Sumber : https://www.kaggle.com/datasets/arjunbhasin2013/ccdata
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.2
## Warning: package 'ggplot2' was built under R version 4.4.3
## Warning: package 'tidyr' was built under R version 4.4.2
## Warning: package 'readr' was built under R version 4.4.2
## Warning: package 'purrr' was built under R version 4.4.2
## Warning: package 'stringr' was built under R version 4.4.3
## Warning: package 'forcats' was built under R version 4.4.2
## Warning: package 'lubridate' was built under R version 4.4.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate)
library(caret)
## Warning: package 'caret' was built under R version 4.4.3
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.4.3
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(dplyr)
library(tidyr)
library(scales)
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
library(RColorBrewer)
dataship <- read.csv("C:/Users/Resea/Documents/Semester 5/TPG/Analisis Gerombol/Ship_Performance_Dataset.csv")
dataship <- dataship[1:500, 6:9]
dataship
## Speed_Over_Ground_knots Engine_Power_kW Distance_Traveled_nm Draft_meters
## 1 12.59756 2062.9840 1030.94362 14.132284
## 2 10.38758 1796.0574 1060.48638 14.653083
## 3 20.74975 1648.5567 658.87414 7.199261
## 4 21.05510 915.2618 1126.82252 11.789063
## 5 13.74278 1089.7218 1445.28116 9.727833
## 6 18.61620 2171.6466 723.30421 14.916320
## 7 20.43312 2505.0435 270.11859 8.455264
## 8 23.49805 814.8065 1717.32841 9.283780
## 9 17.30936 1179.0188 429.56431 6.002358
## 10 23.22710 2685.4017 1588.79228 11.721261
## 11 11.63511 2522.6972 1224.84627 10.900540
## 12 18.25358 2129.5179 1311.97858 11.955648
## 13 10.22534 1599.1261 1499.72361 11.136576
## 14 12.50124 2780.4496 1474.07188 7.620740
## 15 11.71878 1994.0251 1320.45784 12.145870
## 16 15.08722 578.8929 1932.21313 12.998270
## 17 20.73784 2525.6729 1813.94557 10.943832
## 18 14.67204 1930.3790 884.79010 5.294925
## 19 23.76429 1771.7695 1061.93297 8.521647
## 20 22.63880 1504.1159 1146.91562 12.558873
## 21 23.80385 1120.6992 1169.47850 10.544799
## 22 22.76036 2335.2629 1461.91754 7.980762
## 23 18.75487 1305.4237 354.59967 8.052450
## 24 15.22835 1283.1425 713.20555 10.911586
## 25 18.06901 2922.2826 559.86135 10.417704
## 26 17.67156 1845.7647 1708.79535 10.508273
## 27 20.99496 2296.3298 275.18711 7.124895
## 28 14.06855 2658.6562 1799.79640 12.081070
## 29 18.00365 1643.9365 177.16643 9.288473
## 30 11.02444 2957.6141 801.86435 13.644204
## 31 15.96204 540.9402 1376.42028 14.675854
## 32 21.42788 2027.8854 1694.34412 11.765945
## 33 18.05569 2940.9806 1674.05609 14.255468
## 34 14.48895 1541.6160 1602.75540 10.249176
## 35 23.29097 520.0793 1532.27522 11.462349
## 36 10.19866 504.4811 378.28538 12.145465
## 37 23.03682 1228.1039 150.19837 7.434287
## 38 13.04007 2012.8877 1057.33372 13.378386
## 39 18.26541 1223.1646 1592.74283 6.831529
## 40 24.27464 2041.3466 1487.37172 5.571069
## 41 22.89761 2450.5793 1229.56610 6.420262
## 42 19.41907 709.2840 524.84958 7.788783
## 43 19.08942 1095.2398 1801.17494 14.086731
## 44 21.61731 2065.6516 1940.01072 9.754800
## 45 16.01010 2523.3902 491.25992 13.890456
## 46 22.36635 2814.3636 961.82041 5.728426
## 47 12.79452 655.5854 993.38838 5.985634
## 48 19.83684 1630.2344 343.49013 14.921601
## 49 22.63437 2212.7052 732.29402 6.111994
## 50 12.28505 1398.2084 317.98342 5.450862
## 51 22.80571 1238.7209 1635.06560 5.789772
## 52 24.14346 543.3802 1311.11802 5.315510
## 53 20.30487 1763.0069 1794.33912 7.291651
## 54 13.62202 1796.7442 948.24020 6.335936
## 55 14.86132 709.3117 1598.03697 6.734772
## 56 23.09077 907.9932 329.76634 5.830493
## 57 16.88110 2386.4725 281.73023 13.559434
## 58 22.97615 2607.6572 185.58222 14.424414
## 59 12.62777 2310.3487 714.52841 14.771734
## 60 16.20612 1694.9922 1126.39547 6.091262
## 61 21.72076 1087.7231 1504.26123 9.384915
## 62 22.23475 1410.1987 1163.57630 9.555535
## 63 14.23324 2871.3403 1864.20068 9.864785
## 64 13.03322 1880.7677 1782.56048 11.971983
## 65 13.62630 2171.9131 1884.78458 8.037293
## 66 24.11178 2085.0796 1534.45979 14.296864
## 67 18.79723 2522.0872 1396.16698 9.850449
## 68 10.33086 762.0545 738.34712 11.900300
## 69 15.53457 2489.8838 1553.63649 8.770965
## 70 15.19006 1765.8056 603.39694 5.120040
## 71 24.60838 1528.2264 248.13984 14.645511
## 72 15.37892 1144.1660 1648.53065 6.649504
## 73 10.86055 678.1802 1367.99208 9.040671
## 74 15.81596 1131.9954 1588.17928 14.723086
## 75 22.94994 2568.9986 582.16663 13.400490
## 76 24.07484 2397.8916 941.27195 11.679049
## 77 