting AIES scores

10 Multiple linear regression and moderation analyses in SST

10.1 Residualized ERN amplitudes and acculturation predict PROMIS Depression

model1<-lm(sstPROMISdepress~ERNresid+sstNAAS+AgeSST+SexSST, data=cleanedSimpleTibble4SST)
summary(model1)

Call:
lm(formula = sstPROMISdepress ~ ERNresid + sstNAAS + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.7256  -4.4523  -0.6464   5.0780  14.8117 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 41.92412   12.49389   3.356   0.0016 **
ERNresid     0.48054    0.18933   2.538   0.0146 * 
sstNAAS      3.07120    2.97380   1.033   0.3071   
AgeSST       0.07219    0.09964   0.724   0.4724   
SexSSTMale  -5.15865    2.56259  -2.013   0.0500 * 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.163 on 46 degrees of freedom
Multiple R-squared:  0.1856,    Adjusted R-squared:  0.1148 
F-statistic: 2.622 on 4 and 46 DF,  p-value: 0.04683
betaModel1<-lm.beta(model1)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel1)
  ERNresid    sstNAAS     AgeSST SexSSTMale 
0.34167774 0.13898931 0.09886745         NA 
boot_model1<-boot_summary(model1, type='perc', method='residual',R = 10000)
boot_model1
EstimateLower.boundUpper.boundp.value
41.9   17.8  66.5  7e-04
0.481 0.1080.8530.0129
3.07  -2.79 8.9  0.3038
0.0722-0.1260.2640.4778
-5.16  -10.3  -0.1760.0424
vif(model1)
ERNresid  sstNAAS   AgeSST   SexSST 
1.023638 1.023091 1.051987 1.028995 

10.2 Residualized ERN amplitudes and enculturation predict PROMIS Depression

model2<-lm(sstPROMISdepress~ERNresid+sstAIES+AgeSST+SexSST, data=cleanedSimpleTibble4SST)
summary(model2)

Call:
lm(formula = sstPROMISdepress ~ ERNresid + sstAIES + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-20.5536  -4.4204  -0.3033   5.3396  15.4321 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 54.68501    4.30569  12.701   <2e-16 ***
ERNresid     0.48371    0.19148   2.526   0.0150 *  
sstAIES     -0.01299    0.07380  -0.176   0.8611    
AgeSST       0.05997    0.10068   0.596   0.5544    
SexSSTMale  -5.03850    2.59090  -1.945   0.0579 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.243 on 46 degrees of freedom
Multiple R-squared:  0.1673,    Adjusted R-squared:  0.09492 
F-statistic: 2.311 on 4 and 46 DF,  p-value: 0.07187
betaModel2<-lm.beta(model2)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel2)
   ERNresid     sstAIES      AgeSST  SexSSTMale 
 0.34393391 -0.02391395  0.08212997          NA 
boot_model2<-boot_summary(model2, type='perc', method='residual',R = 10000)
boot_model2
EstimateLower.boundUpper.boundp.value
54.7  46.4  63.2  <1e-04
0.4840.1080.86 0.0106
-0.013-0.1550.1330.8616
0.06 -0.1360.2580.5449
-5.04 -10.2  -0.0740.0464
vif(model2)
ERNresid  sstAIES   AgeSST   SexSST 
1.023972 1.020297 1.050407 1.028716 

10.3 Residualized ERN amplitudes and historical loss predict PROMIS Depression

model3<-lm(sstPROMISdepress~ERNresid+sstHLS+AgeSST+SexSST, data=cleanedSimpleTibble4SST)
summary(model3)

Call:
lm(formula = sstPROMISdepress ~ ERNresid + sstHLS + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.5278  -4.7389  -0.2029   4.3611  15.7359 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 39.04479   10.11151   3.861 0.000351 ***
ERNresid     0.47938    0.18634   2.573 0.013386 *  
sstHLS       0.34578    0.21494   1.609 0.114525    
AgeSST       0.07536    0.09770   0.771 0.444468    
SexSSTMale  -4.76666    2.52315  -1.889 0.065182 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.05 on 46 degrees of freedom
Multiple R-squared:  0.2111,    Adjusted R-squared:  0.1425 
F-statistic: 3.078 on 4 and 46 DF,  p-value: 0.02504
betaModel3<-lm.beta(model3)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel3)
  ERNresid     sstHLS     AgeSST SexSSTMale 
 0.3408525  0.2126938  0.1032087         NA 
boot_model3<-boot_summary(model3, type='perc', method='residual',R = 10000)
boot_model3
EstimateLower.boundUpper.boundp.value
39     18.7  59    <1e-04
0.479 0.1130.8460.0088
0.346 -0.0810.7830.1177
0.0754-0.1150.2650.4533
-4.77  -9.83 0.2620.0622
vif(model3)
ERNresid   sstHLS   AgeSST   SexSST 
1.023627 1.019346 1.044088 1.029812 

10.4 Residualized ERN amplitudes and spirituality predict PROMIS Depression

model4<-lm(sstPROMISdepress~ERNresid+sstNASS+AgeSST+SexSST, data=cleanedSimpleTibble4SST)
summary(model4)

Call:
lm(formula = sstPROMISdepress ~ ERNresid + sstNASS + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.9380  -3.7116   0.1487   3.7880  13.2539 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  61.2615     4.4674  13.713   <2e-16 ***
ERNresid      0.4088     0.1828   2.237   0.0302 *  
sstNASS      -0.3287     0.1350  -2.436   0.0188 *  
AgeSST        0.1857     0.1076   1.725   0.0912 .  
SexSSTMale   -5.1106     2.4363  -2.098   0.0415 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.819 on 46 degrees of freedom
Multiple R-squared:  0.2619,    Adjusted R-squared:  0.1978 
F-statistic: 4.081 on 4 and 46 DF,  p-value: 0.006497
betaModel4<-lm.beta(model4)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel4)
  ERNresid    sstNASS     AgeSST SexSSTMale 
 0.2906931 -0.3614772  0.2542889         NA 
boot_model4<-boot_summary(model4, type='perc', method='residual',R = 10000)
boot_model4
EstimateLower.boundUpper.boundp.value
61.3  52.5   69.9   <1e-04
0.4090.05530.765 0.0225
-0.329-0.586 -0.06340.0148
0.186-0.026 0.394 0.0825
-5.11 -9.8   -0.329 0.036
vif(model4)
ERNresid  sstNASS   AgeSST   SexSST 
1.052677 1.372881 1.354225 1.026226 

10.5 Residualized ERN amplitudes predict PROMIS Depression moderated by acculturation

model5<-lm(sstPROMISdepress~ERNresid*sstNAAS+AgeSST+SexSST,data= cleanedSimpleTibble4SST)
summary(model5)

Call:
lm(formula = sstPROMISdepress ~ ERNresid * sstNAAS + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.7962  -4.9408  -0.4977   4.9607  14.5935 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)   
(Intercept)      41.97946   12.60314   3.331  0.00174 **
ERNresid         -0.46408    2.06989  -0.224  0.82361   
sstNAAS           3.13349    3.00274   1.044  0.30227   
AgeSST            0.06194    0.10297   0.602  0.55046   
SexSSTMale       -4.89843    2.64650  -1.851  0.07075 . 
ERNresid:sstNAAS  0.24980    0.54504   0.458  0.64893   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.225 on 45 degrees of freedom
Multiple R-squared:  0.1894,    Adjusted R-squared:  0.09937 
F-statistic: 2.103 on 5 and 45 DF,  p-value: 0.08244
betaModel5<-lm.beta(model5)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel5)
        ERNresid          sstNAAS           AgeSST       SexSSTMale 
     -0.32997295       0.14180825       0.08483596               NA 
ERNresid:sstNAAS 
      0.17761487 
boot_model5<-boot_summary(model5, type='perc', method='residual',R = 10000)
boot_model5
EstimateLower.boundUpper.boundp.value
42     17.9  66.6  0.001
-0.464 -4.55 3.75 0.8342
3.13  -2.79 8.92 0.2973
0.0619-0.1410.2620.5387
-4.9   -10.1  0.3870.0678
0.25  -0.86 1.32 0.6512
johnson_neyman(
  model5, 
  pred=ERNresid,
  modx=sstNAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of resid. ERN amplitudes x PROMIS Depression",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When sstNAAS is INSIDE the interval [3.60, 4.18], the slope of ERNresid is
p < .05.

Note: The range of observed values of sstNAAS is [3.05, 4.45]

vif(model5)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        ERNresid          sstNAAS           AgeSST           SexSST 
      120.251097         1.025191         1.104022         1.078638 
ERNresid:sstNAAS 
      119.304341 

10.6 Residualized ERN amplitudes predict PROMIS Depression moderated by enculturation

model6<-lm(sstPROMISdepress~ERNresid*sstAIES+AgeSST+SexSST, data=cleanedSimpleTibble4SST)
summary(model6)

Call:
lm(formula = sstPROMISdepress ~ ERNresid * sstAIES + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-20.2550  -4.7074  -0.1787   5.1604  14.8290 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      54.90917    4.36389  12.583 2.44e-16 ***
ERNresid          0.78671    0.63250   1.244   0.2200    
sstAIES          -0.02037    0.07584  -0.269   0.7895    
AgeSST            0.05926    0.10152   0.584   0.5623    
SexSSTMale       -4.64000    2.72967  -1.700   0.0961 .  
ERNresid:sstAIES -0.00725    0.01441  -0.503   0.6174    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.302 on 45 degrees of freedom
Multiple R-squared:  0.172, Adjusted R-squared:  0.07998 
F-statistic: 1.869 on 5 and 45 DF,  p-value: 0.1187
betaModel6<-lm.beta(model6)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel6)
        ERNresid          sstAIES           AgeSST       SexSSTMale 
     0.559369196     -0.037510104      0.081164751               NA 
ERNresid:sstAIES 
    -0.005154784 
boot_model6<-boot_summary(model6, type = 'perc',method = 'residual',R = 10000)
boot_model6
EstimateLower.boundUpper.boundp.value
54.9    46.5   63.4   <1e-04
0.787  -0.452 2.04  0.2081
-0.0204 -0.174 0.127 0.7848
0.0593 -0.138 0.259 0.572
-4.64   -9.85  0.76  0.0864
-0.00725-0.03550.02060.6013
johnson_neyman(
  model6, 
  pred=ERNresid,
  modx=sstAIES,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of resid. ERN amplitudes x PROMIS Depression",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

When sstAIES is INSIDE the interval [26.20, 48.51], the slope of ERNresid
is p < .05.

