1. Introduction
Single-cell sequencing is an emerging technology in the field of
immunology and oncology that allows researchers to couple RNA
quantification and other modalities, like immune cell receptor profiling
at the level of an individual cell. A number of workflows and software
packages have been created to process and analyze single-cell
transcriptomic data. These packages allow users to take the vast
dimensionality of the data generated in single-cell-based experiments
and distill the data into novel insights. Unlike the transcriptomic
field, there is a lack of options for software that allow for
single-cell immune receptor profiling. Enabling users to easily combine
RNA and immune profiling, the scRepertoire framework supports use of
10x, single-cell clonal formats and interaction with popular R-based
single-cell data pipelines.
scRepertoire is designed to take filter contig outputs from the 10x
Genomics Cell Ranger pipeline, process that data to assign clonotype
based on two TCR or Ig chains and analyze the clonotype dynamics. The
latter can be separated into 1) clonotype-only analysis functions, such
as unique clonotypes or clonal space quantification, and 2) interaction
with mRNA expression data using Seurat or SingleCellExperiment
packages.
References:
Prerequisite: Ensure the
All_samples_Merged Seurat object is loaded into your R
environment before running the chunks below.
1.1 Load libraries
1.2 Load Seurat Object
#Load Seurat Object merged from cell lines and a control(PBMC) after filtration
All_samples_Merged <- readRDS("../../0-Seurat_RDS_OBJECT_FINAL/All_samples_Merged_with_Renamed_Clusters_final-26-10-2025.rds")
All_samples_Merged
An object of class Seurat
62900 features across 49305 samples within 6 assays
Active assay: RNA (36601 features, 0 variable features)
2 layers present: data, counts
5 other assays present: ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3, SCT
5 dimensional reductions calculated: integrated_dr, ref.umap, pca, umap, harmony
1.3. Load contigs
scRepertoire functions using the filtered_contig_annotations.csv
output from the 10x Genomics Cell Ranger. This file is located in the
./outs/ directory of the VDJ alignment folder. To generate a list of
contigs to use for scRepertoire:
- load the filtered_contig_annotations.csv for each of the
samples.
- make a list in the R environment.
2. Combining Contigs into Clones
There are varying definitions of clones in the literature. For the
purposes of scRepertoire, we define a clone as cells with
shared/trackable complementarity-determining region 3 (CDR3) sequences.
Within this definition, one might use amino acid (aa) sequences of one
or both chains to define a clone. Alternatively, we could use nucleotide
(nt) or the V(D)JC genes (genes) to define a clone. The latter, genes,
would be a more permissive definition of “clones,” as multiple amino
acid or nucleotide sequences can result from the same gene combination.
Another option to define a clone is the use of the V(D)JC and nucleotide
sequence (strict). scRepertoire allows for the use of all these
definitions of clones and enables users to select both or individual
chains to examine.
2.1 Combining Contigs into Clones
contig_list <- list(L1, L2, L3_B, L4_B,L5,L6, L7)
contig_list_with_PBMC <- list(L1, L2, L3_B, L4_B,L5,L6, L7, PBMC)
combined.TCR <- combineTCR(contig_list,
samples = c("L1", "L2", "L3_B", "L4_B", "L5", "L6", "L7"),
removeNA = FALSE,
removeMulti = FALSE,
filterMulti = FALSE)
combined.TCR_with_PBMC <- combineTCR(contig_list_with_PBMC,
samples = c("L1", "L2", "L3_B", "L4_B", "L5", "L6", "L7",
"PBMC"),
removeNA = FALSE,
removeMulti = FALSE,
filterMulti = FALSE)
exportClones(combined.TCR,
write.file = TRUE,
dir = "TCR_analysis_Harmony/",
file.name = "clones.csv")
exportClones(combined.TCR_with_PBMC,
write.file = TRUE,
dir = "TCR_analysis_Harmony/",
file.name = "clones_with_PBMC.csv")
head(combined.TCR[[1]])
head(combined.TCR_with_PBMC[[1]])
# Combine all data frames in the list into a single data frame
combined_TCR_df <- do.call(rbind, combined.TCR)
# Write the combined data frame to a CSV file
write.csv(combined_TCR_df, file = "TCR_analysis_Harmony/combined_TCR.csv", row.names = FALSE)
# Combine all data frames in the list into a single data frame
combined_TCR_with_PBMC_df <- do.call(rbind, combined.TCR_with_PBMC)
# Write the combined data frame to a CSV file
write.csv(combined_TCR_with_PBMC_df, file = "TCR_analysis_Harmony/combined_TCR_with_PBMC.csv", row.names = FALSE)
Remove TCR VDJ genes
DefaultAssay(All_samples_Merged) <- "SCT"
TCR <- All_samples_Merged
# Combining Clones and Single-Cell Objects
#Getting a sample of a Seurat object
TCR <- All_samples_Merged
# Check the first 10 variable features before removal
VariableFeatures(TCR)[1:10]
[1] "CCL17" "CCL1" "CCL4" "TRBV7-2" "PPBP" "CCL3" "OASL" "IFIT2" "GZMB" "XCL1"
# Remove TCR VDJ genes
TCR <- quietTCRgenes(TCR)
# Check the first 10 variable features after removal
VariableFeatures(TCR)[1:10]
[1] "CCL17" "CCL1" "CCL4" "PPBP" "CCL3" "OASL" "IFIT2" "GZMB" "XCL1" "HLA-DRB1"
3. Combining Clones and Single-Cell Objects
DefaultAssay(TCR) <- "SCT"
# If All_samples_Merged is already loaded in the environment:
TCR <- All_samples_Merged
# Define color palette
colorblind_vector <- hcl.colors(n=7, palette = "inferno", fixup = TRUE)
# Combine expression with filtering of NA clonotype cells
TCR <- combineExpression(
combined.TCR_with_PBMC,
TCR,
cloneCall = "gene",
group.by = "sample",
proportion = TRUE,
filterNA = TRUE # This will exclude cells without clonotype info
)
# You no longer need the manual barcode matching or NA replacements
# Plot UMAP colored by cloneSize
DimPlot(TCR, group.by = "cloneSize", reduction = "umap") +
scale_color_manual(values = rev(colorblind_vector[c(1, 3, 4, 5, 7)]))