21.94581 759.2487 763.15677 6.387618
## 78 21.45526 2290.7194 489.57086 8.974810
## 79 18.42257 1904.8953 554.36956 9.785255
## 80 20.56654 2351.5551 113.85873 13.064045
## 81 22.52226 1285.5119 1617.06039 6.496371
## 82 23.66038 2539.6503 1989.84575 7.177801
## 83 24.75791 2798.1599 1677.16931 13.943580
## 84 21.16316 2204.8809 1283.73559 11.913643
## 85 22.35513 2126.2191 1496.56761 5.932365
## 86 10.92496 2073.6947 803.89325 6.499953
## 87 12.06805 1625.0007 203.50451 9.533687
## 88 12.83738 2212.3856 1045.77787 13.258846
## 89 21.54155 1097.8258 507.09246 5.356473
## 90 22.39074 1360.1954 1889.55668 6.713454
## 91 18.75395 534.7910 1809.76993 5.063586
## 92 22.53122 994.0679 1324.91849 14.294956
## 93 23.23114 990.9944 872.29015 13.170737
## 94 23.16255 1031.0331 87.19641 9.420665
## 95 19.37909 2371.6461 790.34010 14.350742
## 96 22.75165 884.8436 203.55300 11.187078
## 97 22.73431 2261.8987 1096.49090 7.143937
## 98 17.94855 1681.5346 350.46830 11.815473
## 99 24.38103 1309.6090 842.60113 10.637096
## 100 22.05902 2029.9786 1088.04479 11.561657
## 101 19.01606 1085.7584 294.63756 14.614545
## 102 18.08165 585.1951 72.61348 10.732201
## 103 20.70788 2647.5406 190.36586 6.367843
## 104 11.28591 847.7019 1795.99796 6.776043
## 105 22.72033 869.2678 210.74791 9.462868
## 106 13.85571 1290.3930 1531.71903 8.563355
## 107 22.02165 1682.8123 658.64762 5.125582
## 108 15.08537 2184.9140 1867.47283 11.506457
## 109 22.66313 1657.7807 1029.72957 12.129401
## 110 20.11810 2650.9363 1376.30574 12.329766
## 111 11.21137 1892.0776 173.85468 11.720547
## 112 21.61077 1184.2806 372.27738 14.179822
## 113 11.36411 2499.9373 1133.16428 10.178758
## 114 17.23082 829.6164 824.76913 8.375318
## 115 17.56600 2813.3228 1923.78017 12.323734
## 116 23.60755 1537.1550 307.06781 7.038043
## 117 21.03046 1934.0625 1033.81492 6.774869
## 118 14.43417 1432.6218 143.18551 14.906479
## 119 19.25728 940.2119 1288.51529 10.212289
## 120 23.85716 1779.5723 1744.34571 13.910377
## 121 13.76247 2693.6342 76.81854 13.154255
## 122 19.29693 818.2716 1781.64835 12.723021
## 123 19.87479 892.0090 1364.92789 12.090510
## 124 17.45314 2521.8167 1955.86233 10.367868
## 125 17.30228 1471.8151 143.36083 14.456739
## 126 22.85310 893.4271 1822.02011 5.157223
## 127 10.13615 1413.9877 492.33489 13.164127
## 128 18.06087 2894.6493 819.54242 5.073916
## 129 22.70870 1512.1199 771.34059 9.854360
## 130 12.35433 2281.8721 701.39206 14.454351
## 131 15.93637 1622.4763 1471.94399 11.548265
## 132 24.11754 866.9226 599.29538 7.032850
## 133 16.89182 609.4533 1653.69701 10.591492
## 134 23.02676 2624.9315 1607.74856 11.709188
## 135 14.64564 2605.7648 1714.86801 11.434511
## 136 14.65417 1313.7168 1000.23274 10.707528
## 137 22.55050 638.2856 444.90771 11.292760
## 138 11.52589 1895.9180 1391.93661 10.306034
## 139 10.56409 2328.2279 68.08607 7.556609
## 140 21.27536 2990.7950 201.24938 14.910589
## 141 11.28004 1554.2889 170.93011 12.574490
## 142 11.50912 712.0045 1417.08103 6.450089
## 143 16.06011 580.8206 817.44203 7.715641
## 144 11.82553 1131.3126 601.84733 13.561475
## 145 24.87095 666.6610 268.37372 5.627579
## 146 22.16899 2338.6079 1024.43027 12.516954
## 147 10.05167 2403.9187 779.07341 10.117509
## 148 18.01376 2072.9331 965.63810 12.592137
## 149 17.87312 782.8303 431.47821 9.636206
## 150 11.75901 1400.6178 630.72542 7.729929
## 151 18.73786 1139.8074 409.55646 8.628002
## 152 24.31780 1895.1698 1466.59770 11.046365
## 153 18.19935 1777.7972 634.69903 14.966545
## 154 22.03319 1775.9926 427.88466 7.820235
## 155 21.63615 2645.4427 747.01552 10.962876
## 156 12.41344 1629.2877 162.84889 13.226933
## 157 14.51956 727.4354 1531.94300 11.859090
## 158 20.51474 1240.0738 1463.46202 5.698510
## 159 11.14641 663.0705 1674.72228 6.291202
## 160 19.63677 1726.3137 597.46952 11.388067
## 161 22.39553 2850.9903 1327.00600 10.302152
## 162 20.66860 768.7005 1970.77069 13.499041
## 163 18.78012 815.6819 599.01096 5.237161
## 164 13.06222 998.2116 977.77829 14.684212
## 165 24.66249 2330.0596 1453.18759 11.690578
## 166 16.37537 2638.2389 710.58144 8.245658
## 167 18.34635 1220.9464 570.24032 7.900719
## 168 17.48104 2158.4206 474.81489 7.167293
## 169 18.88184 911.1700 406.89787 9.256225
## 170 15.07896 1751.1251 1566.28928 10.094847
## 171 20.26043 1736.8883 1905.15339 12.370077
## 172 13.56689 842.4208 1478.09756 12.600473
## 173 12.07762 2120.1754 694.43932 9.976304
## 174 22.24648 680.8540 696.91420 8.827087
## 175 22.62739 2422.0680 1135.26821 11.400924
## 176 20.58443 860.2095 1577.80435 7.782659
## 177 14.38716 