Tutorial Completo: Predicción de Precios de Inmuebles

Desde Regresión Lineal hasta XGBoost

Author

EC3002C.602 - Módulo 5: Inteligencia Artificial

Published

November 11, 2025

1 Introducción

Este tutorial presenta un análisis completo de predicción de precios de inmuebles en México utilizando múltiples técnicas de machine learning, desde regresión lineal clásica hasta métodos ensemble avanzados.

1.1 Objetivos de Aprendizaje

Al completar este tutorial, serás capaz de:

  1. Limpiar y preparar datos inmobiliarios para modelado
  2. Realizar análisis exploratorio efectivo
  3. Implementar y comparar múltiples modelos de regresión
  4. Entender las ventajas y limitaciones de cada método
  5. Evaluar y seleccionar el mejor modelo para producción

1.2 Métodos Cubiertos

  • Regresión Lineal Múltiple: Modelo base interpretable
  • Ridge Regression: Regularización L2 para control de sobreajuste
  • Lasso Regression: Regularización L1 con selección de variables
  • Árbol de Decisión: Modelo no lineal simple
  • Random Forest: Ensemble de árboles con bagging
  • XGBoost: Gradient boosting optimizado

2 Configuración Inicial

2.1 Carga de Librerías

# Manipulación y visualización de datos
library(tidyverse)
library(rebus)

# Modelado y validación
library(caret)      # Framework unificado para ML
library(broom)      # Resultados tidy de modelos
library(corrplot)   # Matrices de correlación
library(ggrepel)    # Etiquetas sin overlap

# Modelos específicos
library(glmnet)        # Ridge y Lasso
library(randomForest)  # Random Forest
library(xgboost)       # XGBoost
library(rpart)         # Árbol de decisión
library(rpart.plot)    # Visualización de árboles

# Configuración
set.seed(123)
theme_set(theme_minimal())

Nota importante sobre conflictos de namespace: La librería MASS (usada en algunos análisis estadísticos) puede enmascarar la función select() de dplyr. Si encuentras errores, usa dplyr::select() explícitamente.

2.2 Paralelización para XGBoost

Para acelerar el entrenamiento de XGBoost, activamos procesamiento paralelo:

# Detectar número de cores disponibles
library(parallel)
library(doParallel)

n_cores <- detectCores() - 1  # Dejar un core libre
cl <- makeCluster(n_cores)
registerDoParallel(cl)

# El cluster se cerrará al final del script
# stopCluster(cl)

3 Carga y Limpieza de Datos

3.1 Teoría: Preprocesamiento de Datos

El preprocesamiento es crítico en machine learning. Datos de mala calidad producen modelos de mala calidad (“garbage in, garbage out”). Pasos esenciales:

  1. Manejo de valores faltantes: Eliminar o imputar
  2. Detección de outliers: Identificar y tratar valores extremos
  3. Transformación de variables: Normalización, logaritmos, etc.
  4. Ingeniería de características: Crear variables informativas

3.2 Carga de Datos

precio_casas <- readxl::read_xlsx("01_Datos/precio casas/datos_inmuebles.xlsx") %>% 
  filter(encabezado %in% c("Casa en venta", "Departamento en venta"))

# Inspección inicial
print(paste("Dimensiones:", nrow(precio_casas), "filas x",
            ncol(precio_casas), "columnas"))
[1] "Dimensiones: 1785 filas x 12 columnas"
glimpse(precio_casas)
Rows: 1,785
Columns: 12
$ encabezado     <chr> "Casa en venta", "Departamento en venta", "Departamento…
$ titulo         <chr> "Mirador Santiago", "Los Héroes Tizayuca, Desarrollo En…
$ precio         <dbl> 2087000, 731000, 2320000, 4850000, 3041955, 2230000, 57…
$ extension      <chr> "2 recámaras\n2 baños\n61 - 84 m² construidos", "2 a 4 …
$ ubicacion      <chr> "El Mirador, Santiago De Querétaro, Mirador, Querétaro"…
$ imagen_url     <chr> "https://http2.mlstatic.com/D_NQ_NP_2X_803872-MLM872246…
$ url            <chr> "https://casa.mercadolibre.com.mx/MLM-3805076466-mirado…
$ moneda         <chr> "MXN", "MXN", "MXN", "MXN", "MXN", "MXN", "MXN", "MXN",…
$ no_recamaras   <dbl> 2, 4, 2, 3, 2, 3, 3, 3, 2, 1, 3, 3, 3, 3, 2, 3, 2, 3, 3…
$ no_banos       <dbl> 2, 3, 2, 2, 1, 3, 4, 2, 2, 1, 4, 2, 4, 5, 3, 4, 2, 4, 3…
$ m2_construidos <dbl> 84, 104, 123, 132, 78, 156, 185, 122, 82, 46, 202, 113,…
$ m2_terreno     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…

3.3 Limpieza y Transformación

3.3.1 Extracción de Estado

Usamos expresiones regulares para extraer el estado de la ubicación:

precio_casas <- precio_casas %>%
  mutate(
    # Extraer último elemento después de la última coma
    estado = str_extract(ubicacion, pattern = ",\\s*([^,]+)$") %>%
      str_remove(pattern = ",\\s*"),

    # Corrección manual de inconsistencias
    estado = if_else(estado == "Loreto", "Baja California Sur", estado)
  )

Decisión de código: Usar str_extract() con regex es más robusto que str_split() cuando el formato puede variar.

3.3.2 Filtrado de Datos

precio_casas <- precio_casas %>%
  filter(is.na(m2_terreno))

3.3.3 Conversión de Moneda y Transformaciones

precio_casas <- precio_casas %>%
  mutate(
    # Estandarizar a pesos mexicanos
    precio = if_else(moneda == "US", precio * 18.5, precio),

    # Crear variable de región según precio promedio estatal
    region_precio = case_when(
      estado %in% c("Distrito Federal", "Nuevo León", "Querétaro",
                    "Baja California Sur", "Quintana Roo", "Jalisco",
                    "Yucatán") ~ "Alta",
      estado %in% c("Baja California", "Aguascalientes", "Coahuila",
                    "Chihuahua", "Estado De México", "Morelos", "Sinaloa",
                    "Nayarit", "Campeche") ~ "Media",
      estado %in% c("Guanajuato", "Hidalgo", "Puebla", "Michoacán",
                    "Veracruz", "Guerrero", "Oaxaca", "Chiapas",
                    "Durango") ~ "Baja",
      TRUE ~ NA_character_
    ),

    # Simplificar tipo de inmueble
    tipo_inmueble = if_else(
      str_detect(encabezado, "Casa"),
      "Casa",
      "Departamento"
    ),

    # Variables derivadas
    precio_m2 = precio / m2_construidos,
    log_precio = log(precio + 1)  # Log para normalizar distribución
  )

Decisión de modelado: Usamos log(precio + 1) porque:

  1. Los precios suelen tener distribución log-normal
  2. Reduce el impacto de outliers
  3. Mejora linealidad en relaciones
  4. El +1 evita problemas con precios = 0

3.3.4 Filtrado de Ventas y Outliers

precio_casas <- precio_casas %>%
  # Eliminar outliers extremos (1% y 99% percentiles)
  filter(
    precio > quantile(precio, 0.01, na.rm = TRUE) &
    precio < quantile(precio, 0.99, na.rm = TRUE)
  ) %>% 
  filter()

# Verificar datos limpios
precio_casas %>%
  count(estado, region_precio) %>%
  arrange(region_precio, estado) %>%
  print(n = 30)
# A tibble: 25 × 3
   estado              region_precio     n
   <chr>               <chr>         <int>
 1 Baja California Sur Alta              5
 2 Distrito Federal    Alta            663
 3 Jalisco             Alta             27
 4 Nuevo León          Alta             30
 5 Querétaro           Alta            111
 6 Quintana Roo        Alta            213
 7 Yucatán             Alta            110
 8 Chiapas             Baja              5
 9 Durango             Baja              2
10 Guanajuato          Baja             20
11 Guerrero            Baja             25
12 Hidalgo             Baja             28
13 Michoacán           Baja              2
14 Oaxaca              Baja              1
15 Puebla              Baja             43
16 Veracruz            Baja             10
17 Aguascalientes      Media             2
18 Baja California     Media             3
19 Campeche            Media             1
20 Chihuahua           Media             3
21 Coahuila            Media             1
22 Estado De México    Media           326
23 Morelos             Media            64
24 Nayarit             Media             4
25 Sinaloa             Media             3

Justificación del filtro de outliers: Eliminamos el 1% superior e inferior para evitar que valores extremos (posibles errores de captura) distorsionen los modelos.