DimPlot(TCR, group.by = "cloneSize", reduction = "umap")

DimPlot(TCR, group.by = "cloneSize", reduction = "umap") +
scale_color_manual(values=rev(colorblind_vector[c(1,3,4,5,6)]))

#Define color palette
colorblind_vector <- hcl.colors(n=9, palette = "inferno", fixup = TRUE)
Seurat::DimPlot(TCR, group.by = "cloneSize", reduction = "umap") +
scale_color_manual(values=rev(colorblind_vector[c(1,3,4,5,7)]))

TCR <- combineExpression(combined.TCR_with_PBMC,
TCR,
cloneCall="gene",
group.by = "sample",
proportion = FALSE,
cloneSize=c(Single=1, Small=5, Medium=20, Large=100, Hyperexpanded=500))
Seurat::DimPlot(TCR, group.by = "cloneSize") +
scale_color_manual(values=rev(colorblind_vector[c(1,3,4,5,7)]))

4. Visualizations for Single-Cell Objects
clonalOverlay(TCR,
reduction = "umap",
cutpoint = 1,
bins = 10,
facet.by = "orig.ident") +
guides(color = "none")

#clonalNetwork
#ggraph needs to be loaded due to issues with ggplot
library(ggraph)
clonalNetwork(TCR,
reduction = "umap",
group.by = "seurat_clusters",
filter.clones = NULL,
filter.identity = NULL,
cloneCall = "aa")

#Examining Cluster 3 only
clonalNetwork(TCR,
reduction = "umap",
group.by = "seurat_clusters",
filter.identity = 8,
cloneCall = "aa")

shared.clones <- clonalNetwork(TCR,
reduction = "umap",
group.by = "seurat_clusters",
cloneCall = "aa",
exportClones = TRUE)
head(shared.clones)
#ggraph needs to be loaded due to issues with ggplot
library(ggraph)
#No Identity filter
clonalNetwork(TCR,
reduction = "umap",
group.by = "seurat_clusters",
filter.clones = NULL,
filter.identity = NULL,
cloneCall = "aa")

# clonalOccupy
#clonalOccupy
clonalOccupy(TCR,
x.axis = "seurat_clusters")

NA
NA
NA
# clonalOccupy
clonalOccupy(TCR,
x.axis = "orig.ident")

clonalOccupy(TCR,
x.axis = "orig.ident",
proportion = TRUE,
label = FALSE)

# getCirclize
library(circlize)
library(scales)
circles <- getCirclize(TCR,
group.by = "seurat_clusters")
#Just assigning the normal colors to each cluster
grid.cols <- hue_pal()(length(unique(TCR$seurat_clusters)))
names(grid.cols) <- unique(TCR$seurat_clusters)
#Graphing the chord diagram
chordDiagram(circles, self.link = 1, grid.col = grid.cols)

circles <- getCirclize(TCR, group.by = "orig.ident")
grid.cols <- scales::hue_pal()(length(unique(TCR@active.ident)))
names(grid.cols) <- levels(TCR@active.ident)
chordDiagram(circles,
self.link = 1,
grid.col = grid.cols)

5. Quantifying Clonal Bias
# # StartracDiversity # From the excellent work by Lei Zhang,
et al., the authors introduce new methods for looking at clones by
cellular origins and cluster identification. Their STARTRAC software has
been adapted to work with scRepertoire and please read and cite their
excellent work. # # In order to use the StartracDiversity() function,
you will need to include the product of the combinedExpression()
function. The second requirement is a column header in the meta data of
the Seurat object that has tissue of origin. In the example data, type
corresponds to the column “Type”, which includes the “P” and “T”
classifiers. The indices can be subsetted for a specific patient or
examined overall using the by variable. Importantly, the function uses
only the strict definition of a clone of the VDJC genes and the CDR3
nucleotide sequence. # # The indices output includes: # # expa - Clonal
Expansion # migr - Cross-tissue Migration # tran - State Transition
Idents(TCR) <- "seurat_clusters"
StartracDiversity(TCR,
type = "orig.ident",
group.by = "orig.ident")

NA
NA
6. clonalBias
clonalBias(TCR,
cloneCall = "aa",
split.by = "orig.ident",
group.by = "seurat_clusters",
n.boots = 10,
min.expand =5)