2809.6190 461.23370 10.191207
## 178 20.49400 2876.7584 358.93452 12.937578
## 179 17.81392 2993.2265 351.97585 10.272933
## 180 20.91340 1045.6998 248.67442 9.101045
## 181 17.39708 1271.0948 579.97523 12.565405
## 182 14.76112 2962.4354 1475.65044 14.825901
## 183 20.55081 1467.0109 1054.77458 7.624080
## 184 17.84055 1441.3594 991.03464 11.298249
## 185 14.15602 2058.2113 1102.15834 14.020608
## 186 13.93965 2928.9597 1494.31538 8.277471
## 187 16.74015 2396.6385 891.74842 5.365741
## 188 11.96620 2371.0740 551.52412 6.750113
## 189 24.16161 1088.3051 688.47461 5.595817
## 190 10.68182 2489.6068 902.36614 12.700776
## 191 13.20963 1528.4347 123.11414 12.659648
## 192 21.19953 1464.1173 804.68353 11.875788
## 193 22.43233 2531.1060 561.69343 10.652707
## 194 10.40343 2081.8593 1711.64293 13.320022
## 195 23.82119 730.4000 1760.57059 13.889950
## 196 23.94911 2915.4408 758.11073 13.559499
## 197 11.12406 1493.9086 1279.96895 11.590024
## 198 10.69954 928.5280 1899.87729 5.281448
## 199 12.25630 568.2896 495.49770 11.859816
## 200 24.41803 1510.5443 968.54221 5.416479
## 201 14.74407 1846.0898 1586.11052 5.800639
## 202 10.18917 2585.8496 692.06312 7.925640
## 203 24.47517 2253.4898 568.50285 12.313777
## 204 18.69641 542.9951 89.98700 14.949668
## 205 11.47550 1889.1038 1085.56966 11.449172
## 206 15.43850 654.1636 1143.69280 7.699517
## 207 13.01345 2613.1451 1705.87070 7.659909
## 208 23.74410 1925.0861 124.81231 12.197450
## 209 24.99704 1644.3030 1576.45114 14.704515
## 210 15.48029 886.4264 272.29130 8.613753
## 211 13.95550 2143.3057 558.32856 6.309419
## 212 10.60690 1481.4108 1902.15448 9.201779
## 213 15.12508 2947.9475 555.28244 7.418694
## 214 19.83196 1300.4309 91.43988 13.398558
## 215 22.20826 1971.8521 654.26091 6.686104
## 216 19.69080 2592.1127 1794.53297 5.898323
## 217 18.69271 1143.1765 255.20026 9.279358
## 218 16.05152 1181.8845 1790.84440 5.537588
## 219 10.36508 1195.3456 247.05651 12.560964
## 220 23.39345 2356.6645 1788.57365 7.548321
## 221 13.98517 1814.5751 1830.54096 5.066375
## 222 22.37753 1498.2242 448.89575 7.576489
## 223 13.87824 1576.4300 1682.68380 7.067593
## 224 14.22455 2771.7336 1814.09031 7.231079
## 225 19.16115 2362.8886 1706.67667 8.354080
## 226 20.58447 2416.6637 484.69393 10.950854
## 227 20.36535 2390.4295 427.82286 6.172464
## 228 12.19867 1905.9235 398.45113 6.702690
## 229 17.05728 965.5039 799.43980 8.801820
## 230 17.56723 541.0039 861.29050 6.821483
## 231 19.70461 659.1855 1330.15778 11.224658
## 232 15.76097 1201.4830 856.54641 5.738156
## 233 15.23155 2852.7968 591.97238 12.770144
## 234 21.07038 993.2413 1282.97113 12.956110
## 235 14.81196 2456.0574 1216.57966 14.983936
## 236 16.81515 777.4765 538.30515 12.703134
## 237 17.07090 942.9747 913.11148 14.485655
## 238 16.79687 1579.7496 539.79202 13.779696
## 239 11.37471 1626.3646 691.12398 7.286178
## 240 17.45325 683.9206 1671.78654 9.082201
## 241 24.19857 2518.2603 1933.31219 5.723345
## 242 19.69463 1247.8495 1520.46665 7.256666
## 243 17.51046 1993.1633 947.43614 11.788187
## 244 14.78317 1514.2993 674.90607 11.365947
## 245 10.21984 1498.6574 885.94919 7.265604
## 246 24.72513 1846.7498 372.11934 7.078740
## 247 13.59747 1399.4045 1763.21662 14.264679
## 248 13.78183 596.6413 1917.90036 11.356678
## 249 13.67086 2945.4649 399.16296 7.928567
## 250 11.30168 2394.1770 1691.74741 11.718317
## 251 21.12691 2501.2889 480.86677 5.975342
## 252 12.96759 2150.5034 1891.63610 8.444983
## 253 20.15349 982.3062 1587.28870 12.951893
## 254 10.98623 914.8781 810.65382 5.907498
## 255 10.37825 2554.9075 1608.32446 9.140081
## 256 17.24386 1952.6281 1792.69093 5.942868
## 257 20.25066 1675.6762 1396.55904 8.661889
## 258 21.74340 1705.8739 1288.79092 14.107809
## 259 10.68415 1035.6881 1728.31782 6.971895
## 260 24.77926 2147.8650 1795.79808 5.281270
## 261 15.50346 2077.4356 1200.53708 14.370975
## 262 18.94946 2108.8000 1094.47814 12.864760
## 263 16.19108 2459.2758 262.57618 13.326276
## 264 21.02504 1257.2892 694.52843 11.609566
## 265 13.93863 2488.5673 422.63992 10.937113
## 266 12.07026 1634.6894 492.87142 5.382325
## 267 11.19883 1059.7294 675.54172 8.087615
## 268 13.74401 1073.4706 662.24832 7.789510
## 269 24.29276 2272.7000 1709.52240 8.527637
## 270 23.75283 1371.0885 292.98108 10.178696
## 271 10.47458 2191.3594 607.92481 7.267483
## 272 16.85060 1395.3627 1263.67390 14.554244
## 273 10.21642 938.1992 459.04181 12.756660
## 274 20.34045 2042.4747 459.10350 12.164557
## 275 22.48191 789.4537 664.83269 7.513533
## 276 18.69034 2073.8102 1366.96217 7.148470