4 Análisis Exploratorio de Datos (EDA)

4.1 Teoría: Importancia del EDA

El análisis exploratorio nos permite:

  • Entender la distribución de variables
  • Identificar relaciones entre predictores y objetivo
  • Detectar problemas de datos
  • Generar hipótesis para modelado
  • Validar supuestos de los modelos

4.2 Distribución del Precio

p_dist_precio <- precio_casas %>%
  ggplot(aes(x = precio/1000000)) +
  geom_histogram(bins = 50, fill = "steelblue", alpha = 0.7) +
  scale_x_continuous(labels = scales::comma) +
  labs(
    title = "Distribución del Precio de Inmuebles",
    x = "Precio (millones de pesos)",
    y = "Frecuencia"
  ) +
  facet_wrap(~tipo_inmueble, scales = "free_y")

print(p_dist_precio)

Interpretación: La distribución es asimétrica positiva (sesgo a la derecha), confirmando la necesidad de transformación logarítmica.

4.3 Relación Precio vs Características

p_precio_caracteristicas <- precio_casas %>%
  pivot_longer(
    cols = c(no_recamaras, no_banos, m2_construidos),
    names_to = "caracteristica",
    values_to = "valor"
  ) %>%
  mutate(
    caracteristica = case_when(
      caracteristica == "no_recamaras" ~ "Número de Recámaras",
      caracteristica == "no_banos" ~ "Número de Baños",
      caracteristica == "m2_construidos" ~ "M² Construidos"
    )
  ) %>%
  ggplot(aes(x = valor, y = precio/1000000)) +
  geom_point(alpha = 0.3, color = "steelblue") +
  geom_smooth(method = "lm", se = TRUE, color = "red") +
  facet_wrap(~caracteristica, scales = "free_x") +
  scale_y_continuous(labels = scales::comma) +
  labs(
    title = "Relación entre Precio y Características del Inmueble",
    x = "Valor",
    y = "Precio (millones de pesos)"
  )

print(p_precio_caracteristicas)

Observación clave: Todas las características muestran correlación positiva con el precio, aunque con diferentes pendientes.

4.4 Precio por Región y Tipo

p_precio_region <- precio_casas %>%
  ggplot(aes(x = region_precio, y = precio/1000000, fill = tipo_inmueble)) +
  geom_boxplot(alpha = 0.7) +
  scale_y_log10(labels = scales::comma) +
  labs(
    title = "Distribución de Precios por Región y Tipo de Inmueble",
    x = "Región (según precio promedio)",
    y = "Precio (millones de pesos, escala log)",
    fill = "Tipo"
  ) +
  theme(legend.position = "bottom")

print(p_precio_region)

5 Preparación para Modelado

5.1 Selección de Variables

datos_modelo <- precio_casas %>%
  dplyr::select(
    precio, log_precio, no_recamaras, no_banos,
    m2_construidos, region_precio, tipo_inmueble
  ) %>%
  drop_na()

print(paste("Observaciones para modelado:", nrow(datos_modelo)))
[1] "Observaciones para modelado: 1689"

5.2 Matriz de Correlación

correlacion <- datos_modelo %>%
  dplyr::select(where(is.numeric)) %>%
  cor()

corrplot(
  correlacion,
  method = "color",
  type = "upper",
  order = "hclust",
  tl.cex = 0.8,
  tl.col = "black",
  addCoef.col = "black",
  number.cex = 0.7,
  title = "Matriz de Correlación",
  mar = c(0, 0, 2, 0)
)

Interpretación: El precio correlaciona fuertemente con m2_construidos (0.67), seguido por no_recamaras y no_banos.

6 Estrategia de Validación

6.1 Teoría: Validación Cruzada

La validación cruzada k-fold es esencial para:

  1. Estimar rendimiento real: Evita optimismo del error de entrenamiento
  2. Detectar sobreajuste: Compara error train vs validación
  3. Seleccionar hiperparámetros: Encuentra configuración óptima
  4. Comparar modelos: Base justa de comparación

Funcionamiento de k-fold CV:

  1. Dividir datos en k particiones (folds)
  2. Para cada fold i:
    • Entrenar en k-1 folds
    • Validar en fold i
  3. Promediar métricas de k iteraciones
# Configurar validación cruzada 10-fold
control_cv <- trainControl(
  method = "cv",
  number = 10,
  savePredictions = "final",
  verboseIter = FALSE,
  allowParallel = TRUE  # Usar paralelización
)

7 Modelos de Regresión

7.1 1. Regresión Lineal Múltiple

7.1.1 Teoría: Regresión Lineal

La regresión lineal es el método más fundamental en estadística. Asume una relación lineal entre predictores y la variable objetivo:

\[ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \epsilon \]

Donde:

  • \(y\): variable dependiente (precio)
  • \(x_i\): variables independientes (características)
  • \(\beta_i\): coeficientes a estimar
  • \(\epsilon\): error aleatorio

Método de estimación: Mínimos Cuadrados Ordinarios (OLS), minimiza:

\[ \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

Supuestos del modelo:

  1. Linealidad en parámetros
  2. Independencia de errores
  3. Homocedasticidad (varianza constante)
  4. Normalidad de errores
  5. No multicolinealidad perfecta

7.1.2 Implementación

# Modelo con precio original
modelo_cv <- train(
  precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data = datos_modelo,
  method = "lm",
  trControl = control_cv
)

# Modelo con log(precio) - generalmente mejor
modelo_log_cv <- train(
  log_precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data = datos_modelo,
  method = "lm",
  trControl = control_cv
)

print("=== Modelo con precio original ===")
[1] "=== Modelo con precio original ==="
print(modelo_cv)
Linear Regression 

1689 samples
   5 predictor

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 1519, 1520, 1520, 1522, 1520, 1519, ... 
Resampling results:

  RMSE     Rsquared   MAE    
  7533195  0.4530465  4217085

Tuning parameter 'intercept' was held constant at a value of TRUE
print("=== Modelo con log(precio) ===")
[1] "=== Modelo con log(precio) ==="
print(modelo_log_cv)
Linear Regression 

1689 samples
   5 predictor

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 1520, 1521, 1519, 1520, 1521, 1521, ... 
Resampling results:

  RMSE       Rsquared   MAE      
  0.5595061  0.5774755  0.4039536

Tuning parameter 'intercept' was held constant at a value of TRUE

Decisión de modelado: Preferimos log(precio) porque el RMSE (Root Mean Squared Error) suele ser menor y los residuos se distribuyen mejor.

7.1.3 Modelo Final y Diagnósticos

modelo_final <- lm(
  log_precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data = datos_modelo
)

summary(modelo_final)

Call:
lm(formula = log_precio ~ no_recamaras + no_banos + m2_construidos + 
    region_precio + tipo_inmueble, data = datos_modelo)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.67580 -0.32532 -0.02115  0.30328  3.11329 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)                1.452e+01  4.648e-02 312.511  < 2e-16 ***
no_recamaras               2.101e-02  1.591e-02   1.320    0.187    
no_banos                   7.794e-02  1.135e-02   6.866 9.24e-12 ***
m2_construidos             3.471e-03  9.216e-05  37.667  < 2e-16 ***
region_precioBaja         -5.584e-01  5.083e-02 -10.986  < 2e-16 ***
region_precioMedia        -1.738e-01  3.279e-02  -5.302 1.30e-07 ***
tipo_inmuebleDepartamento  4.388e-01  3.151e-02  13.926  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5474 on 1682 degrees of freedom
Multiple R-squared:  0.5867,    Adjusted R-squared:  0.5852 
F-statistic: 397.9 on 6 and 1682 DF,  p-value: < 2.2e-16

Interpretación de coeficientes (en escala log):

  • Un aumento de 1 m² construido → precio aumenta exp(coef) veces
  • Los coeficientes de regiones miden diferencias multiplicativas

7.1.4 Diagnósticos Visuales

par(mfrow = c(2, 2))
plot(modelo_final)

par(mfrow = c(1, 1))

Interpretación de gráficos:

  1. Residuals vs Fitted: Buscar patrón horizontal (linealidad)
  2. Q-Q Plot: Puntos en diagonal (normalidad)
  3. Scale-Location: Línea horizontal (homocedasticidad)
  4. Residuals vs Leverage: Detectar observaciones influyentes

7.2 2. Ridge Regression (Regularización L2)

7.2.1 Teoría: Ridge

Ridge añade una penalización L2 a la función de costo de OLS:

\[ \text{Minimizar: } \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \]

Donde \(\lambda\) es el parámetro de regularización que controla:

  • \(\lambda = 0\): Regresión lineal ordinaria
  • \(\lambda \to \infty\): Todos los coeficientes → 0

Ventajas de Ridge:

  1. Reduce sobreajuste (menor varianza)
  2. Maneja multicolinealidad
  3. Estabiliza coeficientes
  4. Siempre tiene solución única

Desventajas:

  • No elimina variables (no hace selección)
  • Reduce todos los coeficientes proporcionalmente

7.2.2 Implementación

# Grid de lambdas a explorar
grid_ridge <- expand.grid(
  alpha  = 0,  # alpha = 0 es Ridge
  lambda = 10^seq(-3, 2, length.out = 50)
)

modelo_ridge_cv <- train(
  log_precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data       = datos_modelo,
  method     = "glmnet",
  trControl  = control_cv,
  preProcess = c("center", "scale"),
  tuneGrid   = grid_ridge
)

print("=== Modelo Ridge ===")
[1] "=== Modelo Ridge ==="
print(modelo_ridge_cv)
glmnet 

1689 samples
   5 predictor

Pre-processing: centered (6), scaled (6) 
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 1521, 1519, 1520, 1522, 1521, 1519, ... 
Resampling results across tuning parameters:

  lambda        RMSE       Rsquared   MAE      
  1.000000e-03  0.5575378  0.5779624  0.4105877
  1.264855e-03  0.5575378  0.5779624  0.4105877
  1.599859e-03  0.5575378  0.5779624  0.4105877
  2.023590e-03  0.5575378  0.5779624  0.4105877
  2.559548e-03  0.5575378  0.5779624  0.4105877
  3.237458e-03  0.5575378  0.5779624  0.4105877
  4.094915e-03  0.5575378  0.5779624  0.4105877
  5.179475e-03  0.5575378  0.5779624  0.4105877
  6.551286e-03  0.5575378  0.5779624  0.4105877
  8.286428e-03  0.5575378  0.5779624  0.4105877
  1.048113e-02  0.5575378  0.5779624  0.4105877
  1.325711e-02  0.5575378  0.5779624  0.4105877
  1.676833e-02  0.5575378  0.5779624  0.4105877
  2.120951e-02  0.5575378  0.5779624  0.4105877
  2.682696e-02  0.5575378  0.5779624  0.4105877
  3.393222e-02  0.5575378  0.5779624  0.4105877
  4.291934e-02  0.5575378  0.5779624  0.4105877
  5.428675e-02  0.5575378  0.5779624  0.4105877
  6.866488e-02  0.5581253  0.5777307  0.4119625
  8.685114e-02  0.5593357  0.5772421  0.4145083
  1.098541e-01  0.5612343  0.5764545  0.4177858
  1.389495e-01  0.5640563  0.5752557  0.4219375
  1.757511e-01  0.5680835  0.5734951  0.4271588
  2.222996e-01  0.5735817  0.5710163  0.4335996
  2.811769e-01  0.5808232  0.5676258  0.4416992
  3.556480e-01  0.5899532  0.5631788  0.4516066
  4.498433e-01  0.6010950  0.5574931  0.4635336
  5.689866e-01  0.6141010  0.5505632  0.4771868
  7.196857e-01  0.6288825  0.5423121  0.4919630
  9.102982e-01  0.6449620  0.5330314  0.5073988
  1.151395e+00  0.6621491  0.5227838  0.5233720
  1.456348e+00  0.6797725  0.5121674  0.5391576
  1.842070e+00  0.6976751  0.5012881  0.5549981
  2.329952e+00  0.7151720  0.4908446  0.5703044
  2.947052e+00  0.7321735  0.4808561  0.5848061
  3.727594e+00  0.7481119  0.4718446  0.5981070
  4.714866e+00  0.7629569  0.4637038  0.6105043
  5.963623e+00  0.7763465  0.4566839  0.6216352
  7.543120e+00  0.7883219  0.4506180  0.6316386
  9.540955e+00  0.7987628  0.4455377  0.6406557
  1.206793e+01  0.8077678  0.4412927  0.6485286
  1.526418e+01  0.8154069  0.4377982  0.6552037
  1.930698e+01  0.8218040  0.4349487  0.6607579
  2.442053e+01  0.8271224  0.4326250  0.6653443
  3.088844e+01  0.8314776  0.4307629  0.6690883
  3.906940e+01  0.8350499  0.4292507  0.6721718
  4.941713e+01  0.8379271  0.4280551  0.6746568
  6.250552e+01  0.8402680  0.4270846  0.6766805
  7.906043e+01  0.8421305  0.4263255  0.6782897
  1.000000e+02  0.8436389  0.4257083  0.6795944

Tuning parameter 'alpha' was held constant at a value of 0
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were alpha = 0 and lambda = 0.05428675.
print(paste("Mejor lambda:", modelo_ridge_cv$bestTune$lambda))
[1] "Mejor lambda: 0.0542867543932386"

Decisión de preprocesamiento: center y scale son críticos en Ridge porque la penalización es sensible a la escala de las variables.

7.3 3. Lasso Regression (Regularización L1)

7.3.1 Teoría: Lasso

Lasso usa penalización L1 (valor absoluto):

\[ \text{Minimizar: } \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \]

Diferencia clave con Ridge: Lasso puede forzar coeficientes exactamente a cero, realizando selección automática de variables.

Interpretación geométrica:

  • Ridge: restricción esférica → coeficientes pequeños
  • Lasso: restricción romboidal → soluciones sparse (ceros)

Ventajas de Lasso:

  1. Selección automática de variables
  2. Modelos más interpretables (menos variables)
  3. Útil con muchos predictores irrelevantes

Desventajas:

  • Si hay variables correlacionadas, selecciona una arbitrariamente
  • Puede ser inestable con correlaciones altas

7.3.2 Implementación

grid_lasso <- expand.grid(
  alpha  = 1,  # alpha = 1 es Lasso
  lambda = 10^seq(-3, 2, length.out = 50)
)

modelo_lasso_cv <- train(
  log_precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data       = datos_modelo,
  method     = "glmnet",
  trControl  = control_cv,
  preProcess = c("center", "scale"),
  tuneGrid   = grid_lasso
)

print("=== Modelo Lasso ===")
[1] "=== Modelo Lasso ==="
print(modelo_lasso_cv)
glmnet 

1689 samples
   5 predictor

Pre-processing: centered (6), scaled (6) 
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 1521, 1522, 1519, 1518, 1521, 1520, ... 
Resampling results across tuning parameters:

  lambda        RMSE       Rsquared   MAE      
  1.000000e-03  0.5594438  0.5795249  0.4052258
  1.264855e-03  0.5593914  0.5795600  0.4052156
  1.599859e-03  0.5592203  0.5796761  0.4051800
  2.023590e-03  0.5589976  0.5798156  0.4051980
  2.559548e-03  0.5587036  0.5799977  0.4052383
  3.237458e-03  0.5583384  0.5802261  0.4052894
  4.094915e-03  0.5579013  0.5804999  0.4053563
  5.179475e-03  0.5573662  0.5808411  0.4054389
  6.551286e-03  0.5567428  0.5812411  0.4055721
  8.286428e-03  0.5560720  0.5816749  0.4057861
  1.048113e-02  0.5558144  0.5817390  0.4062692
  1.325711e-02  0.5555948  0.5817436  0.4069412
  1.676833e-02  0.5554722  0.5816348  0.4078698
  2.120951e-02  0.5555169  0.5813862  0.4092086
  2.682696e-02  0.5559301  0.5808337  0.4111493
  3.393222e-02  0.5571386  0.5794880  0.4140074
  4.291934e-02  0.5596896  0.5767665  0.4181681
  5.428675e-02  0.5645262  0.5714781  0.4241723
  6.866488e-02  0.5724557  0.5626351  0.4327051
  8.685114e-02  0.5844493  0.5481733  0.4443857
  1.098541e-01  0.6034402  0.5214914  0.4609220
  1.389495e-01  0.6250163  0.4903233  0.4793206
  1.757511e-01  0.6383935  0.4813105  0.4918457
  2.222996e-01  0.6528885  0.4813049  0.5065083
  2.811769e-01  0.6753681  0.4813049  0.5285298
  3.556480e-01  0.7097724  0.4813049  0.5609391
  4.498433e-01  0.7614840  0.4813049  0.6080746
  5.689866e-01  0.8374737  0.4813049  0.6741772
  7.196857e-01  0.8495160        NaN  0.6846719
  9.102982e-01  0.8495160        NaN  0.6846719
  1.151395e+00  0.8495160        NaN  0.6846719
  1.456348e+00  0.8495160        NaN  0.6846719
  1.842070e+00  0.8495160        NaN  0.6846719
  2.329952e+00  0.8495160        NaN  0.6846719
  2.947052e+00  0.8495160        NaN  0.6846719
  3.727594e+00  0.8495160        NaN  0.6846719
  4.714866e+00  0.8495160        NaN  0.6846719
  5.963623e+00  0.8495160        NaN  0.6846719
  7.543120e+00  0.8495160        NaN  0.6846719
  9.540955e+00  0.8495160        NaN  0.6846719
  1.206793e+01  0.8495160        NaN  0.6846719
  1.526418e+01  0.8495160        NaN  0.6846719
  1.930698e+01  0.8495160        NaN  0.6846719
  2.442053e+01  0.8495160        NaN  0.6846719
  3.088844e+01  0.8495160        NaN  0.6846719
  3.906940e+01  0.8495160        NaN  0.6846719
  4.941713e+01  0.8495160        NaN  0.6846719
  6.250552e+01  0.8495160        NaN  0.6846719
  7.906043e+01  0.8495160        NaN  0.6846719
  1.000000e+02  0.8495160        NaN  0.6846719

Tuning parameter 'alpha' was held constant at a value of 1
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were alpha = 1 and lambda = 0.01676833.
print(paste("Mejor lambda:", modelo_lasso_cv$bestTune$lambda))
[1] "Mejor lambda: 0.0167683293681101"
# Ver coeficientes (detectar cuáles fueron eliminados)
coef_lasso <- coef(modelo_lasso_cv$finalModel,
                   s = modelo_lasso_cv$bestTune$lambda)
print("Coeficientes Lasso:")
[1] "Coeficientes Lasso:"
print(coef_lasso)
7 x 1 sparse Matrix of class "dgCMatrix"
                                    s0
(Intercept)               15.746938702
no_recamaras               0.006342328
no_banos                   0.130296880
m2_construidos             0.592041792
region_precioBaja         -0.132722709
region_precioMedia        -0.054318430
tipo_inmuebleDepartamento  0.189649919

7.4 4. Árbol de Decisión

7.4.1 Teoría: Árboles de Regresión

Los árboles de decisión dividen recursivamente el espacio de características mediante reglas if-then. Para regresión:

  1. En cada nodo, seleccionar la variable y punto de corte que minimiza el error cuadrático
  2. Dividir datos en dos grupos
  3. Repetir hasta alcanzar criterio de parada (profundidad, nº mínimo de observaciones)

Función objetivo en cada división:

\[ \text{Minimizar: } \sum_{i \in R_1} (y_i - \bar{y}_{R_1})^2 + \sum_{i \in R_2} (y_i - \bar{y}_{R_2})^2 \]

Ventajas:

  • No requieren supuestos de distribución
  • Manejan relaciones no lineales
  • Interpretan interacciones automáticamente
  • Fáciles de visualizar

Desventajas:

  • Alta varianza (inestables)
  • Propensos a sobreajuste
  • Sesgados hacia variables con muchas categorías

7.4.2 Implementación

modelo_arbol_cv <- train(
  log_precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data       = datos_modelo,
  method     = "rpart",
  trControl  = control_cv,
  tuneLength = 10  # Explorar 10 valores de complejidad
)

print("=== Modelo Árbol de Decisión ===")
[1] "=== Modelo Árbol de Decisión ==="
print(modelo_arbol_cv)
CART 

1689 samples
   5 predictor

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 1520, 1520, 1519, 1521, 1521, 1520, ... 
Resampling results across tuning parameters:

  cp           RMSE       Rsquared   MAE      
  0.006509812  0.4931319  0.6621147  0.3724916
  0.010772246  0.5016818  0.6499576  0.3782404
  0.013608052  0.5160467  0.6305145  0.3923552
  0.023404937  0.5341910  0.6023641  0.4091088
  0.024777533  0.5495005  0.5796565  0.4280810
  0.026363781  0.5612526  0.5624456  0.4415225
  0.027150445  0.5638151  0.5586307  0.4446405
  0.037125209  0.6207337  0.4677604  0.4861904
  0.095752886  0.6593129  0.4005609  0.5185379
  0.372650699  0.7939124  0.3037910  0.6341170

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was cp = 0.006509812.
# Visualizar árbol
rpart.plot::rpart.plot(
  modelo_arbol_cv$finalModel,
  main = "Árbol de Decisión para log(precio)",
  roundint = FALSE
)

7.5 5. Random Forest

7.5.1 Teoría: Random Forest

Random Forest es un método ensemble que combina múltiples árboles de decisión mediante bagging (Bootstrap Aggregating):

Algoritmo:

  1. Crear B muestras bootstrap del dataset original
  2. Para cada muestra:
    • Entrenar un árbol de decisión
    • En cada nodo, considerar solo un subconjunto aleatorio de m variables
  3. Predicción final = promedio de predicciones de todos los árboles

Hiperparámetros clave:

  • ntree: Número de árboles (más = más estable pero más lento)
  • mtry: Número de variables en cada división (típicamente √p o p/3)
  • nodesize: Tamaño mínimo de nodos terminales

Por qué funciona:

  1. Reducción de varianza: Promediar árboles reduce varianza sin aumentar sesgo
  2. Decorrelación: Selección aleatoria de variables decorrelaciona árboles
  3. Out-of-Bag (OOB) error: ~37% de datos no usados en cada árbol → validación “gratis”

Ventajas:

  • Excelente rendimiento predictivo
  • Robusto a outliers
  • Maneja variables categóricas y numéricas
  • Proporciona importancia de variables
  • Poco sensible a hiperparámetros

Desventajas:

  • Menos interpretable que árbol simple
  • Más lento que modelos lineales
  • Requiere más memoria

7.5.2 Implementación

modelo_rf_cv <- train(
  log_precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data       = datos_modelo,
  method     = "rf",
  trControl  = control_cv,
  tuneLength = 5,
  importance = TRUE
)

print("=== Modelo Random Forest ===")
[1] "=== Modelo Random Forest ==="
print(modelo_rf_cv)
Random Forest 

1689 samples
   5 predictor

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 1521, 1520, 1521, 1521, 1519, 1521, ... 
Resampling results across tuning parameters:

  mtry  RMSE       Rsquared   MAE      
  2     0.4465293  0.7312227  0.3379810
  3     0.4395569  0.7323139  0.3299588
  4     0.4482653  0.7220390  0.3370972
  5     0.4579037  0.7107590  0.3443436
  6     0.4640370  0.7037188  0.3491169

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 3.
# Importancia de variables
importancia_rf <- varImp(modelo_rf_cv, scale = TRUE) %>%
  .$importance %>%
  as_tibble(rownames = "variable") %>%
  arrange(desc(Overall))

print("Importancia de variables:")
[1] "Importancia de variables:"
print(importancia_rf)
# A tibble: 6 × 2
  variable                  Overall
  <chr>                       <dbl>
1 m2_construidos            100    
2 tipo_inmuebleDepartamento  59.1  
3 region_precioBaja          11.7  
4 region_precioMedia          4.05 
5 no_recamaras                0.921
6 no_banos                    0    
# Visualizar importancia
importancia_rf %>%
  ggplot(aes(x = reorder(variable, Overall), y = Overall)) +
  geom_col(fill = "steelblue") +
  coord_flip() +
  labs(
    title = "Importancia de Variables según Random Forest",
    x = "Variable",
    y = "Importancia (Overall)"
  )

7.6 6. XGBoost

7.6.1 Teoría: XGBoost (eXtreme Gradient Boosting)

XGBoost es una implementación optimizada de gradient boosting, diferente de bagging (Random Forest):

Gradient Boosting:

  1. Iniciar con un modelo simple (constante)
  2. Para t = 1 a T:
    • Calcular residuos del modelo actual
    • Entrenar nuevo árbol para predecir residuos
    • Añadir árbol al modelo con peso η (learning rate)
  3. Predicción final = suma ponderada de todos los árboles

Función objetivo de XGBoost:

\[ \mathcal{L} = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k) \]

Donde:

  • \(l\): función de pérdida (MSE para regresión)
  • \(\Omega\): término de regularización (penaliza complejidad del árbol)

Hiperparámetros clave:

  • nrounds: Número de árboles (iteraciones de boosting)
  • max_depth: Profundidad máxima de cada árbol
  • eta: Learning rate (típicamente 0.01-0.3)
  • subsample: Fracción de datos para cada árbol (previene sobreajuste)
  • colsample_bytree: Fracción de variables para cada árbol
  • gamma: Reducción mínima de pérdida para hacer división
  • lambda (L2) y alpha (L1): Regularización en pesos de hojas

Ventajas de XGBoost sobre Gradient Boosting tradicional:

  1. Regularización incorporada: Previene sobreajuste
  2. Manejo de missing values: Aprende mejor dirección para NAs
  3. Paralelización: Construcción paralela de árboles
  4. Optimización de hardware: Cache-aware, out-of-core computing
  5. Stopping temprano: Detiene si no mejora en validación

XGBoost vs Random Forest:

Aspecto Random Forest XGBoost
Estrategia Bagging Boosting
Árboles Independientes Secuenciales
Profundidad típica Profunda Poco profunda
Velocidad Más rápido Más lento
Interpretabilidad Media Baja
Riesgo sobreajuste Bajo Medio-Alto

7.6.2 Implementación con Paralelización

# XGBoost con tuning exhaustivo y paralelización activada
modelo_xgb_cv <- train(
  log_precio ~ no_recamaras + no_banos + m2_construidos +
    region_precio + tipo_inmueble,
  data       = datos_modelo,
  method     = "xgbTree",
  trControl  = control_cv,  # allowParallel = TRUE ya está configurado
  tuneLength = 10,          # Explorar 10 combinaciones
  verbose    = FALSE,
  # Parámetros específicos de XGBoost para paralelización
  nthread    = n_cores      # Usar todos los cores disponibles
)

print("=== Modelo XGBoost ===")
[1] "=== Modelo XGBoost ==="
print(modelo_xgb_cv)
eXtreme Gradient Boosting 

1689 samples
   5 predictor

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 1519, 1520, 1522, 1520, 1519, 1520, ... 
Resampling results across tuning parameters:

  eta  max_depth  colsample_bytree  subsample  nrounds  RMSE       Rsquared 
  0.3   1         0.6               0.5000000   50      0.5073034  0.6460192
  0.3   1         0.6               0.5000000  100      0.5002547  0.6544065
  0.3   1         0.6               0.5000000  150      0.5011930  0.6537121
  0.3   1         0.6               0.5000000  200      0.4971854  0.6589928
  0.3   1         0.6               0.5000000  250      0.5017181  0.6528528
  0.3   1         0.6               0.5000000  300      0.5010562  0.6542530
  0.3   1         0.6               0.5000000  350      0.5023623  0.6530536
  0.3   1         0.6               0.5000000  400      0.5011538  0.6543470
  0.3   1         0.6               0.5000000  450      0.5027865  0.6520239
  0.3   1         0.6               0.5000000  500      0.5043940  0.6509050
  0.3   1         0.6               0.5555556   50      0.5030188  0.6522604
  0.3   1         0.6               0.5555556  100      0.4936936  0.6626644
  0.3   1         0.6               0.5555556  150      0.4978855  0.6574428
  0.3   1         0.6               0.5555556  200      0.4956540  0.6608166
  0.3   1         0.6               0.5555556  250      0.5006525  0.6538069
  0.3   1         0.6               0.5555556  300      0.5009301  0.6535579
  0.3   1         0.6               0.5555556  350      0.5000187  0.6549249
  0.3   1         0.6               0.5555556  400      0.5034390  0.6501385
  0.3   1         0.6               0.5555556  450      0.5031807  0.6509888
  0.3   1         0.6               0.5555556  500      0.5059929  0.6476991
  0.3   1         0.6               0.6111111   50      0.5046962  0.6503603
  0.3   1         0.6               0.6111111  100      0.4983607  0.6572605
  0.3   1         0.6               0.6111111  150      0.4974998  0.6583019
  0.3   1         0.6               0.6111111  200      0.4998101  0.6551635
  0.3   1         0.6               0.6111111  250      0.4990730  0.6564492
  0.3   1         0.6               0.6111111  300      0.5024083  0.6521672
  0.3   1         0.6               0.6111111  350      0.5027806  0.6518042
  0.3   1         0.6               0.6111111  400      0.5084000  0.6442372
  0.3   1         0.6               0.6111111  450      0.5038603  0.6502673
  0.3   1         0.6               0.6111111  500      0.5076534  0.6456088
  0.3   1         0.6               0.6666667   50      0.5046666  0.6502518
  0.3   1         0.6               0.6666667  100      0.4967951  0.6588428
  0.3   1         0.6               0.6666667  150      0.4940987  0.6627292
  0.3   1         0.6               0.6666667  200      0.4968959  0.6588606
  0.3   1         0.6               0.6666667  250      0.4986819  0.6568994
  0.3   1         0.6               0.6666667  300      0.5028874  0.6513888
  0.3   1         0.6               0.6666667  350      0.5027741  0.6515172
  0.3   1         0.6               0.6666667  400      0.5050512  0.6489871
  0.3   1         0.6               0.6666667  450      0.5042977  0.6496751
  0.3   1         0.6               0.6666667  500      0.5065662  0.6465921
  0.3   1         0.6               0.7222222   50      0.5030977  0.6531826
  0.3   1         0.6               0.7222222  100      0.4997385  0.6550232
  0.3   1         0.6               0.7222222  150      0.4984274  0.6566782
  0.3   1         0.6               0.7222222  200      0.5006583  0.6541216
  0.3   1         0.6               0.7222222  250      0.4991330  0.6561763
  0.3   1         0.6               0.7222222  300      0.5006512  0.6544211
  0.3   1         0.6               0.7222222  350      0.5028240  0.6516478
  0.3   1         0.6               0.7222222  400      0.5039734  0.6501339
  0.3   1         0.6               0.7222222  450      0.5055192  0.6478468
  0.3   1         0.6               0.7222222  500      0.5054897  0.6478503
  0.3   1         0.6               0.7777778   50      0.5046597  0.6515085
  0.3   1         0.6               0.7777778  100      0.4996684  0.6548028
  0.3   1         0.6               0.7777778  150      0.5011174  0.6533121
  0.3   1         0.6               0.7777778  200      0.4981400  0.6575574
  0.3   1         0.6               0.7777778  250      0.4996529  0.6557188
  0.3   1         0.6               0.7777778  300      0.5004205  0.6542447
  0.3   1         0.6               0.7777778  350      0.5013412  0.6534394
  0.3   1         0.6               0.7777778  400      0.5030001  0.6513944
  0.3   1         0.6               0.7777778  450      0.5028442  0.6514589
  0.3   1         0.6               0.7777778  500      0.5042177  0.6496899
  0.3   1         0.6               0.8333333   50      0.5035351  0.6532705
  0.3   1         0.6               0.8333333  100      0.4942483  0.6631116
  0.3   1         0.6               0.8333333  150      0.4935198  0.6639638
  0.3   1         0.6               0.8333333  200      0.4949417  0.6622841
  0.3   1         0.6               0.8333333  250      0.4982459  0.6577869
  0.3   1         0.6               0.8333333  300      0.4974151  0.6590512
  0.3   1         0.6               0.8333333  350      0.5002947  0.6551968
  0.3   1         0.6               0.8333333  400      0.5017970  0.6531780
  0.3   1         0.6               0.8333333  450      0.5011420  0.6538782
  0.3   1         0.6               0.8333333  500      0.5033214  0.6513535
  0.3   1         0.6               0.8888889   50      0.5049143  0.6503729
  0.3   1         0.6               0.8888889  100      0.4946415  0.6618157
  0.3   1         0.6               0.8888889  150      0.4952945  0.6612571
  0.3   1         0.6               0.8888889  200      0.4963494  0.6599098
  0.3   1         0.6               0.8888889  250      0.4983919  0.6574225
  0.3   1         0.6               0.8888889  300      0.5002080  0.6549875
  0.3   1         0.6               0.8888889  350      0.5009780  0.6542454
  0.3   1         0.6               0.8888889  400      0.5032999  0.6513411
  0.3   1         0.6               0.8888889  450      0.5025896  0.6524113
  0.3   1         0.6               0.8888889  500      0.5045820  0.6500624
  0.3   1         0.6               0.9444444   50      0.5040204  0.6520452
  0.3   1         0.6               0.9444444  100      0.4969852  0.6590870
  0.3   1         0.6               0.9444444  150      0.4949640  0.6615030
  0.3   1         0.6               0.9444444  200      0.4956577  0.6609253
  0.3   1         0.6               0.9444444  250      0.4954221  0.6614836
  0.3   1         0.6               0.9444444  300      0.4976829  0.6583998
  0.3   1         0.6               0.9444444  350      0.4989744  0.6567875
  0.3   1         0.6               0.9444444  400      0.4996293  0.6560213
  0.3   1         0.6               0.9444444  450      0.5003542  0.6550763
  0.3   1         0.6               0.9444444  500      0.5010068  0.6543336
  0.3   1         0.6               1.0000000   50      0.5021826  0.6555502
  0.3   1         0.6               1.0000000  100      0.4934465  0.6640351
  0.3   1         0.6               1.0000000  150      0.4936625  0.6634570
  0.3   1         0.6               1.0000000  200      0.4935665  0.6636562
  0.3   1         0.6               1.0000000  250      0.4937785  0.6633312
  0.3   1         0.6               1.0000000  300      0.4924217  0.6653970
  0.3   1         0.6               1.0000000  350      0.4931365  0.6645364
  0.3   1         0.6               1.0000000  400      0.4932608  0.6644970
  0.3   1         0.6               1.0000000  450      0.4941712  0.6633982
  0.3   1         0.6               1.0000000  500      0.4945199  0.6631587
  0.3   1         0.8               0.5000000   50      0.5036421  0.6497620
  0.3   1         0.8               0.5000000  100      0.4959755  0.6599730
  0.3   1         0.8               0.5000000  150      0.4977695  0.6578924
  0.3   1         0.8               0.5000000  200      0.5027675  0.6520151
  0.3   1         0.8               0.5000000  250      0.4994728  0.6565206
  0.3   1         0.8               0.5000000  300      0.5007394  0.6545074
  0.3   1         0.8               0.5000000  350      0.5011591  0.6543820
  0.3   1         0.8               0.5000000  400      0.5053422  0.6487010
  0.3   1         0.8               0.5000000  450      0.5077913  0.6454542
  0.3   1         0.8               0.5000000  500      0.5050387  0.6498717
  0.3   1         0.8               0.5555556   50      0.5039326  0.6496611
  0.3   1         0.8               0.5555556  100      0.4993366  0.6552477
  0.3   1         0.8               0.5555556  150      0.5016268  0.6528868
  0.3   1         0.8               0.5555556  200      0.5009608  0.6536074
  0.3   1         0.8               0.5555556  250      0.4994249  0.6564687
  0.3   1         0.8               0.5555556  300      0.5040132  0.6502396
  0.3   1         0.8               0.5555556  350      0.5048064  0.6487972
  0.3   1         0.8               0.5555556  400      0.5104348  0.6420375
  0.3   1         0.8               0.5555556  450      0.5091488  0.6440950
  0.3   1         0.8               0.5555556  500      0.5086973  0.6434427
  0.3   1         0.8               0.6111111   50      0.5035046  0.6510405
  0.3   1         0.8               0.6111111  100      0.5026700  0.6507790
  0.3   1         0.8               0.6111111  150      0.5006427  0.6537367
  0.3   1         0.8               0.6111111  200      0.5012255  0.6529475
  0.3   1         0.8               0.6111111  250      0.5035319  0.6504080
  0.3   1         0.8               0.6111111  300      0.5034999  0.6499951
  0.3   1         0.8               0.6111111  350      0.5063167  0.6471050
  0.3   1         0.8               0.6111111  400      0.5087648  0.6432656
  0.3   1         0.8               0.6111111  450      0.5078335  0.6451929
  0.3   1         0.8               0.6111111  500      0.5091445  0.6432802
  0.3   1         0.8               0.6666667   50      0.5065677  0.6471772
  0.3   1         0.8               0.6666667  100      0.5024328  0.6509409
  0.3   1         0.8               0.6666667  150      0.5029652  0.6503323