Note: The range of observed values of sstAIES is [18.00, 75.00]

vif(model6)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        ERNresid          sstAIES           AgeSST           SexSST 
       10.991573         1.059997         1.050607         1.123325 
ERNresid:sstAIES 
       11.285358 

10.7 Residualized ERN amplitudes predict PROMIS Depression moderated by historical loss

model7<-lm(sstPROMISdepress~ERNresid*sstHLS+AgeSST+SexSST,data=cleanedSimpleTibble4SST)
summary(model7)

Call:
lm(formula = sstPROMISdepress ~ ERNresid * sstHLS + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.0571  -4.5595   0.1548   4.4206  15.4637 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)   
(Intercept)     34.41370   10.47627   3.285  0.00198 **
ERNresid        -2.68377    2.16716  -1.238  0.22200   
sstHLS           0.41868    0.21807   1.920  0.06122 . 
AgeSST           0.11589    0.10040   1.154  0.25446   
SexSSTMale      -4.28827    2.51360  -1.706  0.09490 . 
ERNresid:sstHLS  0.07344    0.05013   1.465  0.14991   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.964 on 45 degrees of freedom
Multiple R-squared:  0.2471,    Adjusted R-squared:  0.1634 
F-statistic: 2.953 on 5 and 45 DF,  p-value: 0.02176
betaModel7<-lm.beta(model7)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel7)
       ERNresid          sstHLS          AgeSST      SexSSTMale ERNresid:sstHLS 
     -1.9082347       0.2575347       0.1587184              NA       0.0522158 
boot_model7<-boot_summary(model7, type='perc', method='residual',R = 10000)
boot_model7
EstimateLower.boundUpper.boundp.value
34.4   13.7   55.2  0.001
-2.68  -6.98  1.52 0.2095
0.419 -0.01620.85 0.0565
0.116 -0.087 0.31 0.2551
-4.29  -9.34  0.7120.0913
0.0734-0.02380.1730.1365
johnson_neyman(
  model7, 
  pred=ERNresid,
  modx=sstHLS,
  alpha=0.05, 
  plot=TRUE,
  title="Depression~ERNresid*HLS Johnson-Neyman Plot",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

When sstHLS is INSIDE the interval [41.86, 58.95], the slope of ERNresid is
p < .05.

Note: The range of observed values of sstHLS is [30.00, 50.00]

vif(model7)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
       ERNresid          sstHLS          AgeSST          SexSST ERNresid:sstHLS 
     141.906411        1.075347        1.129906        1.047493      142.415303 

10.8 Residualized ERN amplitudes predict PROMIS Depression moderated by spirituality

model8<-lm(sstPROMISdepress~ERNresid*sstNASS+AgeSST+SexSST,data= cleanedSimpleTibble4SST)
summary(model8)

Call:
lm(formula = sstPROMISdepress ~ ERNresid * sstNASS + AgeSST + 
    SexSST, data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.0103  -3.8103   0.1009   4.0828  13.1655 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      60.49521    4.87882  12.400 4.09e-16 ***
ERNresid          0.78761    0.94012   0.838   0.4066    
sstNASS          -0.30186    0.15110  -1.998   0.0518 .  
AgeSST            0.17864    0.10996   1.625   0.1112    
SexSSTMale       -5.19141    2.46649  -2.105   0.0409 *  
ERNresid:sstNASS -0.01021    0.02486  -0.411   0.6831    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.881 on 45 degrees of freedom
Multiple R-squared:  0.2647,    Adjusted R-squared:  0.183 
F-statistic:  3.24 on 5 and 45 DF,  p-value: 0.01392
betaModel8<-lm.beta(model8)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel8)
        ERNresid          sstNASS           AgeSST       SexSSTMale 
     0.560012163     -0.331923813      0.244654266               NA 
ERNresid:sstNASS 
    -0.007262459 
boot_model8<-boot_summary(model8, type='perc', method='residual',R = 10000)
boot_model8
EstimateLower.boundUpper.boundp.value
60.5   50.8   69.7    <1e-04
0.788 -1.04  2.6    0.3869
-0.302 -0.585 -0.008640.0425
0.179 -0.034 0.392  0.1008
-5.19  -10.1   -0.589  0.0267
-0.0102-0.05830.0377 0.6704
johnson_neyman(
  model8, 
  pred=ERNresid,
  modx=sstNASS,
  alpha=0.05, 
  plot=TRUE,
  title="Depression~ERNresid*NASS Johnson-Neyman Plot",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When sstNASS is INSIDE the interval [31.45, 39.24], the slope of ERNresid
is p < .05.

Note: The range of observed values of sstNASS is [11.00, 50.00]

vif(model8)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        ERNresid          sstNASS           AgeSST           SexSST 
       27.345413         1.689483         1.387874         1.032801 
ERNresid:sstNASS 
       26.522430 

10.9 Residualized Incorrect-Stop P300 amplitudes predict PROMIS Alcohol Use moderated by enculturation

model62<-lm(sstPROMISalcUse~P3resid*sstAIES+AgeSST+SexSST,data=cleanedSimpleTibble4SST)
summary(model62)

Call:
lm(formula = sstPROMISalcUse ~ P3resid * sstAIES + AgeSST + SexSST, 
    data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.2285  -2.4457  -0.1932   1.3715  14.7921 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     52.50872    2.99031  17.560   <2e-16 ***
P3resid         -0.64581    0.72536  -0.890    0.378    
sstAIES         -0.03777    0.05146  -0.734    0.467    
AgeSST          -0.06941    0.06928  -1.002    0.322    
SexSSTMale       1.74700    1.78903   0.977    0.334    
P3resid:sstAIES  0.02690    0.01736   1.549    0.128    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.969 on 45 degrees of freedom
Multiple R-squared:  0.136, Adjusted R-squared:  0.04004 
F-statistic: 1.417 on 5 and 45 DF,  p-value: 0.2364
betaModel62<-lm.beta(model62)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel62)
        P3resid         sstAIES          AgeSST      SexSSTMale P3resid:sstAIES 
     -0.3799936      -0.1044193      -0.1426956              NA       0.0158289 
boot_model62<-boot_summary(model62, type='perc', method='residual',R = 10000)
boot_model62
EstimateLower.boundUpper.boundp.value
52.5   46.5    58.3   <1e-04
-0.646 -2.09   0.779 0.37
-0.0378-0.135  0.06580.4649
-0.0694-0.205  0.06740.3136
1.75  -1.71   5.39  0.3332
0.0269-0.007290.06140.1159
johnson_neyman(
  model62,
  pred=P3resid,
  modx=sstAIES,
  alpha=0.05,
  plot=TRUE,
  title="AlcoholUse~P3resid*AIES Johnson-Neyman Plot",
  y.label="Slope of Residualized Incorrect-Stop P300 Amplitudes",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

When sstAIES is INSIDE the interval [42.39, 81.13], the slope of P3resid is
p < .05.

Note: The range of observed values of sstAIES is [18.00, 75.00]

vif(model62)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3resid         sstAIES          AgeSST          SexSST P3resid:sstAIES 
       9.487752        1.054073        1.056530        1.042007        9.518321 

10.10 Residualized Incorrect-Stop P300 amplitudes predict PROMIS Alcohol Use moderated by acculturation

model63<-lm(sstPROMISalcUse~P3resid*sstNAAS+AgeSST+SexSST,data=cleanedSimpleTibble4SST)
summary(model63)

Call:
lm(formula = sstPROMISalcUse ~ P3resid * sstNAAS + AgeSST + SexSST, 
    data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.5690  -2.1919  -0.0813   1.5525  14.5115 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)   
(Intercept)     28.62515    8.56992   3.340  0.00169 **
P3resid          4.91692    2.34767   2.094  0.04189 * 
sstNAAS          5.59870    2.05969   2.718  0.00929 **
AgeSST          -0.04916    0.06482  -0.758  0.45217   
SexSSTMale       1.88604    1.67084   1.129  0.26496   
P3resid:sstNAAS -1.13584    0.60366  -1.882  0.06637 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.675 on 45 degrees of freedom
Multiple R-squared:  0.2355,    Adjusted R-squared:  0.1505 
F-statistic: 2.772 on 5 and 45 DF,  p-value: 0.02887
betaModel63<-lm.beta(model63)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel63)
        P3resid         sstNAAS          AgeSST      SexSSTMale P3resid:sstNAAS 
      2.8930977       0.3803338      -0.1010594              NA      -0.6683228 
boot_model63<-boot_summary(model63, type='perc', method='residual',R = 10000)
boot_model63
EstimateLower.boundUpper.boundp.value
28.6   11.9  45.3   0.0017
4.92  0.3999.61  0.0356
5.6   1.57 9.58  0.0081
-0.0492-0.1740.07670.4517
1.89  -1.25 5.23  0.2411
-1.14  -2.34 0.03560.0575
johnson_neyman(
  model63,
  pred=P3resid,
  modx=sstNAAS,
  alpha=0.05,
  plot=TRUE,
  title="AlcoholUse~P3resid*NAAS Johnson-Neyman Plot",
  y.label="Slope of Residualized Incorrect-Stop P300 Amplitudes",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When sstNAAS is INSIDE the interval [-2.47, 3.92], the slope of P3resid is
p < .05.