## 277 11.53760 688.6105 1899.96187 10.488899
## 278 10.89135 1084.4696 506.31064 11.954054
## 279 20.92356 695.0024 307.19588 9.870327
## 280 19.28948 811.6861 649.80752 10.312133
## 281 16.78573 2952.9545 1279.18256 6.731708
## 282 21.62287 1504.3347 1446.94296 11.407849
## 283 17.96829 2345.1970 1308.66229 10.452187
## 284 12.49472 2503.9141 1879.33911 11.451643
## 285 13.45747 2525.3298 496.67393 14.024181
## 286 12.09319 2122.3334 1415.60517 14.209162
## 287 20.20112 732.9764 592.19361 13.677871
## 288 24.48669 924.0985 1723.93937 11.721611
## 289 13.55199 982.9855 703.77913 13.619149
## 290 16.69825 2303.2087 129.21452 9.382540
## 291 15.48651 875.1495 817.64217 13.051408
## 292 13.19546 2694.8446 870.35354 9.177140
## 293 15.29386 900.7127 269.88963 11.638994
## 294 12.95549 2335.4603 1739.20673 7.486446
## 295 15.02204 2183.8012 1429.61218 7.854958
## 296 10.15075 2044.5469 1606.80184 14.335679
## 297 17.07069 1304.6907 1528.37832 13.739565
## 298 21.10019 2606.7176 1106.70310 5.154981
## 299 24.26534 1343.8706 969.82082 5.226115
## 300 15.54197 2687.4207 1979.17849 9.997487
## 301 18.62798 1282.7182 1084.00394 5.478139
## 302 24.91018 2357.8178 164.76103 10.133511
## 303 11.27010 2188.0041 498.78583 8.603338
## 304 10.11937 1214.1633 1646.33331 12.301405
## 305 20.07304 1662.1247 438.96550 6.223896
## 306 24.86511 1239.9107 1545.68080 10.157419
## 307 22.50830 1856.7310 491.85561 7.372930
## 308 11.81257 2278.6126 713.90581 8.043870
## 309 14.80961 566.8926 1733.72893 13.144292
## 310 23.60748 2039.0007 559.63574 8.344844
## 311 23.92748 2392.2610 1504.69077 13.012022
## 312 12.15287 2764.8954 878.80993 5.179758
## 313 17.40898 2825.2216 1041.73414 13.799273
## 314 12.72063 2410.4822 1790.77937 8.233912
## 315 16.30208 2268.0562 1879.14528 5.952393
## 316 23.78714 1252.3859 79.95411 13.014097
## 317 16.36894 699.8535 837.79209 7.192182
## 318 18.29807 2334.3637 449.36677 8.030344
## 319 14.33096 990.7571 300.15452 10.389873
## 320 17.60270 1682.3814 679.71560 5.017875
## 321 14.37938 1197.6769 326.07014 14.636441
## 322 20.53148 2318.9712 1354.25034 13.200091
## 323 16.38558 2427.3243 748.23893 10.810900
## 324 14.32620 674.1713 1772.04209 6.786579
## 325 18.89742 1848.2761 1226.13715 6.596924
## 326 24.98046 2983.2368 1805.67168 8.686142
## 327 21.85748 1946.8077 1090.76237 10.659062
## 328 14.29104 1863.7275 1980.63497 14.253202
## 329 10.86065 1421.5042 1975.64753 10.975940
## 330 19.66445 1751.8946 1760.47418 14.002834
## 331 15.39904 866.0199 1560.20542 8.335197
## 332 18.29273 1122.7665 1817.78287 12.550190
## 333 22.30826 2371.5328 1487.76349 5.269242
## 334 19.83611 1805.1895 1289.79146 10.488185
## 335 24.05516 1746.6291 1695.86810 5.314281
## 336 21.75192 1505.5523 1060.56120 7.319652
## 337 16.10623 800.3541 1535.81801 8.418789
## 338 14.77774 1133.8053 907.37894 10.074222
## 339 17.58910 1475.0232 301.85946 7.562543
## 340 11.09147 836.9753 443.20421 10.359196
## 341 12.48359 2451.0503 628.20700 9.841371
## 342 21.62989 878.3880 1447.95499 7.649765
## 343 24.47958 864.8487 1874.12366 7.690806
## 344 22.04455 599.6047 540.70829 13.405805
## 345 18.18857 1376.1421 989.60150 10.625667
## 346 19.10073 2035.6427 785.18650 9.187279
## 347 13.62567 1170.2513 1189.11654 12.000004
## 348 22.29813 1644.2857 1880.66152 6.670571
## 349 23.43620 2516.1729 68.82644 7.771379
## 350 22.83736 1940.3339 313.26390 9.393485
## 351 15.83526 867.5134 1622.08750 7.193346
## 352 15.16854 2777.1350 1340.46743 5.648314
## 353 17.21046 725.1323 1786.32106 6.760727
## 354 24.60594 1117.7911 641.19311 12.945723
## 355 17.22714 1068.7075 87.76439 8.985557
## 356 18.02975 599.3705 586.68752 9.813566
## 357 16.90270 1659.9764 396.25800 14.466860
## 358 15.94673 2803.7347 1710.66751 8.554325
## 359 16.07347 2483.3363 363.50183 10.349216
## 360 20.92901 1569.6016 740.43434 9.592651
## 361 10.77142 1372.1658 214.68942 13.066990
## 362 10.88392 773.3206 348.67994 7.148942
## 363 18.56602 1517.0135 1852.62895 6.763938
## 364 14.38931 2394.6880 1714.85451 9.332139
## 365 14.44364 1065.8398 101.92520 9.002369
## 366 19.43890 1528.3875 840.40157 11.057214
## 367 24.59505 1001.2240 550.92821 14.423150
## 368 24.33228 1151.0910 874.82904 5.771854
## 369 17.39244 1329.7975 961.12312 5.210404
## 370 14.26124 2143.2141 1335.98326 12.500726
## 371 13.27338 711.8135 371.35494 8.038047
## 372 13.14713 1631.7841 1363.31288 12.208808
## 373 10.63952 2290.9487 1127.54607 7.798359
## 374 10.51714 1297.5769 510.80050 12.882525
## 375 22.85721 1992.5590 465.01218 13.565908
## 376 11.33976 2382.2897 