  0.3   1         0.8               0.6666667  200      0.5044089  0.6486173
  0.3   1         0.8               0.6666667  250      0.5037283  0.6498888
  0.3   1         0.8               0.6666667  300      0.5060686  0.6467530
  0.3   1         0.8               0.6666667  350      0.5088299  0.6434272
  0.3   1         0.8               0.6666667  400      0.5066671  0.6463600
  0.3   1         0.8               0.6666667  450      0.5042138  0.6496996
  0.3   1         0.8               0.6666667  500      0.5072204  0.6454692
  0.3   1         0.8               0.7222222   50      0.5021670  0.6537276
  0.3   1         0.8               0.7222222  100      0.4968638  0.6591076
  0.3   1         0.8               0.7222222  150      0.4972301  0.6589622
  0.3   1         0.8               0.7222222  200      0.4970271  0.6593987
  0.3   1         0.8               0.7222222  250      0.5007344  0.6542546
  0.3   1         0.8               0.7222222  300      0.5007479  0.6545635
  0.3   1         0.8               0.7222222  350      0.5035963  0.6508525
  0.3   1         0.8               0.7222222  400      0.5023724  0.6522442
  0.3   1         0.8               0.7222222  450      0.5033709  0.6514497
  0.3   1         0.8               0.7222222  500      0.5059626  0.6478958
  0.3   1         0.8               0.7777778   50      0.5022004  0.6535458
  0.3   1         0.8               0.7777778  100      0.4971032  0.6585419
  0.3   1         0.8               0.7777778  150      0.5011936  0.6534144
  0.3   1         0.8               0.7777778  200      0.5007562  0.6540465
  0.3   1         0.8               0.7777778  250      0.5027045  0.6519654
  0.3   1         0.8               0.7777778  300      0.5045687  0.6493073
  0.3   1         0.8               0.7777778  350      0.5068965  0.6464485
  0.3   1         0.8               0.7777778  400      0.5090371  0.6439022
  0.3   1         0.8               0.7777778  450      0.5073807  0.6459198
  0.3   1         0.8               0.7777778  500      0.5110932  0.6410084
  0.3   1         0.8               0.8333333   50      0.5054847  0.6496645
  0.3   1         0.8               0.8333333  100      0.4979696  0.6581690
  0.3   1         0.8               0.8333333  150      0.4992181  0.6563239
  0.3   1         0.8               0.8333333  200      0.5007849  0.6543680
  0.3   1         0.8               0.8333333  250      0.5040482  0.6502055
  0.3   1         0.8               0.8333333  300      0.5038846  0.6504950
  0.3   1         0.8               0.8333333  350      0.5040278  0.6503859
  0.3   1         0.8               0.8333333  400      0.5052505  0.6487872
  0.3   1         0.8               0.8333333  450      0.5070543  0.6468684
  0.3   1         0.8               0.8333333  500      0.5086697  0.6444703
  0.3   1         0.8               0.8888889   50      0.5004479  0.6570208
  0.3   1         0.8               0.8888889  100      0.4939010  0.6631739
  0.3   1         0.8               0.8888889  150      0.4950447  0.6613207
  0.3   1         0.8               0.8888889  200      0.4959057  0.6609604
  0.3   1         0.8               0.8888889  250      0.4969332  0.6598184
  0.3   1         0.8               0.8888889  300      0.4992517  0.6565432
  0.3   1         0.8               0.8888889  350      0.5003752  0.6551746
  0.3   1         0.8               0.8888889  400      0.5009791  0.6542574
  0.3   1         0.8               0.8888889  450      0.5021984  0.6527513
  0.3   1         0.8               0.8888889  500      0.5036157  0.6513760
  0.3   1         0.8               0.9444444   50      0.5028723  0.6527452
  0.3   1         0.8               0.9444444  100      0.4966479  0.6592715
  0.3   1         0.8               0.9444444  150      0.4960394  0.6601273
  0.3   1         0.8               0.9444444  200      0.4965833  0.6596381
  0.3   1         0.8               0.9444444  250      0.4978122  0.6581062
  0.3   1         0.8               0.9444444  300      0.5012329  0.6538755
  0.3   1         0.8               0.9444444  350      0.5015983  0.6534779
  0.3   1         0.8               0.9444444  400      0.5021463  0.6529908
  0.3   1         0.8               0.9444444  450      0.5044543  0.6500630
  0.3   1         0.8               0.9444444  500      0.5041858  0.6505218
  0.3   1         0.8               1.0000000   50      0.5021882  0.6542868
  0.3   1         0.8               1.0000000  100      0.4945090  0.6624606
  0.3   1         0.8               1.0000000  150      0.4933263  0.6638377
  0.3   1         0.8               1.0000000  200      0.4917995  0.6659219
  0.3   1         0.8               1.0000000  250      0.4909481  0.6671782
  0.3   1         0.8               1.0000000  300      0.4911116  0.6670982
  0.3   1         0.8               1.0000000  350      0.4910231  0.6673462
  0.3   1         0.8               1.0000000  400      0.4921941  0.6658907
  0.3   1         0.8               1.0000000  450      0.4927726  0.6652287
  0.3   1         0.8               1.0000000  500      0.4931082  0.6648122
  0.3   2         0.6               0.5000000   50      0.4652472  0.7009174
  0.3   2         0.6               0.5000000  100      0.4490383  0.7213385
  0.3   2         0.6               0.5000000  150      0.4436433  0.7276974
  0.3   2         0.6               0.5000000  200      0.4400770  0.7318689
  0.3   2         0.6               0.5000000  250      0.4410677  0.7306819
  0.3   2         0.6               0.5000000  300      0.4416726  0.7301482
  0.3   2         0.6               0.5000000  350      0.4435337  0.7275644
  0.3   2         0.6               0.5000000  400      0.4452443  0.7258325
  0.3   2         0.6               0.5000000  450      0.4471452  0.7239563
  0.3   2         0.6               0.5000000  500      0.4486058  0.7224465
  0.3   2         0.6               0.5555556   50      0.4663809  0.7002620
  0.3   2         0.6               0.5555556  100      0.4533869  0.7158362
  0.3   2         0.6               0.5555556  150      0.4503478  0.7192779
  0.3   2         0.6               0.5555556  200      0.4466616  0.7243988
  0.3   2         0.6               0.5555556  250      0.4449830  0.7266738
  0.3   2         0.6               0.5555556  300      0.4439375  0.7276164
  0.3   2         0.6               0.5555556  350      0.4459941  0.7254323
  0.3   2         0.6               0.5555556  400      0.4453614  0.7260400
  0.3   2         0.6               0.5555556  450      0.4470151  0.7243071
  0.3   2         0.6               0.5555556  500      0.4485363  0.7226980
  0.3   2         0.6               0.6111111   50      0.4678850  0.6977140
  0.3   2         0.6               0.6111111  100      0.4553562  0.7129638
  0.3   2         0.6               0.6111111  150      0.4517462  0.7177525
  0.3   2         0.6               0.6111111  200      0.4493271  0.7209004
  0.3   2         0.6               0.6111111  250      0.4481754  0.7225004
  0.3   2         0.6               0.6111111  300      0.4481828  0.7224635
  0.3   2         0.6               0.6111111  350      0.4475859  0.7233885
  0.3   2         0.6               0.6111111  400      0.4507072  0.7202330
  0.3   2         0.6               0.6111111  450      0.4525549  0.7181513
  0.3   2         0.6               0.6111111  500      0.4538235  0.7169199
  0.3   2         0.6               0.6666667   50      0.4615966  0.7060530
  0.3   2         0.6               0.6666667  100      0.4477640  0.7228930
  0.3   2         0.6               0.6666667  150      0.4432884  0.7283625
  0.3   2         0.6               0.6666667  200      0.4438803  0.7274356
  0.3   2         0.6               0.6666667  250      0.4461259  0.7253506
  0.3   2         0.6               0.6666667  300      0.4456771  0.7255785
  0.3   2         0.6               0.6666667  350      0.4478885  0.7231083
  0.3   2         0.6               0.6666667  400      0.4479832  0.7230674
  0.3   2         0.6               0.6666667  450      0.4476331  0.7234818
  0.3   2         0.6               0.6666667  500      0.4513630  0.7194735
  0.3   2         0.6               0.7222222   50      0.4556480  0.7134687
  0.3   2         0.6               0.7222222  100      0.4428283  0.7285542
  0.3   2         0.6               0.7222222  150      0.4407839  0.7309368
  0.3   2         0.6               0.7222222  200      0.4407865  0.7308853
  0.3   2         0.6               0.7222222  250      0.4412387  0.7306883
  0.3   2         0.6               0.7222222  300      0.4414213  0.7307367
  0.3   2         0.6               0.7222222  350      0.4409279  0.7314496
  0.3   2         0.6               0.7222222  400      0.4426021  0.7295699
  0.3   2         0.6               0.7222222  450      0.4438740  0.7280551
  0.3   2         0.6               0.7222222  500      0.4428470  0.7293146
  0.3   2         0.6               0.7777778   50      0.4662000  0.7002628
  0.3   2         0.6               0.7777778  100      0.4528558  0.7164036
  0.3   2         0.6               0.7777778  150      0.4490714  0.7213815
  0.3   2         0.6               0.7777778  200      0.4480742  0.7227826
  0.3   2         0.6               0.7777778  250      0.4468310  0.7241217
  0.3   2         0.6               0.7777778  300      0.4456262  0.7256555
  0.3   2         0.6               0.7777778  350      0.4469933  0.7243274
  0.3   2         0.6               0.7777778  400      0.4475740  0.7238610
  0.3   2         0.6               0.7777778  450      0.4500189  0.7210621
  0.3   2         0.6               0.7777778  500      0.4490477  0.7222731
  0.3   2         0.6               0.8333333   50      0.4580749  0.7101696
  0.3   2         0.6               0.8333333  100      0.4500213  0.7201263
  0.3   2         0.6               0.8333333  150      0.4474906  0.7230003
  0.3   2         0.6               0.8333333  200      0.4479463  0.7222092
  0.3   2         0.6               0.8333333  250      0.4475698  0.7230110
  0.3   2         0.6               0.8333333  300      0.4468873  0.7237792
  0.3   2         0.6               0.8333333  350      0.4473507  0.7234260
  0.3   2         0.6               0.8333333  400      0.4487429  0.7217204