Note: The range of observed values of sstNAAS is [3.05, 4.45]

vif(model63)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3resid         sstNAAS          AgeSST          SexSST P3resid:sstNAAS 
     112.314082        1.152343        1.045165        1.027089      111.015216 

10.11 Residualized Incorrect-Stop P300 amplitudes predict PROMIS Alcohol Use moderated by historical loss

model64<-lm(sstPROMISalcUse~P3resid*sstHLS+AgeSST+SexSST,data=cleanedSimpleTibble4SST)
summary(model64)

Call:
lm(formula = sstPROMISalcUse ~ P3resid * sstHLS + AgeSST + SexSST, 
    data = cleanedSimpleTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.9034  -1.8330  -0.0436   1.7095  14.7955 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    52.457702   7.435737   7.055 8.45e-09 ***
P3resid         0.058137   1.997814   0.029    0.977    
sstHLS         -0.033147   0.160340  -0.207    0.837    
AgeSST         -0.065613   0.074369  -0.882    0.382    
SexSSTMale      2.114190   1.828589   1.156    0.254    
P3resid:sstHLS  0.008329   0.048549   0.172    0.865    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.117 on 45 degrees of freedom
Multiple R-squared:  0.08403,   Adjusted R-squared:  -0.01774 
F-statistic: 0.8257 on 5 and 45 DF,  p-value: 0.5381
betaModel64<-lm.beta(model64)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel64)
       P3resid         sstHLS         AgeSST     SexSSTMale P3resid:sstHLS 
    0.03420780    -0.03060618    -0.13488968             NA     0.00490096 
boot_model64<-boot_summary(model64, type='perc', method='residual',R = 10000)
boot_model64
EstimateLower.boundUpper.boundp.value
52.5    37.8   67.3   <1e-04
0.0581 -4     4.01  0.9784
-0.0331 -0.356 0.284 0.8234
-0.0656 -0.211 0.07890.3847
2.11   -1.5   5.76  0.2535
0.00833-0.08750.107 0.8642
johnson_neyman(
  model64,
  pred=P3resid,
  modx=sstHLS,
  alpha=0.05,
  plot=TRUE,
  title="AlcoholUse~P3resid*HLS Johnson-Neyman Plot",
  y.label="Slope of Residualized Incorrect-Stop P300 Amplitudes",
  modx.label = "Historical Loss"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

vif(model64)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
       P3resid         sstHLS         AgeSST         SexSST P3resid:sstHLS 
     67.886556       1.076804       1.148396       1.026798      67.702727 

10.12 Residualized Incorrect-Stop P300 amplitudes predict PROMIS Alcohol Use moderated by spirituality

model65<-lm(sstPROMISalcUse~P3resid*sstNASS+AgeSST+SexSST,data=cleanedSimpleTibble4SST)
summary(model65)

Call:
lm(formula = sstPROMISalcUse ~ P3resid * sstNASS + AgeSST + SexSST, 
    data = cleanedSimpleTibble4SST)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.2773 -2.1602  0.1647  1.8805 13.3779 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     52.30576    3.32426  15.735   <2e-16 ***
P3resid         -1.01735    1.18636  -0.858    0.396    
sstNASS         -0.09261    0.10067  -0.920    0.363    
AgeSST          -0.01124    0.07836  -0.143    0.887    
SexSSTMale       1.70242    1.79740   0.947    0.349    
P3resid:sstNASS  0.04023    0.03202   1.257    0.215    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.956 on 45 degrees of freedom
Multiple R-squared:  0.1405,    Adjusted R-squared:  0.04496 
F-statistic: 1.471 on 5 and 45 DF,  p-value: 0.2182
betaModel65<-lm.beta(model65)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel65)
        P3resid         sstNASS          AgeSST      SexSSTMale P3resid:sstNASS 
    -0.59860415     -0.15285162     -0.02311741              NA      0.02367214 
boot_model65<-boot_summary(model65, type='perc', method='residual',R = 10000)
boot_model65
EstimateLower.boundUpper.boundp.value
52.3   46     58.9   <1e-04
-1.02  -3.23  1.35  0.3846
-0.0926-0.293 0.09960.3426
-0.0112-0.163 0.142 0.9146
1.7   -1.75  5.32  0.3431
0.0402-0.02360.101 0.2081
johnson_neyman(
  model65,
  pred=P3resid,
  modx=sstNASS,
  alpha=0.05,
  plot=TRUE,
  title="AlcoholUse~P3resid*NASS Johnson-Neyman Plot",
  y.label="Slope of Residualized Incorrect-Stop P300 Amplitudes",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When sstNASS is INSIDE the interval [37.45, 49.14], the slope of P3resid is
p < .05.

Note: The range of observed values of sstNASS is [11.00, 50.00]

vif(model64)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
       P3resid         sstHLS         AgeSST         SexSST P3resid:sstHLS 
     67.886556       1.076804       1.148396       1.026798      67.702727 

11 Multiple linear regression and moderation analyses in MID

11.1 Cue Loss P3 amplitudes and acculturation predict PROMIS Alcohol Use

model9<-lm(midPROMISalcUse~P3pzMIDcueLoss+midNAAS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model9)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss + midNAAS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.4883 -1.2260 -0.2065  1.5432 12.0419 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    37.05858    9.15087   4.050 0.000236 ***
P3pzMIDcueLoss -0.50979    0.27607  -1.847 0.072408 .  
midNAAS         3.67439    2.09913   1.750 0.087908 .  
AgeMID         -0.02814    0.07403  -0.380 0.705881    
SexMIDMale      0.43327    1.66143   0.261 0.795634    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.503 on 39 degrees of freedom
Multiple R-squared:  0.1638,    Adjusted R-squared:  0.07799 
F-statistic: 1.909 on 4 and 39 DF,  p-value: 0.1282
betaModel9<-lm.beta(model9)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel9)
P3pzMIDcueLoss        midNAAS         AgeMID     SexMIDMale 
   -0.30139317     0.25945301    -0.06115804             NA 
boot_model9<-boot_summary(model9, type='perc', method='residual',R = 10000)
boot_model9
EstimateLower.boundUpper.boundp.value
37.1   18.7  55     <1e-04
-0.51  -1.06 0.05420.0749
3.67  -0.4787.81  0.0818
-0.0281-0.1770.123 0.7127
0.433 -2.77 3.8   0.795
vif(model9)
P3pzMIDcueLoss        midNAAS         AgeMID         SexMID 
      1.242421       1.024610       1.206926       1.051933 

11.2 Cue Loss P3 amplitudes and enculturation predit PROMIS Alcohol Use

model10<-lm(midPROMISalcUse~P3pzMIDcueLoss+midAIES+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model10)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss + midAIES + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.4164  -0.9719   0.0337   1.2461  11.0693 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    53.38500    3.58158  14.905   <2e-16 ***
P3pzMIDcueLoss -0.55437    0.28511  -1.944   0.0591 .  
midAIES        -0.03910    0.06146  -0.636   0.5283    
AgeMID         -0.03993    0.07632  -0.523   0.6038    
SexMIDMale      0.60339    1.71322   0.352   0.7266    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.652 on 39 degrees of freedom
Multiple R-squared:  0.1073,    Adjusted R-squared:  0.01577 
F-statistic: 1.172 on 4 and 39 DF,  p-value: 0.338
betaModel10<-lm.beta(model10)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel10)
P3pzMIDcueLoss        midAIES         AgeMID     SexMIDMale 
   -0.32775145    -0.09762002    -0.08675851             NA 
boot_model10<-boot_summary(model10, type='perc', method='residual',R = 10000)
boot_model10
EstimateLower.boundUpper.boundp.value
53.4   46.3  60.5   <1e-04
-0.554 -1.11 0.03970.0658
-0.0391-0.1630.08280.5167
-0.0399-0.1940.111 0.6157
0.603 -2.77 4.05  0.7099
vif(model10)
P3pzMIDcueLoss        midAIES         AgeMID         SexMID 
      1.241356       1.028327       1.201669       1.047821 

11.3 Cue Loss P3 amplitudes and historical loss predict PROMIS Alcohol Use

model11<-lm(midPROMISalcUse~P3pzMIDcueLoss+midHLS+SexMID+AgeMID, data=cleanedSimpleTibble4MID)
summary(model11)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss + midHLS + SexMID + 
    AgeMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8522  -1.1971   0.1136   1.2974   9.8846 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    52.323750   7.930435   6.598 7.68e-08 ***
P3pzMIDcueLoss -0.542295   0.290182  -1.869   0.0692 .  
midHLS         -0.002512   0.160725  -0.016   0.9876    
SexMIDMale      0.618344   1.730905   0.357   0.7228    
AgeMID         -0.045954   0.078289  -0.587   0.5606    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.677 on 39 degrees of freedom
Multiple R-squared:  0.09806,   Adjusted R-squared:  0.005558 
F-statistic:  1.06 on 4 and 39 DF,  p-value: 0.3892
betaModel11<-lm.beta(model11)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel11)
P3pzMIDcueLoss         midHLS     SexMIDMale         AgeMID 
  -0.320612468   -0.002563895             NA   -0.099857563 
boot_model11<-boot_summary(model11, type='perc', method='residual',R = 10000)
boot_model11
EstimateLower.boundUpper.boundp.value
52.3    36.8  67.8   <1e-04
-0.542  -1.12 0.01880.059
-0.00251-0.3230.309 0.9915
0.618  -2.74 3.88  0.7131
-0.046  -0.1970.11  0.57
vif(model11)
P3pzMIDcueLoss         midHLS         SexMID         AgeMID 
      1.272684       1.163234       1.058589       1.251430 

11.4 Cue Loss P3 amplitudes and spirituality predict Alcohol Use

model12<-lm(midPROMISalcUse~P3pzMIDcueLoss+midNASS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model12)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss + midNASS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8061  -1.2507   0.1061   1.2581   9.9403 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    52.319012   3.572685  14.644   <2e-16 ***
P3pzMIDcueLoss -0.543003   0.286020  -1.898   0.0651 .  
midNASS        -0.005353   0.088189  -0.061   0.9519    
AgeMID         -0.043477   0.084317  -0.516   0.6090    
SexMIDMale      0.593373   1.781367   0.333   0.7408    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.676 on 39 degrees of freedom
Multiple R-squared:  0.09814,   Adjusted R-squared:  0.005646 
F-statistic: 1.061 on 4 and 39 DF,  p-value: 0.3887
betaModel12<-lm.beta(model12)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel12)
P3pzMIDcueLoss        midNASS         AgeMID     SexMIDMale 
   -0.32103086    -0.01063218    -0.09447557             NA 
boot_model12<-boot_summary(model12, type='perc', method='residual',R = 10000)
boot_model12
EstimateLower.boundUpper.boundp.value
52.3    45.4  59     <1e-04
-0.543  -1.1  0.01430.057
-0.00535-0.1770.168 0.9491
-0.0435 -0.21 0.121 0.6027
0.593  -2.99 4.08  0.7079
vif(model12)
P3pzMIDcueLoss        midNASS         AgeMID         SexMID 
      1.236544       1.326642       1.451710       1.121310 