7. save the TCR object for future Use
# saveRDS(TCR, file = "TCR_Seurat_with_cloneSize_12_11_2025_finalized.rds")
LS0tCnRpdGxlOiAiVENSIEFuYWx5c2lzLTctMTEtMjAyNSIKYXV0aG9yOiBOYXNpciBNYWhtb29kIEFiYmFzaQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICAjIHBkZl9kb2N1bWVudDogZGVmYXVsdAogICMgd29yZF9kb2N1bWVudDogZGVmYXVsdAogICMgaHRtbF9kb2N1bWVudDogZGVmYXVsdAogICNybWRmb3JtYXRzOjpyZWFkdGhlZG93bgogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgdG9jX2NvbGxhcHNlZDogdHJ1ZQotLS0KCgojICoqMS4gSW50cm9kdWN0aW9uKioKClNpbmdsZS1jZWxsIHNlcXVlbmNpbmcgaXMgYW4gZW1lcmdpbmcgdGVjaG5vbG9neSBpbiB0aGUgZmllbGQgb2YgaW1tdW5vbG9neSBhbmQgb25jb2xvZ3kgdGhhdCBhbGxvd3MgcmVzZWFyY2hlcnMgdG8gY291cGxlIFJOQSBxdWFudGlmaWNhdGlvbiBhbmQgb3RoZXIgbW9kYWxpdGllcywgbGlrZSBpbW11bmUgY2VsbCByZWNlcHRvciBwcm9maWxpbmcgYXQgdGhlIGxldmVsIG9mIGFuIGluZGl2aWR1YWwgY2VsbC4gQSBudW1iZXIgb2Ygd29ya2Zsb3dzIGFuZCBzb2Z0d2FyZSBwYWNrYWdlcyBoYXZlIGJlZW4gY3JlYXRlZCB0byBwcm9jZXNzIGFuZCBhbmFseXplIHNpbmdsZS1jZWxsIHRyYW5zY3JpcHRvbWljIGRhdGEuIFRoZXNlIHBhY2thZ2VzIGFsbG93IHVzZXJzIHRvIHRha2UgdGhlIHZhc3QgZGltZW5zaW9uYWxpdHkgb2YgdGhlIGRhdGEgZ2VuZXJhdGVkIGluIHNpbmdsZS1jZWxsLWJhc2VkIGV4cGVyaW1lbnRzIGFuZCBkaXN0aWxsIHRoZSBkYXRhIGludG8gbm92ZWwgaW5zaWdodHMuIFVubGlrZSB0aGUgdHJhbnNjcmlwdG9taWMgZmllbGQsIHRoZXJlIGlzIGEgbGFjayBvZiBvcHRpb25zIGZvciBzb2Z0d2FyZSB0aGF0IGFsbG93IGZvciBzaW5nbGUtY2VsbCBpbW11bmUgcmVjZXB0b3IgcHJvZmlsaW5nLiBFbmFibGluZyB1c2VycyB0byBlYXNpbHkgY29tYmluZSBSTkEgYW5kIGltbXVuZSBwcm9maWxpbmcsIHRoZSBzY1JlcGVydG9pcmUgZnJhbWV3b3JrIHN1cHBvcnRzIHVzZSBvZiAxMHgsIHNpbmdsZS1jZWxsIGNsb25hbCBmb3JtYXRzIGFuZCBpbnRlcmFjdGlvbiB3aXRoIHBvcHVsYXIgUi1iYXNlZCBzaW5nbGUtY2VsbCBkYXRhIHBpcGVsaW5lcy4KCnNjUmVwZXJ0b2lyZSBpcyBkZXNpZ25lZCB0byB0YWtlIGZpbHRlciBjb250aWcgb3V0cHV0cyBmcm9tIHRoZSAxMHggR2Vub21pY3MgQ2VsbCBSYW5nZXIgcGlwZWxpbmUsIHByb2Nlc3MgdGhhdCBkYXRhIHRvIGFzc2lnbiBjbG9ub3R5cGUgYmFzZWQgb24gdHdvIFRDUiBvciBJZyBjaGFpbnMgYW5kIGFuYWx5emUgdGhlIGNsb25vdHlwZSBkeW5hbWljcy4gVGhlIGxhdHRlciBjYW4gYmUgc2VwYXJhdGVkIGludG8gMSkgY2xvbm90eXBlLW9ubHkgYW5hbHlzaXMgZnVuY3Rpb25zLCBzdWNoIGFzIHVuaXF1ZSBjbG9ub3R5cGVzIG9yIGNsb25hbCBzcGFjZSBxdWFudGlmaWNhdGlvbiwgYW5kIDIpIGludGVyYWN0aW9uIHdpdGggbVJOQSBleHByZXNzaW9uIGRhdGEgdXNpbmcgU2V1cmF0IG9yIFNpbmdsZUNlbGxFeHBlcmltZW50IHBhY2thZ2VzLgoKKipSZWZlcmVuY2VzOioqCgotIFtzY1JlcGVydG9pcmUgVmlnbmV0dGVdKGh0dHBzOi8vd3d3LmJpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvcmVsZWFzZS9iaW9jL3ZpZ25ldHRlcy9zY1JlcGVydG9pcmUvaW5zdC9kb2MvdmlnbmV0dGUuaHRtbCkgIAotIFtCb3JjaC5kZXYgc2NSZXBlcnRvaXJlXShodHRwczovL3d3dy5ib3JjaC5kZXYvdXBsb2Fkcy9zY3JlcGVydG9pcmUvKQoKCgoqKlByZXJlcXVpc2l0ZToqKiBFbnN1cmUgdGhlIGBBbGxfc2FtcGxlc19NZXJnZWRgIFNldXJhdCBvYmplY3QgaXMgbG9hZGVkIGludG8geW91ciBSIGVudmlyb25tZW50IGJlZm9yZSBydW5uaW5nIHRoZSBjaHVua3MgYmVsb3cuCgojIyAxLjEgTG9hZCBsaWJyYXJpZXMKYGBge3IsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KFNldXJhdE9iamVjdCkKbGlicmFyeShTZXVyYXRPYmplY3QpCmxpYnJhcnkoU2V1cmF0RGF0YSkKbGlicmFyeShwYXRjaHdvcmspCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocm1hcmtkb3duKQpsaWJyYXJ5KHRpbnl0ZXgpCmxpYnJhcnkoZ3JpZCkKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KHByZXN0bykKCiNUQ1IgQW5hbHlzaXMKbGlicmFyeShzY1JlcGVydG9pcmUpCmxpYnJhcnkoU2luZ2xlQ2VsbEV4cGVyaW1lbnQpCmxpYnJhcnkoY2lyY2xpemUpCmxpYnJhcnkoc2NhbGVzKQpgYGAKCiMjIDEuMiAgTG9hZCBTZXVyYXQgT2JqZWN0CmBgYHtyfQoKI0xvYWQgU2V1cmF0IE9iamVjdCBtZXJnZWQgZnJvbSBjZWxsIGxpbmVzIGFuZCBhIGNvbnRyb2woUEJNQykgYWZ0ZXIgZmlsdHJhdGlvbgpBbGxfc2FtcGxlc19NZXJnZWQgPC0gcmVhZFJEUygiLi4vLi4vMC1TZXVyYXRfUkRTX09CSkVDVF9GSU5BTC9BbGxfc2FtcGxlc19NZXJnZWRfd2l0aF9SZW5hbWVkX0NsdXN0ZXJzX2ZpbmFsLTI2LTEwLTIwMjUucmRzIikKCkFsbF9zYW1wbGVzX01lcmdlZApgYGAKCiMjIDEuMy4gTG9hZCBjb250aWdzCgpzY1JlcGVydG9pcmUgZnVuY3Rpb25zIHVzaW5nIHRoZSBmaWx0ZXJlZF9jb250aWdfYW5ub3RhdGlvbnMuY3N2IG91dHB1dCBmcm9tIHRoZSAxMHggR2Vub21pY3MgQ2VsbCBSYW5nZXIuIFRoaXMgZmlsZSBpcyBsb2NhdGVkIGluIHRoZSAuL291dHMvIGRpcmVjdG9yeSBvZiB0aGUgVkRKIGFsaWdubWVudCBmb2xkZXIuIFRvIGdlbmVyYXRlIGEgbGlzdCBvZiBjb250aWdzIHRvIHVzZSBmb3Igc2NSZXBlcnRvaXJlOgoKKiotICAgbG9hZCB0aGUgZmlsdGVyZWRfY29udGlnX2Fubm90YXRpb25zLmNzdiBmb3IgZWFjaCBvZiB0aGUgc2FtcGxlcy4qKgoKKiotICAgbWFrZSBhIGxpc3QgaW4gdGhlIFIgZW52aXJvbm1lbnQuKioKCgpgYGB7ciBUQ1IsIGluY2x1ZGU9RkFMU0V9CkwxIDwtIHJlYWQuY3N2KCIvcnVuL3VzZXIvMTAwMC9ndmZzL3NtYi1zaGFyZTpzZXJ2ZXI9MTAuMTQ0LjE0Mi4xMzEsc2hhcmU9Y29tbXVuL05hc2lyL0FsbF9EYXRhX1NTL0F1ZHJleV9Hcm9zL0NlbGxSYW5nZXIvTDEvb3V0cy9wZXJfc2FtcGxlX291dHMvTDEvdmRqX3QvZmlsdGVyZWRfY29udGlnX2Fubm90YXRpb25zLmNzdiIpCkwyIDwtIHJlYWQuY3N2KCIvcnVuL3VzZXIvMTAwMC9ndmZzL3NtYi1zaGFyZTpzZXJ2ZXI9MTAuMTQ0LjE0Mi4xMzEsc2hhcmU9Y29tbXVuL05hc2lyL0FsbF9EYXRhX1NTL0F1ZHJleV9Hcm9zL0NlbGxSYW5nZXIvTDIvb3V0cy9wZXJfc2FtcGxlX291dHMvTDIvdmRqX3QvZmlsdGVyZWRfY29udGlnX2Fubm90YXRpb25zLmNzdiIpCkwzX0IgPC0gcmVhZC5jc3YoIi9ydW4vdXNlci8xMDAwL2d2ZnMvc21iLXNoYXJlOnNlcnZlcj0xMC4xNDQuMTQyLjEzMSxzaGFyZT1jb21tdW4vTmFzaXIvQWxsX0RhdGFfU1MvQXVkcmV5X0dyb3MvQ2VsbFJhbmdlci9MM19DSVRFX0IvL291dHMvcGVyX3NhbXBsZV9vdXRzL0wzX0NJVEVfQi8vdmRqX3QvZmlsdGVyZWRfY29udGlnX2Fubm90YXRpb25zLmNzdiIpCkw0X0IgPC0gcmVhZC5jc3YoIi9ydW4vdXNlci8xMDAwL2d2ZnMvc21iLXNoYXJlOnNlcnZlcj0xMC4xNDQuMTQyLjEzMSxzaGFyZT1jb21tdW4vTmFzaXIvQWxsX0RhdGFfU1MvQXVkcmV5X0dyb3MvQ2VsbFJhbmdlci9MNF9CL291dHMvcGVyX3NhbXBsZV9vdXRzL0w0X0IvL3Zkal90L2ZpbHRlcmVkX2NvbnRpZ19hbm5vdGF0aW9ucy5jc3YiKQpMNSA8LSByZWFkLmNzdigiL3J1bi91c2VyLzEwMDAvZ3Zmcy9zbWItc2hhcmU6c2VydmVyPTEwLjE0NC4xNDIuMTMxLHNoYXJlPWNvbW11bi9OYXNpci9BbGxfRGF0YV9TUy9BdWRyZXlfR3Jvcy9DZWxsUmFuZ2VyL0w1L291dHMvcGVyX3NhbXBsZV9vdXRzL0w1L3Zkal90L2ZpbHRlcmVkX2NvbnRpZ19hbm5vdGF0aW9ucy5jc3YiKQpMNiA8LSByZWFkLmNzdigiL3J1bi91c2VyLzEwMDAvZ3Zmcy9zbWItc2hhcmU6c2VydmVyPTEwLjE0NC4xNDIuMTMxLHNoYXJlPWNvbW11bi9OYXNpci9BbGxfRGF0YV9TUy9BdWRyZXlfR3Jvcy9DZWxsUmFuZ2VyL0w2X0NJVEUvL291dHMvcGVyX3NhbXBsZV9vdXRzL0w2X0NJVEUvL3Zkal90L2ZpbHRlcmVkX2NvbnRpZ19hbm5vdGF0aW9ucy5jc3YiKQpMNyA8LSByZWFkLmNzdigiL3J1bi91c2VyLzEwMDAvZ3Zmcy9zbWItc2hhcmU6c2VydmVyPTEwLjE0NC4xNDIuMTMxLHNoYXJlPWNvbW11bi9OYXNpci9BbGxfRGF0YV9TUy9BdWRyZXlfR3Jvcy9DZWxsUmFuZ2VyL0w3L291dHMvcGVyX3NhbXBsZV9vdXRzL0w3L3Zkal90L2ZpbHRlcmVkX2NvbnRpZ19hbm5vdGF0aW9ucy5jc3YiKQpQQk1DIDwtIHJlYWQuY3N2KCIvcnVuL3VzZXIvMTAwMC9ndmZzL3NtYi1zaGFyZTpzZXJ2ZXI9MTAuMTQ0LjE0Mi4xMzEsc2hhcmU9Y29