698.01430 9.397910
## 377 11.72158 1584.5406 1181.81888 8.355455
## 378 17.82181 1287.3812 1040.99248 6.670863
## 379 15.88049 1597.5024 1664.25004 6.034248
## 380 14.91295 2150.5805 1282.37717 8.467009
## 381 15.36562 1269.5762 1271.10150 10.397680
## 382 19.29671 2807.7068 94.66449 9.453793
## 383 16.63115 520.8292 1786.85678 8.150682
## 384 24.91462 2489.7662 530.14095 7.512101
## 385 12.57357 1795.8166 1726.01713 12.459288
## 386 24.23783 2359.7612 1249.67613 13.015400
## 387 18.11934 1429.0771 477.20374 6.921955
## 388 23.45058 1267.7026 120.03689 6.918317
## 389 13.82486 1071.6219 102.27719 12.056533
## 390 14.93556 905.1408 1416.34188 10.938678
## 391 13.54432 2295.7322 1686.54383 14.701341
## 392 21.90359 1329.5868 600.16795 5.272282
## 393 15.41297 1096.0759 1839.71562 8.389246
## 394 10.53841 721.1233 103.51220 5.110126
## 395 19.43631 2971.8961 1458.65627 14.333634
## 396 21.54807 1719.9553 340.01025 5.046245
## 397 12.62286 1034.8714 1388.66520 10.959822
## 398 14.76304 2706.1120 1833.23429 8.453122
## 399 21.33223 717.1855 697.49255 12.962534
## 400 19.91154 2726.2979 1626.31454 13.481559
## 401 13.91393 2722.3980 1631.42853 9.669865
## 402 24.36955 2559.5429 577.93958 9.412266
## 403 22.48708 1537.1612 1825.73825 6.495941
## 404 15.19615 2714.7809 1319.96275 7.565454
## 405 23.34410 2102.7271 1382.77146 8.821511
## 406 20.75947 1973.6418 329.88882 11.053048
## 407 19.23999 1099.2550 1315.05619 8.870302
## 408 11.37433 1678.8396 188.23395 13.282741
## 409 23.08676 1446.4882 88.07393 14.410304
## 410 10.68141 810.6404 1057.29341 13.568590
## 411 12.60039 1387.7423 461.36883 11.639389
## 412 20.11692 2325.6121 1090.50249 14.606360
## 413 23.95394 1415.6751 52.28661 5.837265
## 414 17.85581 554.8260 520.49980 8.434534
## 415 20.14696 2122.1020 1082.78977 13.216944
## 416 18.74248 2754.7981 169.77995 6.952519
## 417 21.67848 2948.7279 538.89519 10.072658
## 418 16.44646 2463.5463 279.65153 8.677564
## 419 22.17694 965.4655 1194.62023 8.806841
## 420 12.80061 2995.5496 1285.78290 8.638543
## 421 13.59054 1317.5852 1906.34670 7.439784
## 422 19.45618 817.8916 919.88829 5.722567
## 423 14.37013 2086.3589 612.20586 5.480212
## 424 13.38918 1591.8048 204.94327 6.517172
## 425 13.57737 2047.9701 968.15564 8.697701
## 426 14.24837 2247.8866 234.23564 7.583368
## 427 17.57109 1798.8604 425.67139 12.563189
## 428 22.15218 2892.1814 1153.91073 5.707939
## 429 14.46030 834.1108 986.11220 14.924104
## 430 19.18988 2109.9656 482.18406 10.079461
## 431 24.50526 2494.4207 1882.56799 13.516766
## 432 14.38292 2125.4026 950.64260 10.203466
## 433 21.91714 1826.4702 1210.98948 12.384915
## 434 21.47639 568.2403 873.42653 14.624869
## 435 20.41151 1058.3499 803.50800 7.710338
## 436 11.50406 2586.3702 1975.73976 10.222109
## 437 11.11041 1020.9152 528.04692 13.599187
## 438 20.66718 2031.2802 610.58887 11.358770
## 439 17.13324 1894.6660 1597.68657 10.697587
## 440 22.45786 2874.9285 742.45079 6.859306
## 441 11.31514 1895.2596 109.52524 13.269937
## 442 17.02642 1831.0654 579.44131 13.764015
## 443 14.99106 2809.9075 1524.71581 10.567446
## 444 16.91619 2334.5899 987.29314 13.833227
## 445 13.76866 761.5061 1298.75507 12.461074
## 446 18.14361 2220.4322 621.47668 7.262309
## 447 17.03789 1482.4727 1389.89198 5.207722
## 448 21.43569 2153.1074 1104.41842 7.639041
## 449 12.68031 2930.7323 738.83932 8.307892
## 450 10.13271 1216.1019 1304.73306 10.053166
## 451 24.70540 937.5713 834.35013 14.724162
## 452 20.73297 1818.6281 242.03162 8.280086
## 453 22.87678 1836.2669 485.22847 10.968748
## 454 23.28563 1052.8380 145.95880 7.106194
## 455 11.14073 1528.4311 732.98569 7.242290
## 456 19.53223 1380.7025 1849.79899 10.830388
## 457 15.92743 1447.8669 1081.28486 6.992985
## 458 11.56165 506.0392 1895.73003 9.749492
## 459 21.24564 2924.2025 1608.55121 7.846189
## 460 22.61881 2061.0894 1321.95698 5.674680
## 461 12.50316 2805.2887 1034.09722 14.700947
## 462 15.88589 2365.4998 613.34524 10.787510
## 463 22.91557 1459.1685 1618.82794 13.155722
## 464 20.27755 901.7697 516.16624 7.338551
## 465 12.23214 1079.9900 737.25230 8.757592
## 466 16.58961 2465.2526 1940.10765 10.214133
## 467 17.86189 1879.0813 876.02426 11.927641
## 468 24.28534 1049.6293 891.99782 13.854832
## 469 21.32383 2745.8281 1957.45476 7.550977
## 470 14.75333 2268.9520 1178.65679 8.050030
## 471 17.41775 890.9653 1170.81313 14.666833
## 472 24.65124 1332.9501 308.33198 5.003111
## 473 17.92653 2244.8414 1846.53549 14.762431
## 474 19.94915 802.4332 493.81791 8.258445
## 475 24.83649 752.4284 1642.88044 9.022207
## 476 