11.5 Cue Loss P3 amplitudes predict PROMIS Alcohol Use moderated by acculturation

model13<-lm(midPROMISalcUse~P3pzMIDcueLoss*midNAAS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model13)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss * midNAAS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.7526 -1.5083 -0.1721  1.6587 11.1550 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            43.37916   11.67775   3.715 0.000652 ***
P3pzMIDcueLoss         -2.98274    2.83835  -1.051 0.299955    
midNAAS                 2.18570    2.70641   0.808 0.424347    
AgeMID                 -0.03979    0.07544  -0.527 0.600913    
SexMIDMale              0.32167    1.67130   0.192 0.848403    
P3pzMIDcueLoss:midNAAS  0.62636    0.71547   0.875 0.386835    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.517 on 38 degrees of freedom
Multiple R-squared:  0.1803,    Adjusted R-squared:  0.07243 
F-statistic: 1.672 on 5 and 38 DF,  p-value: 0.1651
betaModel13<-lm.beta(model13)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel13)
        P3pzMIDcueLoss                midNAAS                 AgeMID 
           -1.76343947             0.15433466            -0.08646966 
            SexMIDMale P3pzMIDcueLoss:midNAAS 
                    NA             0.37031032 
boot_model13<-boot_summary(model13, type='perc', method='residual',R = 10000)
boot_model13
EstimateLower.boundUpper.boundp.value
43.4   19.7  66.9  <1e-04
-2.98  -8.71 2.88 0.2868
2.19  -3.23 7.68 0.4247
-0.0398-0.1930.1080.5943
0.322 -2.94 3.62 0.8312
0.626 -0.8462.08 0.3752
johnson_neyman(
  model13, 
  pred=P3pzMIDcueLoss,
  modx=midNAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of P300 Amplitudes to Loss x PROMIS Alcohol Use",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When midNAAS is INSIDE the interval [3.70, 3.82], the slope of
P3pzMIDcueLoss is p < .05.

Note: The range of observed values of midNAAS is [3.30, 4.50]

vif(model13)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3pzMIDcueLoss                midNAAS                 AgeMID 
            130.540613               1.692996               1.245679 
                SexMID P3pzMIDcueLoss:midNAAS 
              1.058089             128.260553 

11.6 Cue Loss P3 amplitudes predict PROMIS Alcohol Use moderated by enculturation

model14<-lm(midPROMISalcUse~P3pzMIDcueLoss*midAIES+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model14)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss * midAIES + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8943  -0.9810   0.1594   1.4629   8.2664 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            49.87844    3.83525  13.005 1.44e-15 ***
P3pzMIDcueLoss          0.89188    0.75109   1.187   0.2424    
midAIES                 0.06222    0.07671   0.811   0.4224    
AgeMID                 -0.03846    0.07331  -0.525   0.6029    
SexMIDMale              0.51000    1.64612   0.310   0.7584    
P3pzMIDcueLoss:midAIES -0.04414    0.02134  -2.068   0.0455 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.469 on 38 degrees of freedom
Multiple R-squared:  0.1976,    Adjusted R-squared:  0.09204 
F-statistic: 1.872 on 5 and 38 DF,  p-value: 0.1223
betaModel14<-lm.beta(model14)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel14)
        P3pzMIDcueLoss                midAIES                 AgeMID 
            0.52729246             0.15531608            -0.08356381 
            SexMIDMale P3pzMIDcueLoss:midAIES 
                    NA            -0.02609489 
boot_model14<-boot_summary(model14, type='perc', method='residual',R = 10000)
boot_model14
EstimateLower.boundUpper.boundp.value
49.9   42.3   57.6     <1e-04
0.892 -0.646 2.43    0.2406
0.0622-0.09570.215   0.4076
-0.0385-0.187 0.11    0.5796
0.51  -2.78  3.74    0.7458
-0.0441-0.0887-0.0002790.0486
johnson_neyman(
  model14, 
  pred=P3pzMIDcueLoss,
  modx=midAIES,
  alpha=0.05, 
  plot=TRUE,
  title="Alcohol_Use~P3Loss*AIES Johnson-Neyman Plot",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

When midAIES is OUTSIDE the interval [-570.93, 32.77], the slope of
P3pzMIDcueLoss is p < .05.

Note: The range of observed values of midAIES is [19.00, 66.00]

vif(model14)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3pzMIDcueLoss                midAIES                 AgeMID 
              9.338481               1.736885               1.201782 
                SexMID P3pzMIDcueLoss:midAIES 
              1.048610               9.266174 

11.7 Cue Loss P3 amplitudes predict PROMIS Alcohol Use moderated by spirituality

model15<-lm(midPROMISalcUse~P3pzMIDcueLoss*midNASS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model15)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss * midNASS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8965  -1.0556   0.1937   1.3716   9.2809 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            50.07048    4.01710  12.464 5.36e-15 ***
P3pzMIDcueLoss          0.39325    0.83084   0.473    0.639    
midNASS                 0.06502    0.10552   0.616    0.541    
AgeMID                 -0.04579    0.08387  -0.546    0.588    
SexMIDMale              0.46297    1.77477   0.261    0.796    
P3pzMIDcueLoss:midNASS -0.02910    0.02426  -1.199    0.238    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.65 on 38 degrees of freedom
Multiple R-squared:  0.131, Adjusted R-squared:  0.0167 
F-statistic: 1.146 on 5 and 38 DF,  p-value: 0.3533
betaModel15<-lm.beta(model15)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel15)
        P3pzMIDcueLoss                midNASS                 AgeMID 
            0.23249458             0.12913639            -0.09949477 
            SexMIDMale P3pzMIDcueLoss:midNASS 
                    NA            -0.01720345 
boot_model15<-boot_summary(model15, type='perc', method='residual',R = 10000)
boot_model15
EstimateLower.boundUpper.boundp.value
50.1   41.6   57.5   <1e-04
0.393 -1.19  2.17  0.5882
0.065 -0.141 0.279 0.5185
-0.0458-0.209 0.12  0.5742
0.463 -3.01  3.86  0.7608
-0.0291-0.07840.01690.2001
johnson_neyman(
  model15, 
  pred=P3pzMIDcueLoss,
  modx=midNASS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of P300 Amplitudes to Loss x PROMIS Alcohol Use",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When midNASS is INSIDE the interval [33.41, 51.12], the slope of
P3pzMIDcueLoss is p < .05.

Note: The range of observed values of midNASS is [9.00, 49.00]

vif(model15)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3pzMIDcueLoss                midNASS                 AgeMID 
             10.551230               1.920540               1.452476 
                SexMID P3pzMIDcueLoss:midNASS 
              1.125534              10.483681 

11.8 Cue Loss P3 amplitudes predict PROMIS Alcohol Use moderated by historical loss

model16<-lm(midPROMISalcUse~P3pzMIDcueLoss*midHLS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model16)

Call:
lm(formula = midPROMISalcUse ~ P3pzMIDcueLoss * midHLS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.6846  -1.3158   0.1452   1.2265  10.2018 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)           48.04552    9.77385   4.916 1.73e-05 ***
P3pzMIDcueLoss         1.61185    2.86056   0.563    0.576    
midHLS                 0.10551    0.21560   0.489    0.627    
AgeMID                -0.05418    0.07947  -0.682    0.499    
SexMIDMale             0.83434    1.76369   0.473    0.639    
P3pzMIDcueLoss:midHLS -0.04965    0.06559  -0.757    0.454    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.702 on 38 degrees of freedom
Multiple R-squared:  0.1115,    Adjusted R-squared:  -0.005449 
F-statistic: 0.9534 on 5 and 38 DF,  p-value: 0.4583
betaModel16<-lm.beta(model16)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel16)
       P3pzMIDcueLoss                midHLS                AgeMID 
           0.95294863            0.10767156           -0.11773605 
           SexMIDMale P3pzMIDcueLoss:midHLS 
                   NA           -0.02935267 
boot_model16<-boot_summary(model16, type='perc', method='residual',R = 10000)
boot_model16
EstimateLower.boundUpper.boundp.value
48     28.3  66.9   <1e-04
1.61  -4.01 7.1   0.5609
0.106 -0.3090.529 0.6016
-0.0542-0.2070.09940.4992
0.834 -2.76 4.27  0.6205
-0.0496-0.1760.07780.4366
johnson_neyman(
  model16, 
  pred=P3pzMIDcueLoss,
  modx=midHLS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of P300 Amplitudes to Loss x PROMIS Alcohol Use",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

vif(model16)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
       P3pzMIDcueLoss                midHLS                AgeMID 
           122.320697              2.070136              1.275285 
               SexMID P3pzMIDcueLoss:midHLS 
             1.087040            129.702832 

