library(pathview)
expr_data <- read.csv("gse16873.d3.txt", sep = "\t", header=T)
head(expr_data)
## GeneID DCIS_1 DCIS_2 DCIS_3
## 1 10000 -0.30764480 -0.14722769 -0.023784808
## 2 10001 0.41586805 -0.33477259 -0.513136907
## 3 10002 0.19854925 0.03789588 0.341865341
## 4 10003 -0.23155297 -0.09659311 -0.104727283
## 5 100048912 -0.04490724 -0.05203146 0.036390376
## 6 10004 -0.08756237 -0.05027725 0.001821133
dim(expr_data)
## [1] 11979 4
entrez <- as.numeric(expr_data$GeneID)
expr_data <- expr_data[!is.na(entrez),]
rownames(expr_data) <- expr_data$GeneID
head(expr_data)
## GeneID DCIS_1 DCIS_2 DCIS_3
## 10000 10000 -0.30764480 -0.14722769 -0.023784808
## 10001 10001 0.41586805 -0.33477259 -0.513136907
## 10002 10002 0.19854925 0.03789588 0.341865341
## 10003 10003 -0.23155297 -0.09659311 -0.104727283
## 100048912 100048912 -0.04490724 -0.05203146 0.036390376
## 10004 10004 -0.08756237 -0.05027725 0.001821133
# The expression may be log(Intensity)
expr_data$FC1 <- expr_data$DCIS_2 - expr_data$DCIS_1
expr_data$FC2 <- expr_data$DCIS_3 - expr_data$DCIS_1
expr_data$FC3 <- expr_data$DCIS_3 - expr_data$DCIS_2
head(expr_data)
## GeneID DCIS_1 DCIS_2 DCIS_3 FC1
## 10000 10000 -0.30764480 -0.14722769 -0.023784808 0.160417109
## 10001 10001 0.41586805 -0.33477259 -0.513136907 -0.750640633
## 10002 10002 0.19854925 0.03789588 0.341865341 -0.160653377
## 10003 10003 -0.23155297 -0.09659311 -0.104727283 0.134959859
## 100048912 100048912 -0.04490724 -0.05203146 0.036390376 -0.007124218
## 10004 10004 -0.08756237 -0.05027725 0.001821133 0.037285120
## FC2 FC3
## 10000 0.28386000 0.123442886
## 10001 -0.92900495 -0.178364320
## 10002 0.14331609 0.303969466
## 10003 0.12682569 -0.008134168
## 100048912 0.08129762 0.088421835
## 10004 0.08938350 0.052098384
https://www.kegg.jp/pathway/hsa05171 (COVID-19) 通路 如果R联网有问题,可以点击Download链接,预先下载生物通路对应的KGML和Image png (1X)文件
pv.out <- pathview(gene.data = expr_data[, 5, drop = FALSE], cpd.data = NULL,
pathway.id = "hsa05171",
species = "hsa",
gene.idtype = "entrez",
out.suffix = "gse16873_d5",
kegg.native = T)
pv.out <- pathview(gene.data = expr_data[, c(5, 6, 7), drop = FALSE],
cpd.data = NULL,
pathway.id = "hsa05171",
species = "hsa",
gene.idtype = "entrez",
out.suffix = "gse16873_d5_d6",
kegg.native = TRUE)
pv.out <- pathview(gene.data = expr_data[, 5, drop = FALSE], cpd.data = NULL,
pathway.id = "hsa04110",
species = "hsa",
gene.idtype = "entrez",
out.suffix = "gse16873_04110_d5",
kegg.native = F)
## [,1] [,2]
## [1,] "9" "300"
## [2,] "9" "306"