11.34886 2210.4414 251.39817 7.357909
## 477 14.26952 2920.9250 987.61811 6.824384
## 478 19.16296 1973.8371 505.81029 11.841614
## 479 15.34255 1862.9811 1554.73444 14.359155
## 480 20.44931 2696.3118 761.69071 12.104412
## 481 15.30153 2858.5454 402.29789 8.678886
## 482 12.97372 1372.2404 179.35919 14.482199
## 483 14.74902 2450.3907 1600.75528 13.902542
## 484 23.44672 2327.9927 1221.08270 14.404531
## 485 14.37662 689.3851 652.82091 6.428849
## 486 19.15116 1801.3142 1120.76283 9.754092
## 487 11.22011 2667.4441 1389.72831 12.794907
## 488 10.94850 1398.1565 1959.06154 14.101428
## 489 17.94453 1529.1442 200.69291 9.278412
## 490 18.61612 892.5283 1377.55695 6.546640
## 491 20.85463 1269.0787 1633.81426 11.938767
## 492 14.42847 576.7580 688.80859 10.240993
## 493 21.31766 1968.3299 743.45203 11.383523
## 494 18.34760 1425.4686 78.84229 11.478714
## 495 11.61937 2761.3404 171.68158 8.438952
## 496 24.94023 904.0825 692.37443 5.807838
## 497 17.96329 1304.0208 1241.83237 14.002911
## 498 16.50674 1876.8143 496.68015 8.256703
## 499 16.48706 1459.6766 1526.45699 13.108488
## 500 15.43963 2074.8044 657.10033 8.140894
summary(dataship)
## Speed_Over_Ground_knots Engine_Power_kW Distance_Traveled_nm Draft_meters
## Min. :10.05 Min. : 504.5 Min. : 52.29 Min. : 5.003
## 1st Qu.:13.95 1st Qu.:1095.9 1st Qu.: 514.82 1st Qu.: 7.430
## Median :17.74 Median :1682.0 Median : 969.18 Median : 9.987
## Mean :17.63 Mean :1712.8 Mean :1003.56 Mean : 9.949
## 3rd Qu.:21.49 3rd Qu.:2328.1 3rd Qu.:1525.15 3rd Qu.:12.525
## Max. :25.00 Max. :2995.5 Max. :1989.85 Max. :14.984
str(dataship)
## 'data.frame': 500 obs. of 4 variables:
## $ Speed_Over_Ground_knots: num 12.6 10.4 20.7 21.1 13.7 ...
## $ Engine_Power_kW : num 2063 1796 1649 915 1090 ...
## $ Distance_Traveled_nm : num 1031 1060 659 1127 1445 ...
## $ Draft_meters : num 14.13 14.65 7.2 11.79 9.73 ...
dataship_scaled <- scale(dataship)
head(dataship_scaled)
## Speed_Over_Ground_knots Engine_Power_kW Distance_Traveled_nm Draft_meters
## 1 -1.1533124 0.50054294 0.04853001 1.42965004
## 2 -1.6594890 0.11895535 0.10089070 1.60764622
## 3 0.7138775 -0.09190582 -0.61091453 -0.93988621
## 4 0.7838165 -1.14019497 0.21846284 0.62879469
## 5 -0.8910096 -0.89079389 0.78288918 -0.07568265
## 6 0.2252057 0.65588264 -0.49672065 1.69761404
distance_shipmatrix <- dist(dataship_scaled, method = "euclidean")
head(distance_shipmatrix,10)
## [1] 0.6604909 3.1443541 2.6673462 2.1931554 1.5144456 3.0336744 3.6936620
## [8] 3.4085622 2.8940633 1.3485489
ship_ward <- hclust(distance_shipmatrix, method = "ward.D2")
ship_ward
##
## Call:
## hclust(d = distance_shipmatrix, method = "ward.D2")
##
## Cluster method : ward.D2
## Distance : euclidean
## Number of objects: 500
fviz_dend(ship_ward, k = 3,
rect = TRUE,
rect_fill = TRUE,
main = "Dendrogram Metode Ward's")
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
## Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
clusters <- cutree(ship_ward, k = 3)
table(clusters)
## clusters
## 1 2 3
## 113 176 211
names(ship_ward)
## [1] "merge" "height" "order" "labels" "method"
## [6] "call" "dist.method"
Pada fungsi hclust, beberapa komponen penting yang dihasilkan antara lain:
head(ship_ward$merge,10)
## [,1] [,2]
## [1,] -10 -134
## [2,] -59 -130
## [3,] -239 -455
## [4,] -29 -489
## [5,] -331 -337
## [6,] -348 -403
## [7,] -65 -252
## [8,] -57 -263
## [9,] -127 -374
## [10,] -37 -388
head(ship_ward$height,20)
## [1] 0.1035575 0.1337469 0.1679356 0.1698926 0.1942484 0.1958658 0.2079944
## [8] 0.2081150 0.2136431 0.2148049 0.2218037 0.2266441 0.2475158 0.2477706
## [15] 0.2494671 0.2501606 0.2511085 0.2522182 0.2530802 0.2593598
cluster_hclust <- cutree(ship_ward, k = 3)
data_with_clusters <- dataship %>%
mutate(Cluster = as.factor(cluster_hclust))
cluster_profiles <- data_with_clusters %>%
group_by(Cluster) %>%
summarise(across(where(is.numeric), ~mean(.x, na.rm = TRUE)))
print(cluster_profiles)
## # A tibble: 3 × 5
## Cluster Speed_Over_Ground_knots Engine_Power_kW Distance_Traveled_nm
## <fct> <dbl> <dbl> <dbl>
## 1 1 13.3 2198. 1048.
## 2 2 19.9 1485. 1045.
## 3 3 18.1 1643. 945.
## # ℹ 1 more variable: Draft_meters <dbl>
Terdapat beberapa metrik evaluasi klaster yang dapat digunakan untuk menilai kualitas hasil clustering: - Silhouette Score: Nilai berkisar dari -1 hingga 1, di mana nilai yang lebih tinggi menunjukkan klaster yang lebih baik. - Dunn Index: Nilai yang lebih tinggi menunjukkan klaster yang lebih baik. - Calinski-Harabasz Index: Nilai yang lebih tinggi menunjukkan klaster yang lebih baik.