11.9 Success SPN amplitudes and acculturation predict PROMIS Depression

model17<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess+midNAAS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model17)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess + midNAAS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-18.562  -4.175  -0.125   4.896  17.491 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)             57.78286   15.41746   3.748 0.000577 ***
SPNfzMIDfeedbackSuccess  0.00477    0.40707   0.012 0.990710    
midNAAS                  0.01637    3.64479   0.004 0.996439    
AgeMID                  -0.01016    0.11817  -0.086 0.931934    
SexMIDMale              -5.30539    2.83097  -1.874 0.068429 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.833 on 39 degrees of freedom
Multiple R-squared:  0.08376,   Adjusted R-squared:  -0.01021 
F-statistic: 0.8913 on 4 and 39 DF,  p-value: 0.4783
betaModel17<-lm.beta(model17)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel17)
SPNfzMIDfeedbackSuccess                 midNAAS                  AgeMID 
           0.0017979976            0.0006955949           -0.0132829507 
             SexMIDMale 
                     NA 
boot_model17<-boot_summary(model17, type='perc',method='residual',R = 10000)
boot_model17
EstimateLower.boundUpper.boundp.value
57.8    27.8  88.3  <1e-04
0.00477-0.7990.8140.9966
0.0164 -7.23 7.11 0.9896
-0.0102 -0.2450.2310.943
-5.31   -10.8  0.3510.0663
vif(model17)
SPNfzMIDfeedbackSuccess                 midNAAS                  AgeMID 
               1.002073                1.020930                1.016245 
                 SexMID 
               1.009402 

11.10 Success SPN amplitudes and enculturation predict PROMIS Depression

model18<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess+midAIES+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model18)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess + midAIES + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-18.378  -4.777  -0.189   5.488  17.951 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)             55.972582   5.230103  10.702 3.62e-13 ***
SPNfzMIDfeedbackSuccess  0.004629   0.404672   0.011   0.9909    
midAIES                  0.066432   0.102714   0.647   0.5216    
AgeMID                  -0.021992   0.118129  -0.186   0.8533    
SexMIDMale              -5.298331   2.807030  -1.888   0.0665 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.791 on 39 degrees of freedom
Multiple R-squared:  0.09348,   Adjusted R-squared:  0.0005078 
F-statistic: 1.005 on 4 and 39 DF,  p-value: 0.4164
betaModel18<-lm.beta(model18)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel18)
SPNfzMIDfeedbackSuccess                 midAIES                  AgeMID 
            0.001744687             0.099798417            -0.028757184 
             SexMIDMale 
                     NA 
boot_model18<-boot_summary(model18, type='perc',method='residual',R=10000)
boot_model18
EstimateLower.boundUpper.boundp.value
56      45.7  66.5  <1e-04
0.00463-0.7760.7880.9859
0.0664 -0.14 0.2650.5251
-0.022  -0.2510.2180.8514
-5.3    -10.8  0.4160.0638
vif(model18)
SPNfzMIDfeedbackSuccess                 midAIES                  AgeMID 
               1.000918                1.024330                1.026521 
                 SexMID 
               1.003047 

11.11 Success SPN amplitudes and historical loss predict PROMIS Depression

model19<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess+midHLS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model19)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess + midHLS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.4058  -4.2492  -0.1113   4.9590  16.9418 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)   
(Intercept)             44.22890   13.06156   3.386  0.00163 **
SPNfzMIDfeedbackSuccess -0.01756    0.40113  -0.044  0.96530   
midHLS                   0.28899    0.26163   1.105  0.27611   
AgeMID                   0.03141    0.12154   0.258  0.79741   
SexMIDMale              -4.87159    2.80638  -1.736  0.09048 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.713 on 39 degrees of freedom
Multiple R-squared:  0.1116,    Adjusted R-squared:  0.02043 
F-statistic: 1.224 on 4 and 39 DF,  p-value: 0.3163
betaModel19<-lm.beta(model19)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel19)
SPNfzMIDfeedbackSuccess                  midHLS                  AgeMID 
           -0.006620382             0.177465193             0.041078452 
             SexMIDMale 
                     NA 
boot_model19<-boot_summary(model19, type='perc',method='residual',R=10000)
boot_model19
EstimateLower.boundUpper.boundp.value
44.2   18    69.4  0.0014
-0.0176-0.8050.7760.9718
0.289 -0.2140.8210.2707
0.0314-0.2110.2710.8028
-4.87  -10.6  0.5440.0769
vif(model19)
SPNfzMIDfeedbackSuccess                  midHLS                  AgeMID 
               1.003482                1.133085                1.108794 
                 SexMID 
               1.022976 

11.12 Success SPN amplitudes and spirituality predict PROMIS Depression

model20<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess+midNASS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
summary(model20)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess + midNASS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.0766  -3.6994  -0.2879   4.2371  14.3074 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)              65.6091     5.2588  12.476 3.43e-15 ***
SPNfzMIDfeedbackSuccess  -0.2696     0.3982  -0.677   0.5024    
midNASS                  -0.3400     0.1446  -2.351   0.0239 *  
AgeMID                    0.1284     0.1246   1.030   0.3094    
SexMIDMale               -7.0129     2.7392  -2.560   0.0144 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.331 on 39 degrees of freedom
Multiple R-squared:  0.1975,    Adjusted R-squared:  0.1152 
F-statistic:   2.4 on 4 and 39 DF,  p-value: 0.06645
betaModel20<-lm.beta(model20)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel20)
SPNfzMIDfeedbackSuccess                 midNASS                  AgeMID 
             -0.1016275              -0.4062958               0.1678591 
             SexMIDMale 
                     NA 
boot_model20<-boot_summary(model20, type='perc',method='residual',R = 10000)
boot_model20
EstimateLower.boundUpper.boundp.value
65.6  55.1  75.8   <1e-04
-0.27 -1.05 0.518 0.5157
-0.34 -0.626-0.04860.0253
0.128-0.1150.375 0.3023
-7.01 -12.5  -1.69  0.0104
vif(model20)
SPNfzMIDfeedbackSuccess                 midNASS                  AgeMID 
               1.095006                1.451333                1.290897 
                 SexMID 
               1.078975 

11.13 Success SPN amplitudes predict PROMIS Depression moderated by acculturation

model21<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess*midNAAS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model21)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess * midNAAS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.7178  -4.2465   0.0595   4.8030  17.4905 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)   
(Intercept)                     60.43306   20.83489   2.901  0.00616 **
SPNfzMIDfeedbackSuccess         -1.00122    5.25366  -0.191  0.84987   
midNAAS                         -0.65350    5.07778  -0.129  0.89828   
AgeMID                          -0.01091    0.11971  -0.091  0.92789   
SexMIDMale                      -5.36472    2.88318  -1.861  0.07054 . 
SPNfzMIDfeedbackSuccess:midNAAS  0.25699    1.33795   0.192  0.84871   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.931 on 38 degrees of freedom
Multiple R-squared:  0.08465,   Adjusted R-squared:  -0.03579 
F-statistic: 0.7028 on 5 and 38 DF,  p-value: 0.6248
betaModel21<-lm.beta(model21)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel21)
        SPNfzMIDfeedbackSuccess                         midNAAS 
                    -0.37738211                     -0.02776797 
                         AgeMID                      SexMIDMale 
                    -0.01426174                              NA 
SPNfzMIDfeedbackSuccess:midNAAS 
                     0.09686456 
boot_model21<-boot_summary(model21, type='perc',method='residual',R=10000)
boot_model21
EstimateLower.boundUpper.boundp.value
60.4   19.8  102    0.0038
-1     -11.3  9.38 0.8378
-0.654 -10.8  9.29 0.8882
-0.0109-0.2460.2260.9347
-5.36  -11.1  0.3260.0649
0.257 -2.4  2.9  0.8381
johnson_neyman(
  model21, 
  pred=SPNfzMIDfeedbackSuccess,
  modx=midNAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of SPN amplitudes to Success x PROMIS Depression",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

vif(model21)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        SPNfzMIDfeedbackSuccess                         midNAAS 
                     162.788582                        1.932583 
                         AgeMID                          SexMID 
                       1.017323                        1.021121 
SPNfzMIDfeedbackSuccess:midNAAS 
                     164.683434 

11.14 Success SPN amplitudes predict PROMIS Depression moderated by enculturation

model22<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess*midAIES+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model22)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess * midAIES + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.2903  -4.5943  -0.2469   5.4401  17.7687 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     56.77015    6.01619   9.436 1.67e-11 ***
SPNfzMIDfeedbackSuccess         -0.38873    1.46867  -0.265   0.7927    
midAIES                          0.03344    0.15748   0.212   0.8330    
AgeMID                          -0.01457    0.12247  -0.119   0.9059    
SexMIDMale                      -5.20643    2.85987  -1.821   0.0766 .  
SPNfzMIDfeedbackSuccess:midAIES  0.01206    0.04326   0.279   0.7818    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.885 on 38 degrees of freedom
Multiple R-squared:  0.09534,   Adjusted R-squared:  -0.0237 
F-statistic: 0.8009 on 5 and 38 DF,  p-value: 0.556
betaModel22<-lm.beta(model22)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel22)
        SPNfzMIDfeedbackSuccess                         midAIES 
                    -0.14652003                      0.05023547 
                         AgeMID                      SexMIDMale 
                    -0.01905711                              NA 
SPNfzMIDfeedbackSuccess:midAIES 
                     0.00454745 
boot_model22<-boot_summary(model22, type='perc',method='residual',R=10000)
johnson_neyman(
  model22, 
  pred=SPNfzMIDfeedbackSuccess,
  modx=midAIES,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of SPN amplitudes to Success x PROMIS Depression",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

boot_model22
EstimateLower.boundUpper.boundp.value
56.8   44.9   68.8  <1e-04
-0.389 -3.3   2.54 0.7869
0.0334-0.274 0.3490.8329
-0.0146-0.251 0.2320.8895
-5.21  -10.7   0.5890.0737
0.0121-0.07370.0970.7751
vif(model22)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        SPNfzMIDfeedbackSuccess                         midAIES 
                      12.872040                        2.350901 
                         AgeMID                          SexMID 
                       1.077333                        1.016544 
SPNfzMIDfeedbackSuccess:midAIES 
                      14.165941 

