Calculate and visualize your portfolio’s beta — a measure of its sensitivity to the overall market.
symbols <- c("MSFT", "GOOGL", "AAPL", "NVDA", "META")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
head(asset_returns_tbl)
## # A tibble: 6 Ă— 3
## asset date returns
## <chr> <date> <dbl>
## 1 AAPL 2013-01-31 -0.156
## 2 AAPL 2013-02-28 -0.0256
## 3 AAPL 2013-03-28 0.00285
## 4 AAPL 2013-04-30 0.000271
## 5 AAPL 2013-05-31 0.0222
## 6 AAPL 2013-06-28 -0.126
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.2
## 2 GOOGL 0.2
## 3 META 0.2
## 4 MSFT 0.2
## 5 NVDA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
head(portfolio_returns_tbl)
## # A tibble: 6 Ă— 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0179
## 2 2013-02-28 -0.00726
## 3 2013-03-28 -0.00542
## 4 2013-04-30 0.0673
## 5 2013-05-31 0.0121
## 6 2013-06-28 -0.0269
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
head(portfolio_market_returns_tbl)
## # A tibble: 6 Ă— 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0499 0.0179
## 2 2013-02-28 0.0127 -0.00726
## 3 2013-03-28 0.0373 -0.00542
## 4 2013-04-30 0.0190 0.0673
## 5 2013-05-31 0.0233 0.0121
## 6 2013-06-28 -0.0134 -0.0269
beta_tbl <- portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
beta_tbl
## # A tibble: 1 Ă— 1
## CAPM.beta.1
## <dbl>
## 1 0.939
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns, y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
linewidth = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns",
title = "Portfolio vs. Market Returns (CAPM Beta Visualization)") +
coord_cartesian(xlim = c(0, 0.1), ylim = c(0, 0.1))
## `geom_smooth()` using formula = 'y ~ x'
Compare the scatter plot and regression line to the computed beta: -
If the slope of the regression line visually aligns with the beta value,
this confirms the result.
- In this case, if your calculated beta ≈ 0.94, your
portfolio moves slightly less than one-for-one with
market changes—indicating moderate sensitivity.