library(cluster)
silhouette_values <- silhouette(cluster_hclust, distance_shipmatrix)
avg_silhouette <- mean(silhouette_values[, 3])
cat("Average Silhouette Score:", avg_silhouette, "\n")
## Average Silhouette Score: 0.1459892
library(clusterCrit)
## Warning: package 'clusterCrit' was built under R version 4.4.3
dunn_index <- intCriteria(as.matrix(dataship_scaled),
as.integer(cluster_hclust),
c("Dunn"))$dunn
cat("Dunn Index:", dunn_index, "\n")
## Dunn Index: 0.09443172
ch_index <- intCriteria(as.matrix(dataship_scaled),
as.integer(cluster_hclust),
c("Calinski_Harabasz"))$calinski_harabasz
cat("Calinski-Harabasz Index:", ch_index, "\n")
## Calinski-Harabasz Index: 88.26635
dataship_clustered <- dataship %>%
mutate(Cluster = as.factor(cluster_hclust))
# Melihat profil rata-rata setiap klaster
cluster_profiles <- dataship_clustered %>%
group_by(Cluster) %>%
summarise(across(where(is.numeric), ~mean(.x, na.rm = TRUE)))
print(cluster_profiles)
## # A tibble: 3 × 5
## Cluster Speed_Over_Ground_knots Engine_Power_kW Distance_Traveled_nm
## <fct> <dbl> <dbl> <dbl>
## 1 1 13.3 2198. 1048.
## 2 2 19.9 1485. 1045.
## 3 3 18.1 1643. 945.
## # ℹ 1 more variable: Draft_meters <dbl>
pca_result <- prcomp(dataship_scaled)
pca_data <- data.frame(pca_result$x, Cluster = as.factor(cluster_hclust))
ggplot(pca_data, aes(x = PC1, y = PC2, color = Cluster)) +
geom_point(size = 2) +
labs(title = "Visualisasi Cluster menggunakan PCA",
x = "Principal Component 1",
y = "Principal Component 2") +
theme_minimal()
Berdasarkan visualisasi PCA, kita dapat mengamati bahwa klaster-klaster
yang terbentuk memiliki pemisahan yang cukup baik tetapi masih ada
beberapa tumpang tindih.
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
library(ggplot2)
dataship_num <- dataship_clustered[, sapply(dataship_clustered, is.numeric)]
dataship_num$Cluster <- dataship_clustered$Cluster
dataship_melted <- melt(dataship_num, id.vars = "Cluster")
ggplot(dataship_melted, aes(x = variable, y = as.factor(Cluster), fill = value)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "blue") +
labs(title = "Heatmap Karakteristik Cluster",
x = "Fitur",
y = "Cluster") +
theme_minimal()
Klaster 1 berwarna paling gelap di Speed_Over_Ground_kn dan
Engine_Power_kW menunjukkan bahwa kapal cepat dengan tenaga mesin besar.
Klaster 2 memiliki warna agak terang di semua fitur menunjukkan kapal
dengan kecepatan dan tenaga mesin sedang. Klaster 3 berwarna paling
terang (nilai rendah di semua fitur) menunjukkan Kapal lambat, mesin
kecil, mungkin kapal kecil atau kapal nelayan tradisional.
Beberapa metode yang umum digunakan untuk menentukan k antara lain: - Elbow Method - Silhouette Method
fviz_nbclust(dataship_scaled, kmeans, method = "wss") +
labs(title = "Elbow Method for Optimal k")
#### Silhouette Method
fviz_nbclust(dataship_scaled, kmeans, method = "silhouette") +
labs(title = "Silhouette Method for Optimal k")
Didapat bahwa jumlah klaster yang optimum adalah k=8.
set.seed(123) # Untuk reproduktifitas
k <- 8 # Jumlah klaster optimal
kmeans_result <- kmeans(dataship_scaled, centers = k, nstart = 25)
table(kmeans_result$cluster)
##
## 1 2 3 4 5 6 7 8
## 50 61 72 53 60 73 76 55
names(kmeans_result)
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
kmeans_result$centers
## Speed_Over_Ground_knots Engine_Power_kW Distance_Traveled_nm Draft_meters
## 1 0.9784240 0.6040468 0.9228097 -0.8848299
## 2 0.8245809 -0.7013530 0.5212000 0.8972485
## 3 0.6402568 0.8131487 -0.6393102 0.7392474
## 4 -0.7359530 -1.0129491 1.0232342 -0.5283593
## 5 -0.7700610 0.8291439 -0.6620850 -0.8288240
## 6 -0.8629419 0.8561343 0.9087239 0.5637013
## 7 0.7120312 -0.7854791 -0.7640210 -0.8492746
## 8 -0.9314467 -0.8150953 -0.9941984 0.6801942
kmeans_result$tot.withinss
## [1] 727.3713
kmeans_result$size
## [1] 50 61 72 53 60 73 76 55
kmeans_result$iter
## [1] 4
kmeans_result$withinss
## [1] 74.52186 92.17357 112.34410 76.00927 80.69313 115.71457 96.93215
## [8] 78.98265
kmeans_result$betweenss
## [1] 1268.629
distance_matrix <- dist(dataship_scaled)
silhouette_values_kmeans <- silhouette(kmeans_result$cluster, distance_matrix)
avg_silhouette_kmeans <- mean(silhouette_values_kmeans[, 3])
cat("Average Silhouette Score (K-Means):", avg_silhouette_kmeans, "\n")
## Average Silhouette Score (K-Means): 0.2509852
dunn_index_kmeans <- intCriteria(
as.matrix(dataship_scaled),
as.integer(kmeans_result$cluster),
c("Dunn")
)$dunn
cat("Dunn Index (K-Means):", dunn_index_kmeans, "\n")
## Dunn Index (K-Means): 0.07520343
ch_index_kmeans <- intCriteria(
as.matrix(dataship_scaled),
as.integer(kmeans_result$cluster),
c("Calinski_Harabasz")
)$calinski_harabasz
cat("Calinski-Harabasz Index (K-Means):", ch_index_kmeans, "\n")
## Calinski-Harabasz Index (K-Means): 122.5873
data_kmeans_clustered <- dataship %>%
mutate(Cluster = as.factor(kmeans_result$cluster))
# Melihat profil rata-rata setiap klaster
cluster_profiles_kmeans <- data_kmeans_clustered %>%
group_by(Cluster) %>%
summarise(across(where(is.numeric), ~ mean(.x, na.rm = TRUE)))
print(cluster_profiles_kmeans)