11.15 Success SPN amplitudes predict PROMIS Depression moderated by historical loss

model23<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess*midHLS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model23)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess * midHLS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.5914  -3.8796  -0.2954   4.8182  17.5846 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)  
(Intercept)                    51.96448   19.75483   2.630   0.0122 *
SPNfzMIDfeedbackSuccess        -1.98929    3.77158  -0.527   0.6010  
midHLS                          0.11948    0.41674   0.287   0.7759  
AgeMID                          0.01726    0.12560   0.137   0.8914  
SexMIDMale                     -5.08088    2.86061  -1.776   0.0837 .
SPNfzMIDfeedbackSuccess:midHLS  0.04604    0.08756   0.526   0.6021  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.786 on 38 degrees of freedom
Multiple R-squared:  0.118, Adjusted R-squared:  0.001917 
F-statistic: 1.017 on 5 and 38 DF,  p-value: 0.4215
betaModel23<-lm.beta(model23)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel23)
       SPNfzMIDfeedbackSuccess                         midHLS 
                   -0.74980571                     0.07336889 
                        AgeMID                     SexMIDMale 
                    0.02257307                             NA 
SPNfzMIDfeedbackSuccess:midHLS 
                    0.01735466 
boot_model23<-boot_summary(model23, type='perc',method='residual',R=10000)
boot_model23
EstimateLower.boundUpper.boundp.value
52     13    91.4  0.0089
-1.99  -9.51 5.61 0.5976
0.119 -0.7140.9420.7796
0.0173-0.23 0.2660.87
-5.08  -10.8  0.4640.0727
0.046 -0.1310.2210.6024
johnson_neyman(
  model23, 
  pred=SPNfzMIDfeedbackSuccess,
  modx=midHLS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of SPN amplitudes to Success x PROMIS Depression",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

vif(model23)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
       SPNfzMIDfeedbackSuccess                         midHLS 
                     87.066436                       2.821552 
                        AgeMID                         SexMID 
                      1.162154                       1.043172 
SPNfzMIDfeedbackSuccess:midHLS 
                     89.727405 

11.16 Success SPN amplitudes predict PROMIS Depression moderated by spirituality

model24<-lm(midPROMISdepress~SPNfzMIDfeedbackSuccess*midNASS+AgeMID+SexMID, data=cleanedSimpleTibble4MID)
summary(model24)

Call:
lm(formula = midPROMISdepress ~ SPNfzMIDfeedbackSuccess * midNASS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-16.9474  -3.9560   0.5244   3.5296  13.2158 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     48.95456    7.07702   6.917 3.18e-08 ***
SPNfzMIDfeedbackSuccess          4.53880    1.55951   2.910  0.00601 ** 
midNASS                          0.06268    0.18200   0.344  0.73246    
AgeMID                           0.19437    0.11422   1.702  0.09697 .  
SexMIDMale                      -7.17869    2.46867  -2.908  0.00605 ** 
SPNfzMIDfeedbackSuccess:midNASS -0.14434    0.04556  -3.168  0.00302 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.605 on 38 degrees of freedom
Multiple R-squared:  0.3652,    Adjusted R-squared:  0.2817 
F-statistic: 4.372 on 5 and 38 DF,  p-value: 0.003056
betaModel24<-lm.beta(model24)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel24)
        SPNfzMIDfeedbackSuccess                         midNASS 
                     1.71077322                      0.07490792 
                         AgeMID                      SexMIDMale 
                     0.25416867                              NA 
SPNfzMIDfeedbackSuccess:midNASS 
                    -0.05440627 
boot_model24<-boot_summary(model24, type='perc',method='residual',R=10000)
boot_model24
EstimateLower.boundUpper.boundp.value
49     34.8   62.4   <1e-04
4.54  1.47  7.67  0.0027
0.0627-0.281 0.425 0.7195
0.194 -0.03190.413 0.0875
-7.18  -12.1   -2.33  0.0045
-0.144 -0.235 -0.05520.0013
johnson_neyman(
  model24, 
  pred=SPNfzMIDfeedbackSuccess,
  modx=midNASS,
  alpha=0.05, 
  plot=TRUE,
  title="Depression~SPN*NASS Johnson-Neyman plot",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When midNASS is OUTSIDE the interval [23.31, 37.00], the slope of
SPNfzMIDfeedbackSuccess is p < .05.

Note: The range of observed values of midNASS is [9.00, 49.00]

vif(model24)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        SPNfzMIDfeedbackSuccess                         midNASS 
                      20.683471                        2.832194 
                         AgeMID                          SexMID 
                       1.335320                        1.079460 
SPNfzMIDfeedbackSuccess:midNASS 
                      19.492861 

11.17 Gain RewP amplitudes predict PROMIS Alcohol Use moderated by enculturation

model47<-lm(midPROMISalcUse~RewPfczMIDfeedbackGain*midAIES+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel47<-lm.beta(model47)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel47)
        RewPfczMIDfeedbackGain                        midAIES 
                   -0.44771811                    -0.37762874 
                        AgeMID                     SexMIDMale 
                    0.08213213                             NA 
RewPfczMIDfeedbackGain:midAIES 
                    0.02094756 
summary(model47)

Call:
lm(formula = midPROMISalcUse ~ RewPfczMIDfeedbackGain * midAIES + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.7911 -1.3748  0.1385  1.1697  8.8486 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                    51.61673    4.21199  12.255 9.01e-15 ***
RewPfczMIDfeedbackGain         -0.76246    0.83577  -0.912    0.367    
midAIES                        -0.15127    0.09527  -1.588    0.121    
AgeMID                          0.03780    0.07043   0.537    0.595    
SexMIDMale                      1.08382    1.66680   0.650    0.519    
RewPfczMIDfeedbackGain:midAIES  0.03567    0.02256   1.582    0.122    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.577 on 38 degrees of freedom
Multiple R-squared:  0.158, Adjusted R-squared:  0.04726 
F-statistic: 1.427 on 5 and 38 DF,  p-value: 0.2369
boot_model47<-boot_summary(model47, type='perc',method='residual',R=10000)
boot_model47
EstimateLower.boundUpper.boundp.value
51.6   43.1    60.1   <1e-04
-0.762 -2.41   0.922 0.3749
-0.151 -0.341  0.04110.1275
0.0378-0.101  0.177 0.6081
1.08  -2.25   4.44  0.5116
0.0357-0.008370.08060.1201
vif(model47)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        RewPfczMIDfeedbackGain                        midAIES 
                     10.870311                       2.552968 
                        AgeMID                         SexMID 
                      1.057020                       1.024596 
RewPfczMIDfeedbackGain:midAIES 
                     12.323393 

11.18 Gain RewP amplitudes and enculturation predict PROMIS Alcohol Use

model55<-lm(midPROMISalcUse~RewPfczMIDfeedbackGain+midAIES+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel55<-lm.beta(model55)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel55)
RewPfczMIDfeedbackGain                midAIES                 AgeMID 
            0.29068875            -0.08662268             0.08610610 
            SexMIDMale 
                    NA 
summary(model55)

Call:
lm(formula = midPROMISalcUse ~ RewPfczMIDfeedbackGain + midAIES + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.9555  -1.4765   0.1493   1.8336  10.5526 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            47.35860    3.30096  14.347   <2e-16 ***
RewPfczMIDfeedbackGain  0.49504    0.26251   1.886   0.0668 .  
midAIES                -0.03470    0.06152  -0.564   0.5760    
AgeMID                  0.03963    0.07176   0.552   0.5840    
SexMIDMale              1.45294    1.68185   0.864   0.3929    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.665 on 39 degrees of freedom
Multiple R-squared:  0.1026,    Adjusted R-squared:  0.01058 
F-statistic: 1.115 on 4 and 39 DF,  p-value: 0.3634

11.19 Gain RewP amplitudes predict PROMIS Alcohol Use moderated by historical loss thinking

model48<-lm(midPROMISalcUse~RewPfczMIDfeedbackGain*midHLS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel48<-lm.beta(model48)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel48)
       RewPfczMIDfeedbackGain                        midHLS 
                  0.372171445                   0.041774013 
                       AgeMID                    SexMIDMale 
                  0.084369199                            NA 
RewPfczMIDfeedbackGain:midHLS 
                 -0.001798357 
summary(model48)

Call:
lm(formula = midPROMISalcUse ~ RewPfczMIDfeedbackGain * midHLS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.1042  -1.3334   0.3449   1.8271   9.4852 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   44.420750  12.380560   3.588 0.000938 ***
RewPfczMIDfeedbackGain         0.633804   1.903550   0.333 0.740995    
midHLS                         0.040936   0.254199   0.161 0.872917    
AgeMID                         0.038826   0.078391   0.495 0.623249    
SexMIDMale                     1.505705   1.733435   0.869 0.390506    
RewPfczMIDfeedbackGain:midHLS -0.003063   0.044226  -0.069 0.945156    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.743 on 38 degrees of freedom
Multiple R-squared:  0.09607,   Adjusted R-squared:  -0.02287 
F-statistic: 0.8077 on 5 and 38 DF,  p-value: 0.5514
boot_model48<-boot_summary(model48, type='perc',method='residual',R=10000)
boot_model48
EstimateLower.boundUpper.boundp.value
44.4    19.6   69.8   7e-04
0.634  -3.41  4.48  0.7208
0.0409 -0.489 0.561 0.8673
0.0388 -0.119 0.194 0.6265
1.51   -2.11  5.03  0.3893
-0.00306-0.09180.09080.9319
vif(model48)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
       RewPfczMIDfeedbackGain                        midHLS 
                    52.523222                      2.828829 
                       AgeMID                        SexMID 
                     1.219832                      1.032176 
RewPfczMIDfeedbackGain:midHLS 
                    49.948261 

11.20 Gain RewP amplitudes and historical loss thinking predict PROMIS Alcohol Use

model56<-lm(midPROMISalcUse~RewPfczMIDfeedbackGain+midHLS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
summary(model56)

Call:
lm(formula = midPROMISalcUse ~ RewPfczMIDfeedbackGain + midHLS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.1881  -1.3045   0.3892   1.8146   9.4985 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            45.02764    8.63236   5.216 6.32e-06 ***
RewPfczMIDfeedbackGain  0.50339    0.27328   1.842   0.0731 .  
midHLS                  0.02765    0.16456   0.168   0.8675    
AgeMID                  0.03784    0.07610   0.497   0.6218    
SexMIDMale              1.49964    1.70899   0.877   0.3856    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.682 on 39 degrees of freedom
Multiple R-squared:  0.09595,   Adjusted R-squared:  0.003229 
F-statistic: 1.035 on 4 and 39 DF,  p-value: 0.4016
betaModel56<-lm.beta(model56)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel56)
RewPfczMIDfeedbackGain                 midHLS                 AgeMID 
            0.29559133             0.02821286             0.08222706 
            SexMIDMale 
                    NA 

