# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("TSLA", "NVDA", "AAPL", "MSFT", "AMZN")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2025-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "MSFT" "NVDA" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 MSFT 0.2
## 4 NVDA 0.2
## 5 TSLA 0.1
# tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 155 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.00905
## 2 2013-02-28 -0.00315
## 3 2013-03-28 0.0196
## 4 2013-04-30 0.0666
## 5 2013-05-31 0.103
## 6 2013-06-28 -0.0225
## 7 2013-07-31 0.0651
## 8 2013-08-30 0.0419
## 9 2013-09-30 0.0447
## 10 2013-10-31 0.0497
## # ℹ 145 more rows
# Get market returns
market_returns_tbl <- tq_get("SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2025-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
# Combine market returns with portfolio returns
portfolio_market_returns_tbl <- portfolio_returns_tbl %>%
# Add market returns
mutate(market_returns = market_returns_tbl %>% pull(returns))
portfolio_market_returns_tbl %>%
tq_performance(Ra = returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.32
portfolio_market_returns_tbl %>%
ggplot(aes(market_returns, returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(x = "market returns",
y = "portfolio returns") +
coord_cartesian(xlim = c(0,0.1), ylim = c(0,0.1))
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
The portfolio is positive which correlates with the beta, although the actual returns are very volatile adn have a low correlation to the market.