## # A tibble: 8 × 5
## Cluster Speed_Over_Ground_knots Engine_Power_kW Distance_Traveled_nm
## <fct> <dbl> <dbl> <dbl>
## 1 1 21.9 2135. 1524.
## 2 2 21.2 1222. 1298.
## 3 3 20.4 2282. 643.
## 4 4 14.4 1004. 1581.
## 5 5 14.3 2293. 630.
## 6 6 13.9 2312. 1516.
## 7 7 20.7 1163. 572.
## 8 8 13.6 1143. 443.
## # ℹ 1 more variable: Draft_meters <dbl>
fviz_cluster(kmeans_result, data = dataship_scaled,
geom = "point",
ellipse.type = "convex",
palette = "jco",
ggtheme = theme_minimal(),
main = "Visualisasi Cluster K-Means")
Terlihat bahwa masing-masing klaster memiliki area yang relatif
terpisah, meskipun terdapat beberapa tumpang tindih di batas antar
klaster. Hal ini menunjukkan bahwa algoritma K-Means berhasil
mengelompokkan data berdasarkan kesamaan karakteristik utama, namun
beberapa klaster memiliki karakteristik yang cukup mirip satu sama
lain.
library(reshape2)
library(ggplot2)
data_num_kmeans <- data_kmeans_clustered[, sapply(data_kmeans_clustered, is.numeric)]
data_num_kmeans$Cluster <- data_kmeans_clustered$Cluster
data_melted_kmeans <- melt(data_num_kmeans, id.vars = "Cluster")
ggplot(data_melted_kmeans, aes(x = variable, y = as.factor(Cluster), fill = value)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "red") +
labs(title = "Heatmap Karakteristik Klaster K-Means",
x = "Fitur",
y = "Klaster") +
theme_minimal()
Berdasarkan heatmap untuk hasil klasterisasi K-Means, kita dapat melihat
pola karakteristik yang berbeda antar klaster berdasarkan empat fitur
utama, yaitu Speed_Over_Ground_kn, Engine_Power_kW,
Distance_Traveled_nm, dan Draft_meters. Warna merah yang lebih gelap
menunjukkan nilai rata-rata yang lebih tinggi pada fitur tersebut dalam
klaster tertentu.
Klaster 6 dan Klaster 8 menunjukkan warna yang lebih gelap pada fitur Engine_Power_kW dan Speed_Over_Ground_kn, yang mengindikasikan bahwa kedua klaster ini memiliki kapal dengan tenaga mesin dan kecepatan yang relatif tinggi.
Klaster 2 dan Klaster 4 tampak memiliki warna yang lebih terang pada sebagian besar fitur, menandakan bahwa kapal dalam kelompok ini cenderung memiliki ukuran dan performa yang lebih rendah.
Klaster 3 dan Klaster 5 memperlihatkan intensitas sedang pada hampir semua fitur, yang berarti memiliki karakteristik menengah antara kelompok cepat dan lambat.
comparison_table <- data.frame(
Method = c("Hierarchical (Ward's)", "K-Means"),
Silhouette_Score = c(avg_silhouette, avg_silhouette_kmeans),
Dunn_Index = c(dunn_index, dunn_index_kmeans),
Calinski_Harabasz_Index = c(ch_index, ch_index_kmeans)
)
print(comparison_table)
## Method Silhouette_Score Dunn_Index Calinski_Harabasz_Index
## 1 Hierarchical (Ward's) 0.1459892 0.09443172 88.26635
## 2 K-Means 0.2509852 0.07520343 122.58729
Berdasarkan tabel perbandingan di atas: - Silhouette Score, metode K-Means menunjukkan nilai yang lebih tinggi (0.2509852) dibandingkan metode Ward (0.1459892). Hal ini mengindikasikan bahwa hasil klasterisasi K-Means memiliki pemisahan antar-klaster yang lebih baik dan objek-objek dalam satu klaster lebih homogen.
Calinski-Harabasz Index, metode K-Means juga memiliki nilai yang lebih tinggi (122.58729) dibandingkan metode Ward (88.26635). Nilai yang lebih tinggi pada indeks ini menunjukkan bahwa K-Means menghasilkan klaster yang lebih kompak di dalam kelompok dan lebih terpisah antar kelompok.
Dunn Index, metode Hierarchical (Ward’s) sedikit lebih unggul (0.09443172) dibandingkan K-Means (0.07520343). Ini berarti bahwa dalam hal jarak minimum antar klaster relatif terhadap diameter klaster, metode Ward memiliki pemisahan klaster yang sedikit lebih baik.
Secara keseluruhan, dapat disimpulkan bahwa metode K-Means cenderung memberikan hasil klasterisasi yang lebih baik secara umum, terutama dalam hal kekompakan dan pemisahan antar klaster berdasarkan nilai Silhouette Score dan Calinski-Harabasz Index.