11.21 Gain RewP amplitudes predict PROMIS Alcohol Use moderated by spirituality

model49<-lm(midPROMISalcUse~RewPfczMIDfeedbackGain*midNASS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel49<-lm.beta(model49)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel49)
        RewPfczMIDfeedbackGain                        midNASS 
                   -0.54234955                    -0.28519972 
                        AgeMID                     SexMIDMale 
                    0.04862724                             NA 
RewPfczMIDfeedbackGain:midNASS 
                    0.02519434 
summary(model49)

Call:
lm(formula = midPROMISalcUse ~ RewPfczMIDfeedbackGain * midNASS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.9336  -1.4649   0.5595   1.9515   8.4907 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                    51.67139    6.13939   8.416 3.27e-10 ***
RewPfczMIDfeedbackGain         -0.92362    1.27425  -0.725    0.473    
midNASS                        -0.14360    0.17000  -0.845    0.404    
AgeMID                          0.02238    0.07879   0.284    0.778    
SexMIDMale                      1.70055    1.75064   0.971    0.337    
RewPfczMIDfeedbackGain:midNASS  0.04291    0.03750   1.144    0.260    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.662 on 38 degrees of freedom
Multiple R-squared:  0.1268,    Adjusted R-squared:  0.01187 
F-statistic: 1.103 on 5 and 38 DF,  p-value: 0.3748
boot_model49<-boot_summary(model49, type='perc',method='residual',R=10000)
boot_model49
EstimateLower.boundUpper.boundp.value
51.7   39.6   63.7  <1e-04
-0.924 -3.57  1.53 0.4609
-0.144 -0.485 0.19 0.3898
0.0224-0.137 0.1730.7644
1.7   -1.85  4.93 0.3293
0.0429-0.03130.12 0.2446
vif(model49)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        RewPfczMIDfeedbackGain                        midNASS 
                     24.363428                       4.961030 
                        AgeMID                         SexMID 
                      1.275774                       1.089788 
RewPfczMIDfeedbackGain:midNASS 
                     24.255079 

11.22 Gain RewP amplitudes and spirituality predict PROMIS Alcohol Use

model57<-lm(midPROMISalcUse~RewPfczMIDfeedbackGain+midNASS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel57<-lm.beta(model57)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel57)
RewPfczMIDfeedbackGain                midNASS                 AgeMID 
            0.29479809             0.04370233             0.05388511 
            SexMIDMale 
                    NA 
summary(model57)

Call:
lm(formula = midPROMISalcUse ~ RewPfczMIDfeedbackGain + midNASS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.4489  -1.4031   0.3087   1.7966   9.2508 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            45.89204    3.50252  13.103 7.26e-16 ***
RewPfczMIDfeedbackGain  0.50204    0.26698   1.880   0.0675 .  
midNASS                 0.02200    0.08950   0.246   0.8071    
AgeMID                  0.02480    0.07908   0.314   0.7555    
SexMIDMale              1.57255    1.75396   0.897   0.3754    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.68 on 39 degrees of freedom
Multiple R-squared:  0.0967,    Adjusted R-squared:  0.004051 
F-statistic: 1.044 on 4 and 39 DF,  p-value: 0.3972

11.23 Gain RewP amplitudes predict PROMIS Alcohol Use moderated by acculturation

model50<-lm(midPROMISalcUse~RewPfczMIDfeedbackGain*midNAAS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel50<-lm.beta(model50)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel50)
        RewPfczMIDfeedbackGain                        midNAAS 
                     1.3869028                      0.4144334 
                        AgeMID                     SexMIDMale 
                     0.1244869                             NA 
RewPfczMIDfeedbackGain:midNAAS 
                    -0.2799967 
summary(model50)

Call:
lm(formula = midPROMISalcUse ~ RewPfczMIDfeedbackGain * midNAAS + 
    AgeMID + SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.9880 -2.2118 -0.3524  1.9536 11.3926 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
(Intercept)                    22.46863   15.08384   1.490    0.145
RewPfczMIDfeedbackGain          2.36188    3.01126   0.784    0.438
midNAAS                         5.86923    3.64049   1.612    0.115
AgeMID                          0.05729    0.07026   0.815    0.420
SexMIDMale                      1.29140    1.63690   0.789    0.435
RewPfczMIDfeedbackGain:midNAAS -0.47683    0.76880  -0.620    0.539

Residual standard error: 4.51 on 38 degrees of freedom
Multiple R-squared:  0.1827,    Adjusted R-squared:  0.07517 
F-statistic: 1.699 on 5 and 38 DF,  p-value: 0.1585
boot_model50<-boot_summary(model50, type='perc',method='residual',R=10000)
boot_model50
EstimateLower.boundUpper.boundp.value
22.5   -7.66  53.3  0.146
2.36  -3.62  8.42 0.4548
5.87  -1.48  13.2  0.1207
0.0573-0.08490.1970.4271
1.29  -1.88  4.53 0.4345
-0.477 -2.02  1.06 0.5536
vif(model50)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        RewPfczMIDfeedbackGain                        midNAAS 
                    145.371295                       3.072361 
                        AgeMID                         SexMID 
                      1.083923                       1.017989 
RewPfczMIDfeedbackGain:midNAAS 
                    146.348857 

11.24 Loss P3 amplitudes predict PROMIS Depression moderated by enculturation

model51<-lm(midPROMISdepress~P3pzMIDcueLoss*midAIES+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel51<-lm.beta(model51)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel51)
        P3pzMIDcueLoss                midAIES                 AgeMID 
            0.81676384             0.27277052             0.08106910 
            SexMIDMale P3pzMIDcueLoss:midAIES 
                    NA            -0.01616418 
summary(model51)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss * midAIES + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-14.2195  -4.4710  -0.6825   4.5082  17.5590 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            47.04291    6.38562   7.367 7.88e-09 ***
P3pzMIDcueLoss          2.29577    1.25055   1.836   0.0742 .  
midAIES                 0.18157    0.12772   1.422   0.1633    
AgeMID                  0.06200    0.12206   0.508   0.6144    
SexMIDMale             -4.38097    2.74075  -1.598   0.1182    
P3pzMIDcueLoss:midAIES -0.04543    0.03554  -1.278   0.2088    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.44 on 38 degrees of freedom
Multiple R-squared:  0.1945,    Adjusted R-squared:  0.08855 
F-statistic: 1.836 on 5 and 38 DF,  p-value: 0.1291
boot_model51<-boot_summary(model51, type='perc',method='residual',R=10000)
boot_model51
EstimateLower.boundUpper.boundp.value
47     34.4   59.5   <1e-04
2.3   -0.181 4.77  0.0702
0.182 -0.06470.438 0.155
0.062 -0.173 0.303 0.5946
-4.38  -9.8   1.23  0.1158
-0.0454-0.116 0.02460.205
vif(model51)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3pzMIDcueLoss                midAIES                 AgeMID 
              9.338481               1.736885               1.201782 
                SexMID P3pzMIDcueLoss:midAIES 
              1.048610               9.266174 

11.25 Loss P3 amplitudes and enculturation predict PROMIS Depression

model58<-lm(midPROMISdepress~P3pzMIDcueLoss+midAIES+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel58<-lm.beta(model58)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel58)
P3pzMIDcueLoss        midAIES         AgeMID     SexMIDMale 
    0.28711675     0.11609217     0.07909018             NA 
summary(model58)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss + midAIES + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-14.672  -4.292  -0.992   5.429  17.192 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    50.65248    5.77395   8.773 9.11e-11 ***
P3pzMIDcueLoss  0.80703    0.45964   1.756    0.087 .  
midAIES         0.07728    0.09907   0.780    0.440    
AgeMID          0.06048    0.12304   0.492    0.626    
SexMIDMale     -4.28483    2.76192  -1.551    0.129    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.5 on 39 degrees of freedom
Multiple R-squared:  0.1599,    Adjusted R-squared:  0.07372 
F-statistic: 1.856 on 4 and 39 DF,  p-value: 0.1378
boot_model58<-boot_summary(model58, type='perc',method='residual',R=10000)
boot_model58
EstimateLower.boundUpper.boundp.value
50.7   39.3   62.2  <1e-04
0.807 -0.09751.72 0.0788
0.0773-0.115 0.2750.4401
0.0605-0.182 0.3060.6337
-4.28  -9.68  1.22 0.1241
vif(model58)
P3pzMIDcueLoss        midAIES         AgeMID         SexMID 
      1.241356       1.028327       1.201669       1.047821 

11.26 Loss P3 amplitudes predict PROMIS Depression moderated by historical loss thinking

model52<-lm(midPROMISdepress~P3pzMIDcueLoss*midHLS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel52<-lm.beta(model52)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel52)
       P3pzMIDcueLoss                midHLS                AgeMID 
         0.2600130525          0.1364073757          0.1264059235 
           SexMIDMale P3pzMIDcueLoss:midHLS 
                   NA         -0.0001111579 
summary(model52)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss * midHLS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.974  -4.406  -1.164   5.224  16.302 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)   
(Intercept)           42.8820126 15.7670361   2.720   0.0098 **
P3pzMIDcueLoss         0.7308478  4.6146146   0.158   0.8750   
midHLS                 0.2221308  0.3477957   0.639   0.5269   
AgeMID                 0.0966682  0.1281958   0.754   0.4555   
SexMIDMale            -4.0748829  2.8451638  -1.432   0.1603   
P3pzMIDcueLoss:midHLS -0.0003124  0.1058016  -0.003   0.9977   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.586 on 38 degrees of freedom
Multiple R-squared:  0.1627,    Adjusted R-squared:  0.05251 
F-statistic: 1.477 on 5 and 38 DF,  p-value: 0.2202
boot_model52<-boot_summary(model52, type='perc',method='residual',R=10000)
boot_model52
EstimateLower.boundUpper.boundp.value
42.9     10.9  74.5  0.0074
0.731   -8.81 9.83 0.8814
0.222   -0.4860.9220.5414
0.0967  -0.1570.35 0.4499
-4.07    -9.63 1.6  0.1636
-0.000312-0.2090.2170.9944
vif(model52)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
       P3pzMIDcueLoss                midHLS                AgeMID 
           122.320697              2.070136              1.275285 
               SexMID P3pzMIDcueLoss:midHLS 
             1.087040            129.702832 

