# Transform Data
tvhours_by_relig<-gss_cat%>%
group_by(relig)%>%
summarise(avg_tvhours= mean(tvhours, na.rm = TRUE))
# Plot
tvhours_by_relig%>%
ggplot(aes(x= avg_tvhours, y= relig)) +
geom_point()
### orderd factor levels
tvhours_by_relig%>%
ggplot(aes(x= avg_tvhours, y= fct_reorder(.f= relig,.x= avg_tvhours))) +
geom_point()+
# Lable
labs(y= NULL, x= "Mean Daily Hours Watching TV")
### moving single level to front
tvhours_by_relig%>%
ggplot(aes(x= avg_tvhours,
y= fct_reorder(.f= relig,.x= avg_tvhours)%>%
fct_relevel("Don't know")))+
geom_point()+
# Lable
labs(y= NULL, x= "Mean Daily Hours Watching TV")
gss_cat%>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat%>%
mutate(race_rev= fct_recode(race,"African American"= "Black"))%>%
select(race, race_rev)%>%
filter(race== "BLack")
## # A tibble: 0 × 2
## # ℹ 2 variables: race <fct>, race_rev <fct>
# Collapse Multiple Levels
gss_cat%>%
mutate(race_col= fct_collapse(race, "Minority"= c("Black","Other")))%>%
select(race, race_col)%>%
filter(race!= "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels
gss_cat%>%
mutate(race_lump= fct_lump(race))%>%
distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From Strings
"2022-10-28"%>% ymd()
## [1] "2022-10-28"
"2022-10-28 4-41-30"%>% ymd_hms()
## [1] "2022-10-28 04:41:30 UTC"
# From numbers
20221028%>% ymd()
## [1] "2022-10-28"
flights%>%
select(year:day, hour, minute)%>%
mutate(departure= make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# Date to date-time
today()%>% as_datetime()
## [1] "2025-11-11 UTC"
# date-time to Date
now()%>% as_date()
## [1] "2025-11-11"
date_time<- ymd_hms("2022-10-28 18-18-18")
date_time
## [1] "2022-10-28 18:18:18 UTC"
year(date_time)
## [1] 2022
month(date_time, label = TRUE, abbr = FALSE)
## [1] October
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 301
mday(date_time)
## [1] 28
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Friday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt%>%
transmute(wday= wday(dep_time, label = TRUE))%>%
ggplot(aes(wday))+
geom_bar()
### rounding
# FLoor_date rounding down
flights_dt%>%
mutate(week= floor_date(dep_time, "month"))%>%
select(dep_time, week)%>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-01-15 08:58:00 2013-01-01 00:00:00
## 2 2013-05-10 14:25:00 2013-05-01 00:00:00
## 3 2013-10-18 11:50:00 2013-10-01 00:00:00
## 4 2013-08-22 23:38:00 2013-08-01 00:00:00
## 5 2013-01-14 13:22:00 2013-01-01 00:00:00
## 6 2013-09-14 19:15:00 2013-09-01 00:00:00
## 7 2013-08-12 07:57:00 2013-08-01 00:00:00
## 8 2013-05-28 15:30:00 2013-05-01 00:00:00
## 9 2013-01-12 10:53:00 2013-01-01 00:00:00
## 10 2013-02-20 08:46:00 2013-02-01 00:00:00
# Ceiling_date rounding down
flights_dt%>%
mutate(week= ceiling_date(dep_time, "month"))%>%
select(dep_time, week)%>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-05-12 09:02:00 2013-06-01 00:00:00
## 2 2013-11-13 17:08:00 2013-12-01 00:00:00
## 3 2013-02-18 12:26:00 2013-03-01 00:00:00
## 4 2013-08-04 11:58:00 2013-09-01 00:00:00
## 5 2013-08-02 08:09:00 2013-09-01 00:00:00
## 6 2013-04-16 06:39:00 2013-05-01 00:00:00
## 7 2013-07-13 15:45:00 2013-08-01 00:00:00
## 8 2013-05-17 20:59:00 2013-06-01 00:00:00
## 9 2013-05-20 10:49:00 2013-06-01 00:00:00
## 10 2013-02-26 15:54:00 2013-03-01 00:00:00
flights_dt%>%
mutate(dep_hour= update(dep_time, yday= 1))%>%
select(dep_time, dep_hour)%>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-02-21 09:51:00 2013-01-01 09:51:00
## 2 2013-10-02 19:31:00 2013-01-01 19:31:00
## 3 2013-01-12 08:10:00 2013-01-01 08:10:00
## 4 2013-08-04 18:51:00 2013-01-01 18:51:00
## 5 2013-09-05 11:49:00 2013-01-01 11:49:00
## 6 2013-03-18 14:29:00 2013-01-01 14:29:00
## 7 2013-03-21 19:32:00 2013-01-01 19:32:00
## 8 2013-05-05 14:51:00 2013-01-01 14:51:00
## 9 2013-04-04 09:02:00 2013-01-01 09:02:00
## 10 2013-10-01 18:52:00 2013-01-01 18:52:00