tbXVuL05hc2lyL0FsbF9EYXRhX1NTL0F1ZHJleV9Hcm9zL0NlbGxSYW5nZXIvUEJNQy9vdXRzL3Blcl9zYW1wbGVfb3V0cy9QQk1DL3Zkal90L2ZpbHRlcmVkX2NvbnRpZ19hbm5vdGF0aW9ucy5jc3YiKQoKYGBgCgojICoqMi4gQ29tYmluaW5nIENvbnRpZ3MgaW50byBDbG9uZXMqKgoKVGhlcmUgYXJlIHZhcnlpbmcgZGVmaW5pdGlvbnMgb2YgY2xvbmVzIGluIHRoZSBsaXRlcmF0dXJlLiBGb3IgdGhlIHB1cnBvc2VzIG9mIHNjUmVwZXJ0b2lyZSwgd2UgZGVmaW5lIGEgY2xvbmUgYXMgY2VsbHMgd2l0aCBzaGFyZWQvdHJhY2thYmxlIGNvbXBsZW1lbnRhcml0eS1kZXRlcm1pbmluZyByZWdpb24gMyAoQ0RSMykgc2VxdWVuY2VzLiBXaXRoaW4gdGhpcyBkZWZpbml0aW9uLCBvbmUgbWlnaHQgdXNlIGFtaW5vIGFjaWQgKGFhKSBzZXF1ZW5jZXMgb2Ygb25lIG9yIGJvdGggY2hhaW5zIHRvIGRlZmluZSBhIGNsb25lLiBBbHRlcm5hdGl2ZWx5LCB3ZSBjb3VsZCB1c2UgbnVjbGVvdGlkZSAobnQpIG9yIHRoZSBWKEQpSkMgZ2VuZXMgKGdlbmVzKSB0byBkZWZpbmUgYSBjbG9uZS4gVGhlIGxhdHRlciwgZ2VuZXMsIHdvdWxkIGJlIGEgbW9yZSBwZXJtaXNzaXZlIGRlZmluaXRpb24gb2Yg4oCcY2xvbmVzLOKAnSBhcyBtdWx0aXBsZSBhbWlubyBhY2lkIG9yIG51Y2xlb3RpZGUgc2VxdWVuY2VzIGNhbiByZXN1bHQgZnJvbSB0aGUgc2FtZSBnZW5lIGNvbWJpbmF0aW9uLiBBbm90aGVyIG9wdGlvbiB0byBkZWZpbmUgYSBjbG9uZSBpcyB0aGUgdXNlIG9mIHRoZSBWKEQpSkMgYW5kIG51Y2xlb3RpZGUgc2VxdWVuY2UgKHN0cmljdCkuIHNjUmVwZXJ0b2lyZSBhbGxvd3MgZm9yIHRoZSB1c2Ugb2YgYWxsIHRoZXNlIGRlZmluaXRpb25zIG9mIGNsb25lcyBhbmQgZW5hYmxlcyB1c2VycyB0byBzZWxlY3QgYm90aCBvciBpbmRpdmlkdWFsIGNoYWlucyB0byBleGFtaW5lLgoKIyMgMi4xIENvbWJpbmluZyBDb250aWdzIGludG8gQ2xvbmVzCmBgYHtyIGNvbWJpbmVkVENSLCBmaWcuaGVpZ2h0PTQsIGZpZy53aWR0aD02fQoKY29udGlnX2xpc3QgPC0gbGlzdChMMSwgTDIsIEwzX0IsIEw0X0IsTDUsTDYsIEw3KQpjb250aWdfbGlzdF93aXRoX1BCTUMgPC0gbGlzdChMMSwgTDIsIEwzX0IsIEw0X0IsTDUsTDYsIEw3LCBQQk1DKQoKY29tYmluZWQuVENSIDwtIGNvbWJpbmVUQ1IoY29udGlnX2xpc3QsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHNhbXBsZXMgPSBjKCJMMSIsICJMMiIsICJMM19CIiwgIkw0X0IiLCAiTDUiLCAiTDYiLCAiTDciKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVtb3ZlTkEgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVtb3ZlTXVsdGkgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyTXVsdGkgPSBGQUxTRSkKCmNvbWJpbmVkLlRDUl93aXRoX1BCTUMgPC0gY29tYmluZVRDUihjb250aWdfbGlzdF93aXRoX1BCTUMsIAogICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVzID0gYygiTDEiLCAiTDIiLCAiTDNfQiIsICJMNF9CIiwgIkw1IiwgIkw2IiwgIkw3IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJQQk1DIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlbW92ZU5BID0gRkFMU0UsIAogICAgICAgICAgICAgICAgICAgICAgICAgICByZW1vdmVNdWx0aSA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyTXVsdGkgPSBGQUxTRSkKCiBleHBvcnRDbG9uZXMoY29tYmluZWQuVENSLAogICAgICAgICAgICAgIHdyaXRlLmZpbGUgPSBUUlVFLAogICAgICAgICAgICAgIGRpciA9ICJUQ1JfYW5hbHlzaXNfSGFybW9ueS8iLAogICAgICAgICAgICAgZmlsZS5uYW1lID0gImNsb25lcy5jc3YiKQoKZXhwb3J0Q2xvbmVzKGNvbWJpbmVkLlRDUl93aXRoX1BCTUMsCiAgICAgICAgICAgICB3cml0ZS5maWxlID0gVFJVRSwKICAgICAgICAgICAgIGRpciA9ICJUQ1JfYW5hbHlzaXNfSGFybW9ueS8iLAogICAgICAgICAgICAgZmlsZS5uYW1lID0gImNsb25lc193aXRoX1BCTUMuY3N2IikKCmhlYWQoY29tYmluZWQuVENSW1sxXV0pCmhlYWQoY29tYmluZWQuVENSX3dpdGhfUEJNQ1tbMV1dKQoKIyBDb21iaW5lIGFsbCBkYXRhIGZyYW1lcyBpbiB0aGUgbGlzdCBpbnRvIGEgc2luZ2xlIGRhdGEgZnJhbWUKY29tYmluZWRfVENSX2RmIDwtIGRvLmNhbGwocmJpbmQsIGNvbWJpbmVkLlRDUikKCiMgV3JpdGUgdGhlIGNvbWJpbmVkIGRhdGEgZnJhbWUgdG8gYSBDU1YgZmlsZQp3cml0ZS5jc3YoY29tYmluZWRfVENSX2RmLCBmaWxlID0gIlRDUl9hbmFseXNpc19IYXJtb255L2NvbWJpbmVkX1RDUi5jc3YiLCByb3cubmFtZXMgPSBGQUxTRSkKCgojIENvbWJpbmUgYWxsIGRhdGEgZnJhbWVzIGluIHRoZSBsaXN0IGludG8gYSBzaW5nbGUgZGF0YSBmcmFtZQpjb21iaW5lZF9UQ1Jfd2l0aF9QQk1DX2RmIDwtIGRvLmNhbGwocmJpbmQsIGNvbWJpbmVkLlRDUl93aXRoX1BCTUMpCgojIFdyaXRlIHRoZSBjb21iaW5lZCBkYXRhIGZyYW1lIHRvIGEgQ1NWIGZpbGUKd3JpdGUuY3N2KGNvbWJpbmVkX1RDUl93aXRoX1BCTUNfZGYsIGZpbGUgPSAiVENSX2FuYWx5c2lzX0hhcm1vbnkvY29tYmluZWRfVENSX3dpdGhfUEJNQy5jc3YiLCByb3cubmFtZXMgPSBGQUxTRSkKCmBgYAoKIyMgUmVtb3ZlIFRDUiBWREogZ2VuZXMKYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KRGVmYXVsdEFzc2F5KEFsbF9zYW1wbGVzX01lcmdlZCkgPC0gIlNDVCIKClRDUiA8LSBBbGxfc2FtcGxlc19NZXJnZWQKCgoKIyBDb21iaW5pbmcgQ2xvbmVzIGFuZCBTaW5nbGUtQ2VsbCBPYmplY3RzCgojR2V0dGluZyBhIHNhbXBsZSBvZiBhIFNldXJhdCBvYmplY3QKVENSIDwtIEFsbF9zYW1wbGVzX01lcmdlZAoKIyBDaGVjayB0aGUgZmlyc3QgMTAgdmFyaWFibGUgZmVhdHVyZXMgYmVmb3JlIHJlbW92YWwKVmFyaWFibGVGZWF0dXJlcyhUQ1IpWzE6MTBdCgojIFJlbW92ZSBUQ1IgVkRKIGdlbmVzClRDUiA8LSBxdWlldFRDUmdlbmVzKFRDUikKCiMgQ2hlY2sgdGhlIGZpcnN0IDEwIHZhcmlhYmxlIGZlYXR1cmVzIGFmdGVyIHJlbW92YWwKVmFyaWFibGVGZWF0dXJlcyhUQ1IpWzE6MTBdCgpgYGAKCiMgKiozLiBDb21iaW5pbmcgQ2xvbmVzIGFuZCBTaW5nbGUtQ2VsbCBPYmplY3RzKioKYGBge3IgLCBmaWcuaGVpZ2h0PTQsIGZpZy53aWR0aD04fQpEZWZhdWx0QXNzYXkoVENSKSA8LSAiU0NUIgoKIyBJZiBBbGxfc2FtcGxlc19NZXJnZWQgaXMgYWxyZWFkeSBsb2FkZWQgaW4gdGhlIGVudmlyb25tZW50OgpUQ1IgPC0gQWxsX3NhbXBsZXNfTWVyZ2VkCgojIERlZmluZSBjb2xvciBwYWxldHRlCmNvbG9yYmxpbmRfdmVjdG9yIDwtIGhjbC5jb2xvcnMobj03LCBwYWxldHRlID0gImluZmVybm8iLCBmaXh1cCA9IFRSVUUpCgojIENvbWJpbmUgZXhwcmVzc2lvbiB3aXRoIGZpbHRlcmluZyBvZiBOQSBjbG9ub3R5cGUgY2VsbHMKVENSIDwtIGNvbWJpbmVFeHByZXNzaW9uKAogICAgY29tYmluZWQuVENSX3dpdGhfUEJNQywKICAgIFRDUiwKICAgIGNsb25lQ2FsbCA9ICJnZW5lIiwKICAgIGdyb3VwLmJ5ID0gInNhbXBsZSIsCiAgICBwcm9wb3J0aW9uID0gVFJVRSwKICAgIGZpbHRlck5BID0gVFJVRSAgIyBUaGlzIHdpbGwgZXhjbHVkZSBjZWxscyB3aXRob3V0IGNsb25vdHlwZSBpbmZvCikKCiMgWW91IG5vIGxvbmdlciBuZWVkIHRoZSBtYW51YWwgYmFyY29kZSBtYXRjaGluZyBvciBOQSByZXBsYWNlbWVudHMKCgoKIyBQbG90IFVNQVAgY29sb3JlZCBieSBjbG9uZVNpemUKRGltUGxvdChUQ1IsIGdyb3VwLmJ5ID0gImNsb25lU2l6ZSIsIHJlZHVjdGlvbiA9ICJ1bWFwIikgKwogICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IHJldihjb2xvcmJsaW5kX3ZlY3RvcltjKDEsIDMsIDQsIDUsIDcpXSkpCgoKCkRpbVBsb3QoVENSLCBncm91cC5ieSA9ICJjbG9uZVNpemUiLCByZWR1Y3Rpb24gPSAidW1hcCIpCgpEaW1QbG90KFRDUiwgZ3JvdXAuYnkgPSAiY2xvbmVTaXplIiwgcmVkdWN0aW9uID0gInVtYXAiKSArCiAgICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPXJldihjb2xvcmJsaW5kX3ZlY3RvcltjKDEsMyw0LDUsNildKSkKCgoKI0RlZmluZSBjb2xvciBwYWxldHRlIApjb2xvcmJsaW5kX3ZlY3RvciA8LSBoY2wuY29sb3JzKG49OSwgcGFsZXR0ZSA9ICJpbmZlcm5vIiwgZml4dXAgPSBUUlVFKQoKU2V1cmF0OjpEaW1QbG90KFRDUiwgZ3JvdXAuYnkgPSAiY2xvbmVTaXplIiwgcmVkdWN0aW9uID0gInVtYXAiKSArCiAgICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPXJldihjb2xvcmJsaW5kX3ZlY3RvcltjKDEsMyw0LDUsNyldKSkKYGBgCmBgYHtyICwgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9OH0KVENSIDwtIGNvbWJpbmVFeHByZXNzaW9uKGNvbWJpbmVkLlRDUl93aXRoX1BCTUMsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRDUiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY2xvbmVDYWxsPSJnZW5lIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAic2FtcGxlIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHJvcG9ydGlvbiA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjbG9uZVNpemU9YyhTaW5nbGU9MSwgU21hbGw9NSwgTWVkaXVtPTIwLCBMYXJnZT0xMDAsIEh5cGVyZXhwYW5kZWQ9NTAwKSkKClNldXJhdDo6RGltUGxvdChUQ1IsIGdyb3VwLmJ5ID0gImNsb25lU2l6ZSIpICsKICAgIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9cmV2KGNvbG9yYmxpbmRfdmVjdG9yW2MoMSwzLDQsNSw3KV0pKQpgYGAKCiMgKio0LiBWaXN1YWxpemF0aW9ucyBmb3IgU2luZ2xlLUNlbGwgT2JqZWN0cyoqCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgoKY2xvbmFsT3ZlcmxheShUQ1IsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgY3V0cG9pbnQgPSAxLCAKICAgICAgICAgICAgICBiaW5zID0gMTAsIAogICAgICAgICAgICAgIGZhY2V0LmJ5ID0gIm9yaWcuaWRlbnQiKSArIAogICAgICAgICAgICAgIGd1aWRlcyhjb2xvciA9ICJub25lIikKCmBgYAoKCmBgYHtyICwgZmlnLmhlaWdodD0xNCwgZmlnLndpZHRoPTE4fQoKI2Nsb25hbE5ldHdvcmsKI2dncmFwaCBuZWVkcyB0byBiZSBsb2FkZWQgZHVlIHRvIGlzc3VlcyB3aXRoIGdncGxvdApsaWJyYXJ5KGdncmFwaCkKCmNsb25hbE5ldHdvcmsoVENSLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgIGdyb3VwLmJ5ID0gInNldXJhdF9jbHVzdGVycyIsCiAgICAgICAgICAgICAgZmlsdGVyLmNsb25lcyA9IE5VTEwsCiAgICAgICAgICAgICAgZmlsdGVyLmlkZW50aXR5ID0gTlVMTCwKICAgICAgICAgICAgICBjbG9uZUNhbGwgPSAiYWEiKQoKCiNFeGFtaW5pbmcgQ2x1c3RlciAzIG9ubHkKY2xvbmFsTmV0d29yayhUQ1IsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAic2V1cmF0X2NsdXN0ZXJzIiwKICAgICAgICAgICAgICBmaWx0ZXIuaWRlbnRpdHkgPSA4LAogICAgICAgICAgICAgIGNsb25lQ2FsbCA9ICJhYSIpCgoKc2hhcmVkLmNsb25lcyA8LSBjbG9uYWxOZXR3b3JrKFRDUiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAic2V1cmF0X2NsdXN0ZXJzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNsb25lQ2FsbCA9ICJhYSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZXhwb3J0Q2xvbmVzID0gVFJVRSkKaGVhZChzaGFyZWQuY2xvbmVzKQoKI2dncmFwaCBuZWVkcyB0byBiZSBsb2FkZWQgZHVlIHRvIGlzc3VlcyB3aXRoIGdncGxvdApsaWJyYXJ5KGdncmFwaCkKCiNObyBJZGVudGl0eSBmaWx0ZXIKY2xvbmFsTmV0d29yayhUQ1IsIAogICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwgCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAic2V1cmF0X2NsdXN0ZXJzIiwKICAgICAgICAgICAgICBmaWx0ZXIuY2xvbmVzID0gTlVMTCwKICAgICAgICAgICAgICBmaWx0ZXIuaWRlbnRpdHkgPSBOVUxMLAogICAgICAgICAgICAgIGNsb25lQ2FsbCA9ICJhYSIpCmBgYAoKCgoKYGBge3IgLCBmaWcuaGVpZ2h0PTIwLCBmaWcud2lkdGg9MjB9CiMgY2xvbmFsT2NjdXB5CiNjbG9uYWxPY2N1cHkKY2xvbmFsT2NjdXB5KFRDUiwgCiAgICAgICAgICAgICAgeC5heGlzID0gInNldXJhdF9jbHVzdGVycyIpCgoKCmBgYAoKYGBge3IgLCBmaWcuaGVpZ2h0PTIwLCBmaWcud2lkdGg9MTR9CiMgY2xvbmFsT2NjdXB5CmNsb25hbE9jY3VweShUQ1IsIAogICAgICAgICAgICAgIHguYXhpcyA9ICJvcmlnLmlkZW50IikKCmNsb25hbE9jY3VweShUQ1IsIAogICAgICAgICAgICAgICAgICAgICB4LmF4aXMgPSAib3JpZy5pZGVudCIsIAogICAgICAgICAgICAgICAgICAgICBwcm9wb3J0aW9uID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgIGxhYmVsID0gRkFMU0UpCmBgYAoKYGBge3IgLCBmaWcuaGVpZ2h0PTQsIGZpZy53aWR0aD02fQoKIyBnZXRDaXJjbGl6ZQoKbGlicmFyeShjaXJjbGl6ZSkKbGlicmFyeShzY2FsZXMpCgpjaXJjbGVzIDwtIGdldENpcmNsaXplKFRDUiwgCiAgICAgICAgICAgICAgICAgICAgICAgZ3JvdXAuYnkgPSAic2V1cmF0X2NsdXN0ZXJzIikKCiNKdXN0IGFzc2lnbmluZyB0aGUgbm9ybWFsIGNvbG9ycyB0byBlYWNoIGNsdXN0ZXIKZ3JpZC5jb2xzIDwtIGh1ZV9wYWwoKShsZW5ndGgodW5pcXVlKFRDUiRzZXVyYXRfY2x1c3RlcnMpKSkKbmFtZXMoZ3JpZC5jb2xzKSA8LSB1bmlxdWUoVENSJHNldXJhdF9jbHVzdGVycykKCiNHcmFwaGluZyB0aGUgY2hvcmQgZGlhZ3JhbQpjaG9yZERpYWdyYW0oY2lyY2xlcywgc2VsZi5saW5rID0gMSwgZ3JpZC5jb2wgPSBncmlkLmNvbHMpCgoKY2lyY2xlcyA8LSBnZXRDaXJjbGl6ZShUQ1IsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKQoKZ3JpZC5jb2xzIDwtIHNjYWxlczo6aHVlX3BhbCgpKGxlbmd0aCh1bmlxdWUoVENSQGFjdGl2ZS5pZGVudCkpKQpuYW1lcyhncmlkLmNvbHMpIDwtIGxldmVscyhUQ1JAYWN0aXZlLmlkZW50KQoKY2hvcmREaWFncmFtKGNpcmNsZXMsIAogICAgICAgICAgICAgc2VsZi5saW5rID0gMSwgCiAgICAgICAgICAgICBncmlkLmNvbCA9IGdyaWQuY29scykKYGBgCgoKIyAqKjUuIFF1YW50aWZ5aW5nIENsb25hbCBCaWFzKioKCioqIyAjIFN0YXJ0cmFjRGl2ZXJzaXR5CiMgRnJvbSB0aGUgZXhjZWxsZW50IHdvcmsgYnkgTGVpIFpoYW5nLCBldCBhbC4sIHRoZSBhdXRob3JzIGludHJvZHVjZSBuZXcgbWV0aG9kcyBmb3IgbG9va2luZyBhdCBjbG9uZXMgYnkgY2VsbHVsYXIgb3JpZ2lucyBhbmQgY2x1c3RlciBpZGVudGlmaWNhdGlvbi4gVGhlaXIgU1RBUlRSQUMgc29mdHdhcmUgaGFzIGJlZW4gYWRhcHRlZCB0byB3b3JrIHdpdGggc2NSZXBlcnRvaXJlIGFuZCBwbGVhc2UgcmVhZCBhbmQgY2l0ZSB0aGVpciBleGNlbGxlbnQgd29yay4KIyAKIyBJbiBvcmRlciB0byB1c2UgdGhlIFN0YXJ0cmFjRGl2ZXJzaXR5KCkgZnVuY3Rpb24sIHlvdSB3aWxsIG5lZWQgdG8gaW5jbHVkZSB0aGUgcHJvZHVjdCBvZiB0aGUgY29tYmluZWRFeHByZXNzaW9uKCkgZnVuY3Rpb24uIFRoZSBzZWNvbmQgcmVxdWlyZW1lbnQgaXMgYSBjb2x1bW4gaGVhZGVyIGluIHRoZSBtZXRhIGRhdGEgb2YgdGhlIFNldXJhdCBvYmplY3QgdGhhdCBoYXMgdGlzc3VlIG9mIG9yaWdpbi4gSW4gdGhlIGV4YW1wbGUgZGF0YSwgdHlwZSBjb3JyZXNwb25kcyB0byB0aGUgY29sdW1uIOKAnFR5cGXigJ0sIHdoaWNoIGluY2x1ZGVzIHRoZSDigJxQ4oCdIGFuZCDigJxU4oCdIGNsYXNzaWZpZXJzLiBUaGUgaW5kaWNlcyBjYW4gYmUgc3Vic2V0dGVkIGZvciBhIHNwZWNpZmljIHBhdGllbnQgb3IgZXhhbWluZWQgb3ZlcmFsbCB1c2luZyB0aGUgYnkgdmFyaWFibGUuIEltcG9ydGFudGx5LCB0aGUgZnVuY3Rpb24gdXNlcyBvbmx5IHRoZSBzdHJpY3QgZGVmaW5pdGlvbiBvZiBhIGNsb25lIG9mIHRoZSBWREpDIGdlbmVzIGFuZCB0aGUgQ0RSMyBudWNsZW90aWRlIHNlcXVlbmNlLgojIAojIFRoZSBpbmRpY2VzIG91dHB1dCBpbmNsdWRlczoKIyAKIyBleHBhIC0gQ2xvbmFsIEV4cGFuc2lvbgojIG1pZ3IgLSBDcm9zcy10aXNzdWUgTWlncmF0aW9uCiMgdHJhbiAtIFN0YXRlIFRyYW5zaXRpb24KKioKCgpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQoKSWRlbnRzKFRDUikgPC0gInNldXJhdF9jbHVzdGVycyIKClN0YXJ0cmFjRGl2ZXJzaXR5KFRDUiwgCiAgICAgICAgICAgICAgICAgIHR5cGUgPSAib3JpZy5pZGVudCIsCiAgICAgICAgICAgICAgICAgIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKQoKCmBgYAojICoqNi4gY2xvbmFsQmlhcyoqCmBgYHtyICwgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9MTB9CgpjbG9uYWxCaWFzKFRDUiwgCiAgICAgICAgICAgY2xvbmVDYWxsID0gImFhIiwgCiAgICAgICAgICAgc3BsaXQuYnkgPSAib3JpZy5pZGVudCIsIAogICAgICAgICAgIGdyb3VwLmJ5ID0gInNldXJhdF9jbHVzdGVycyIsCiAgICAgICAgICAgbi5ib290cyA9IDEwLCAKICAgICAgICAgICBtaW4uZXhwYW5kID01KQoKYGBgCgojICoqNy4gc2F2ZSB0aGUgVENSIG9iamVjdCBmb3IgZnV0dXJlIFVzZSoqCmBgYHtyfQogIyBzYXZlUkRTKFRDUiwgZmlsZSA9ICJUQ1JfU2V1cmF0X3dpdGhfY2xvbmVTaXplXzEyXzExXzIwMjVfZmluYWxpemVkLnJkcyIpCmBgYA==