11.27 Loss P3 amplitudes and historical loss thinking predict PROMIS Depression

model59<-lm(midPROMISdepress~P3pzMIDcueLoss+midAIES+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel59<-lm.beta(model59)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel59)
P3pzMIDcueLoss        midAIES         AgeMID     SexMIDMale 
    0.28711675     0.11609217     0.07909018             NA 
summary(model59)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss + midAIES + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-14.672  -4.292  -0.992   5.429  17.192 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    50.65248    5.77395   8.773 9.11e-11 ***
P3pzMIDcueLoss  0.80703    0.45964   1.756    0.087 .  
midAIES         0.07728    0.09907   0.780    0.440    
AgeMID          0.06048    0.12304   0.492    0.626    
SexMIDMale     -4.28483    2.76192  -1.551    0.129    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.5 on 39 degrees of freedom
Multiple R-squared:  0.1599,    Adjusted R-squared:  0.07372 
F-statistic: 1.856 on 4 and 39 DF,  p-value: 0.1378
boot_model59<-boot_summary(model59, type='perc',method='residual',R=10000)
boot_model59
EstimateLower.boundUpper.boundp.value
50.7   39.1   62    <1e-04
0.807 -0.08581.72 0.0784
0.0773-0.115 0.2750.4431
0.0605-0.18  0.3060.639
-4.28  -9.61  1.27 0.1267
vif(model59)
P3pzMIDcueLoss        midAIES         AgeMID         SexMID 
      1.241356       1.028327       1.201669       1.047821 

11.28 Loss P3 amplitudes predict PROMIS Depression moderated by spirituality

model53<-lm(midPROMISdepress~P3pzMIDcueLoss*midNASS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel53<-lm.beta(model53)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel53)
        P3pzMIDcueLoss                midNASS                 AgeMID 
            0.93851499            -0.20675789             0.25524036 
            SexMIDMale P3pzMIDcueLoss:midNASS 
                    NA            -0.02045584 
summary(model53)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss * midNASS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.0695  -4.3158  -0.9275   4.3682  14.4364 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            54.91366    5.99950   9.153 3.76e-11 ***
P3pzMIDcueLoss          2.63799    1.24085   2.126   0.0401 *  
midNASS                -0.17300    0.15759  -1.098   0.2792    
AgeMID                  0.19519    0.12526   1.558   0.1274    
SexMIDMale             -6.19421    2.65061  -2.337   0.0248 *  
P3pzMIDcueLoss:midNASS -0.05750    0.03624  -1.587   0.1208    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.945 on 38 degrees of freedom
Multiple R-squared:  0.2981,    Adjusted R-squared:  0.2058 
F-statistic: 3.228 on 5 and 38 DF,  p-value: 0.01587
boot_model53<-boot_summary(model53, type='perc',method='residual',R=10000)
boot_model53
EstimateLower.boundUpper.boundp.value
54.9   43.2   67.1   <1e-04
2.64  0.161 5     0.0341
-0.173 -0.485 0.128 0.2745
0.195 -0.05030.439 0.1184
-6.19  -11.4   -0.929 0.0209
-0.0575-0.128 0.01540.1211
vif(model53)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3pzMIDcueLoss                midNASS                 AgeMID 
             10.551230               1.920540               1.452476 
                SexMID P3pzMIDcueLoss:midNASS 
              1.125534              10.483681 
johnson_neyman(
  model53, 
  pred=P3pzMIDcueLoss,
  modx=midNASS,
  alpha=0.05, 
  plot=TRUE,
  title="Depression~P3Loss*NASS Johnson-Neyman Plot",
  y.label="Slope of P300 Amplitudes to Loss Cues",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When midNASS is INSIDE the interval [-10.15, 30.83], the slope of
P3pzMIDcueLoss is p < .05.

Note: The range of observed values of midNASS is [9.00, 49.00]

11.29 Loss P3 amplitudes and spirituality predict PROMIS Depression

model60<-lm(midPROMISdepress~P3pzMIDcueLoss+midNASS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel60<-lm.beta(model60)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel60)
P3pzMIDcueLoss        midNASS         AgeMID     SexMIDMale 
     0.2803432     -0.3729503      0.2612085             NA 
summary(model60)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss + midNASS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-14.9914  -3.9947  -0.6678   4.4713  13.3230 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     59.3567     5.4083  10.975 1.72e-13 ***
P3pzMIDcueLoss   0.7880     0.4330   1.820   0.0764 .  
midNASS         -0.3121     0.1335  -2.337   0.0246 *  
AgeMID           0.1998     0.1276   1.565   0.1257    
SexMIDMale      -5.9365     2.6966  -2.201   0.0337 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.079 on 39 degrees of freedom
Multiple R-squared:  0.2516,    Adjusted R-squared:  0.1749 
F-statistic: 3.278 on 4 and 39 DF,  p-value: 0.02073
boot_model60<-boot_summary(model60, type='perc',method='residual',R=10000)
boot_model60
EstimateLower.boundUpper.boundp.value
59.4  48.5   70.1  <1e-04
0.788-0.07611.65 0.0744
-0.312-0.579 -0.0410.0228
0.2  -0.05330.4560.1204
-5.94 -11.3   -0.6290.0288
vif(model60)
P3pzMIDcueLoss        midNASS         AgeMID         SexMID 
      1.236544       1.326642       1.451710       1.121310 

11.30 Loss P3 amplitudes predict PROMIS Depression moderated by acculturation

model54<-lm(midPROMISdepress~P3pzMIDcueLoss*midNAAS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel54<-lm.beta(model54)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
Warning in b * sx: longer object length is not a multiple of shorter object
length
print(betaModel54)
        P3pzMIDcueLoss                midNAAS                 AgeMID 
           -3.40557345            -0.24672626             0.03280874 
            SexMIDMale P3pzMIDcueLoss:midNAAS 
                    NA             0.93362996 
summary(model54)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss * midNAAS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.848  -4.254  -0.304   4.307  18.473 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            77.68121   18.53529   4.191  0.00016 ***
P3pzMIDcueLoss         -9.57243    4.50512  -2.125  0.04017 *  
midNAAS                -5.80655    4.29569  -1.352  0.18446    
AgeMID                  0.02509    0.11974   0.210  0.83514    
SexMIDMale             -4.80945    2.65274  -1.813  0.07773 .  
P3pzMIDcueLoss:midNAAS  2.62426    1.13562   2.311  0.02636 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.169 on 38 degrees of freedom
Multiple R-squared:  0.2522,    Adjusted R-squared:  0.1538 
F-statistic: 2.563 on 5 and 38 DF,  p-value: 0.04295
boot_model54<-boot_summary(model54, type='perc',method='residual',R=10000)
boot_model54
EstimateLower.boundUpper.boundp.value
77.7   40.2  114    3e-04
-9.57  -18.1  -0.4190.0398
-5.81  -14.1  2.82 0.189
0.0251-0.21 0.2630.8411
-4.81  -9.93 0.4650.071
2.62  0.3174.82 0.0226
vif(model54)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
        P3pzMIDcueLoss                midNAAS                 AgeMID 
            130.540613               1.692996               1.245679 
                SexMID P3pzMIDcueLoss:midNAAS 
              1.058089             128.260553 
johnson_neyman(
  model54, 
  pred=P3pzMIDcueLoss,
  modx=midNAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Depression~P3Loss*NAAS Johnson-Neyman Plot",
  y.label="Slope of P300 Amplitudes to Loss Cues",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When midNAAS is OUTSIDE the interval [1.32, 3.99], the slope of
P3pzMIDcueLoss is p < .05.

Note: The range of observed values of midNAAS is [3.30, 4.50]

11.31 Loss P3 amplitudes and acculturation predict PROMIS Depression

model61<-lm(midPROMISdepress~P3pzMIDcueLoss+midNAAS+AgeMID+SexMID,data=cleanedSimpleTibble4MID)
betaModel61<-lm.beta(model61)
Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion
print(betaModel61)
P3pzMIDcueLoss        midNAAS         AgeMID     SexMIDMale 
    0.28055184     0.01829915     0.09662463             NA 
summary(model61)

Call:
lm(formula = midPROMISdepress ~ P3pzMIDcueLoss + midNAAS + AgeMID + 
    SexMID, data = cleanedSimpleTibble4MID)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.0728  -4.9259  -0.8268   5.2124  16.6225 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)    51.19969   15.35746   3.334  0.00189 **
P3pzMIDcueLoss  0.78858    0.46332   1.702  0.09671 . 
midNAAS         0.43066    3.52287   0.122  0.90333   
AgeMID          0.07389    0.12424   0.595  0.55545   
SexMIDMale     -4.34186    2.78830  -1.557  0.12751   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.557 on 39 degrees of freedom
Multiple R-squared:  0.1471,    Adjusted R-squared:  0.05963 
F-statistic: 1.682 on 4 and 39 DF,  p-value: 0.1738
boot_model61<-boot_summary(model61, type='perc',method='residual',R=10000)
boot_model61
EstimateLower.boundUpper.boundp.value
51.2   20.6  81.7  0.0016
0.789 -0.1291.71 0.0997
0.431 -6.54 7.47 0.8841
0.0739-0.1710.3210.5602
-4.34  -9.84 1.2  0.1305
vif(model61)
P3pzMIDcueLoss        midNAAS         AgeMID         SexMID 
      1.242421       1.024610       1.206926       1.051933 

12 Multiple linear regression and moderation analysis in SST + MID

TBD