# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("F", "RIVN", "LCID", "TM", "HMC")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2025-10-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "F" "HMC" "LCID" "RIVN" "TM"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 F 0.25
## 2 HMC 0.25
## 3 LCID 0.2
## 4 RIVN 0.2
## 5 TM 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 154 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00911
## 2 2013-02-28 -0.00101
## 3 2013-03-28 0.0183
## 4 2013-04-30 0.0339
## 5 2013-05-31 0.0209
## 6 2013-06-28 -0.00155
## 7 2013-07-31 0.0236
## 8 2013-08-30 -0.0196
## 9 2013-09-30 0.0330
## 10 2013-10-31 0.0177
## # ℹ 144 more rows
market_returns_tbl <- tq_get("SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.660
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns") +
# To set the limits (zoom window) for both the X and Y axes,
# forcing the plot to display only the range from 0 to 0.1 (or 0% to 10%) on both axes
coord_cartesian(xlim = c(0,0.1), ylim = c(0,0.1))
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated? My portfolio seems to have a positive relationship with the market, as we see with the upward sloping line on the scatter plot. This shows my portfolio moves with the market. With the calculated beta also being uder 1 at 0.66 this shows that while this portfolio is defensive it also has a higher volatility then the market.