  0.3   2         0.6               0.8333333  450      0.4492767  0.7211502
  0.3   2         0.6               0.8333333  500      0.4487019  0.7221698
  0.3   2         0.6               0.8888889   50      0.4558137  0.7135333
  0.3   2         0.6               0.8888889  100      0.4451070  0.7258107
  0.3   2         0.6               0.8888889  150      0.4421982  0.7292365
  0.3   2         0.6               0.8888889  200      0.4438868  0.7272003
  0.3   2         0.6               0.8888889  250      0.4437452  0.7276175
  0.3   2         0.6               0.8888889  300      0.4445336  0.7268323
  0.3   2         0.6               0.8888889  350      0.4464163  0.7246363
  0.3   2         0.6               0.8888889  400      0.4475876  0.7232463
  0.3   2         0.6               0.8888889  450      0.4480651  0.7226525
  0.3   2         0.6               0.8888889  500      0.4502413  0.7201363
  0.3   2         0.6               0.9444444   50      0.4587448  0.7094412
  0.3   2         0.6               0.9444444  100      0.4476587  0.7223586
  0.3   2         0.6               0.9444444  150      0.4456864  0.7247746
  0.3   2         0.6               0.9444444  200      0.4459347  0.7245777
  0.3   2         0.6               0.9444444  250      0.4450500  0.7257438
  0.3   2         0.6               0.9444444  300      0.4447610  0.7262872
  0.3   2         0.6               0.9444444  350      0.4466036  0.7242712
  0.3   2         0.6               0.9444444  400      0.4482492  0.7224587
  0.3   2         0.6               0.9444444  450      0.4486055  0.7220615
  0.3   2         0.6               0.9444444  500      0.4499890  0.7205377
  0.3   2         0.6               1.0000000   50      0.4541227  0.7159219
  0.3   2         0.6               1.0000000  100      0.4463733  0.7246601
  0.3   2         0.6               1.0000000  150      0.4456396  0.7249642
  0.3   2         0.6               1.0000000  200      0.4454988  0.7252853
  0.3   2         0.6               1.0000000  250      0.4455220  0.7254534
  0.3   2         0.6               1.0000000  300      0.4476216  0.7228824
  0.3   2         0.6               1.0000000  350      0.4489648  0.7215064
  0.3   2         0.6               1.0000000  400      0.4496861  0.7208118
  0.3   2         0.6               1.0000000  450      0.4508437  0.7194394
  0.3   2         0.6               1.0000000  500      0.4514755  0.7188358
  0.3   2         0.8               0.5000000   50      0.4563776  0.7124807
  0.3   2         0.8               0.5000000  100      0.4463456  0.7244967
  0.3   2         0.8               0.5000000  150      0.4420877  0.7294336
  0.3   2         0.8               0.5000000  200      0.4397640  0.7318749
  0.3   2         0.8               0.5000000  250      0.4415944  0.7299135
  0.3   2         0.8               0.5000000  300      0.4417812  0.7296849
  0.3   2         0.8               0.5000000  350      0.4436393  0.7274099
  0.3   2         0.8               0.5000000  400      0.4448871  0.7263524
  0.3   2         0.8               0.5000000  450      0.4457782  0.7255744
  0.3   2         0.8               0.5000000  500      0.4479839  0.7230755
  0.3   2         0.8               0.5555556   50      0.4577329  0.7103873
  0.3   2         0.8               0.5555556  100      0.4484186  0.7218206
  0.3   2         0.8               0.5555556  150      0.4475331  0.7231301
  0.3   2         0.8               0.5555556  200      0.4471745  0.7233795
  0.3   2         0.8               0.5555556  250      0.4466536  0.7240493
  0.3   2         0.8               0.5555556  300      0.4480836  0.7224876
  0.3   2         0.8               0.5555556  350      0.4464097  0.7243558
  0.3   2         0.8               0.5555556  400      0.4524281  0.7177146
  0.3   2         0.8               0.5555556  450      0.4524877  0.7179254
  0.3   2         0.8               0.5555556  500      0.4525934  0.7176903
  0.3   2         0.8               0.6111111   50      0.4517960  0.7184645
  0.3   2         0.8               0.6111111  100      0.4453392  0.7261856
  0.3   2         0.8               0.6111111  150      0.4415704  0.7302895
  0.3   2         0.8               0.6111111  200      0.4419338  0.7300523
  0.3   2         0.8               0.6111111  250      0.4432120  0.7287553
  0.3   2         0.8               0.6111111  300      0.4432611  0.7288596
  0.3   2         0.8               0.6111111  350      0.4442374  0.7275961
  0.3   2         0.8               0.6111111  400      0.4458248  0.7258079
  0.3   2         0.8               0.6111111  450      0.4468797  0.7242599
  0.3   2         0.8               0.6111111  500      0.4480111  0.7233129
  0.3   2         0.8               0.6666667   50      0.4532879  0.7159300
  0.3   2         0.8               0.6666667  100      0.4451118  0.7257669
  0.3   2         0.8               0.6666667  150      0.4412472  0.7305648
  0.3   2         0.8               0.6666667  200      0.4425484  0.7294842
  0.3   2         0.8               0.6666667  250      0.4433972  0.7292141
  0.3   2         0.8               0.6666667  300      0.4427334  0.7299790
  0.3   2         0.8               0.6666667  350      0.4424689  0.7301337
  0.3   2         0.8               0.6666667  400      0.4456067  0.7267749
  0.3   2         0.8               0.6666667  450      0.4471147  0.7248152
  0.3   2         0.8               0.6666667  500      0.4466879  0.7253472
  0.3   2         0.8               0.7222222   50      0.4554998  0.7133046
  0.3   2         0.8               0.7222222  100      0.4471417  0.7235460
  0.3   2         0.8               0.7222222  150      0.4438045  0.7273858
  0.3   2         0.8               0.7222222  200      0.4441211  0.7272017
  0.3   2         0.8               0.7222222  250      0.4433536  0.7280255
  0.3   2         0.8               0.7222222  300      0.4443748  0.7272726
  0.3   2         0.8               0.7222222  350      0.4437261  0.7280784
  0.3   2         0.8               0.7222222  400      0.4436639  0.7279653
  0.3   2         0.8               0.7222222  450      0.4459597  0.7253901
  0.3   2         0.8               0.7222222  500      0.4474096  0.7240026
  0.3   2         0.8               0.7777778   50      0.4469923  0.7246537
  0.3   2         0.8               0.7777778  100      0.4385759  0.7347743
  0.3   2         0.8               0.7777778  150      0.4360559  0.7373690
  0.3   2         0.8               0.7777778  200      0.4357854  0.7377930
  0.3   2         0.8               0.7777778  250      0.4350538  0.7385588
  0.3   2         0.8               0.7777778  300      0.4384889  0.7346665
  0.3   2         0.8               0.7777778  350      0.4387763  0.7343803
  0.3   2         0.8               0.7777778  400      0.4401201  0.7326778
  0.3   2         0.8               0.7777778  450      0.4411646  0.7314872
  0.3   2         0.8               0.7777778  500      0.4421430  0.7305329
  0.3   2         0.8               0.8333333   50      0.4504762  0.7197381
  0.3   2         0.8               0.8333333  100      0.4424691  0.7288590
  0.3   2         0.8               0.8333333  150      0.4420541  0.7289484
  0.3   2         0.8               0.8333333  200      0.4415235  0.7300533
  0.3   2         0.8               0.8333333  250      0.4405129  0.7311010
  0.3   2         0.8               0.8333333  300      0.4419714  0.7294034
  0.3   2         0.8               0.8333333  350      0.4428516  0.7286032
  0.3   2         0.8               0.8333333  400      0.4446201  0.7266383
  0.3   2         0.8               0.8333333  450      0.4460999  0.7250664
  0.3   2         0.8               0.8333333  500      0.4473376  0.7236917
  0.3   2         0.8               0.8888889   50      0.4487801  0.7222781
  0.3   2         0.8               0.8888889  100      0.4396066  0.7326319
  0.3   2         0.8               0.8888889  150      0.4398859  0.7318133
  0.3   2         0.8               0.8888889  200      0.4419355  0.7294417
  0.3   2         0.8               0.8888889  250      0.4417906  0.7296620
  0.3   2         0.8               0.8888889  300      0.4427189  0.7287300
  0.3   2         0.8               0.8888889  350      0.4439084  0.7275208
  0.3   2         0.8               0.8888889  400      0.4438298  0.7277266
  0.3   2         0.8               0.8888889  450      0.4444086  0.7272048
  0.3   2         0.8               0.8888889  500      0.4458647  0.7252608
  0.3   2         0.8               0.9444444   50      0.4476264  0.7237252
  0.3   2         0.8               0.9444444  100      0.4425440  0.7293728
  0.3   2         0.8               0.9444444  150      0.4423052  0.7294407
  0.3   2         0.8               0.9444444  200      0.4441357  0.7274531
  0.3   2         0.8               0.9444444  250      0.4455812  0.7259424
  0.3   2         0.8               0.9444444  300      0.4475133  0.7238531
  0.3   2         0.8               0.9444444  350      0.4484382  0.7229094
  0.3   2         0.8               0.9444444  400      0.4494233  0.7219180
  0.3   2         0.8               0.9444444  450      0.4505109  0.7203504
  0.3   2         0.8               0.9444444  500      0.4510396  0.7199494
  0.3   2         0.8               1.0000000   50      0.4408913  0.7319107
  0.3   2         0.8               1.0000000  100      0.4384787  0.7337162
  0.3   2         0.8               1.0000000  150      0.4386145  0.7333317
  0.3   2         0.8               1.0000000  200      0.4413249  0.7301599
  0.3   2         0.8               1.0000000  250      0.4433118  0.7277988
  0.3   2         0.8               1.0000000  300      0.4467742  0.7237824
  0.3   2         0.8               1.0000000  350      0.4481322  0.7221813
  0.3   2         0.8               1.0000000  400      0.4502136  0.7198508
  0.3   2         0.8               1.0000000  450      0.4525144  0.7173413
  0.3   2         0.8               1.0000000  500      0.4534121  0.7164499
  0.3   3         0.6               0.5000000   50      0.4459820  0.7246577
  0.3   3         0.6               0.5000000  100      0.4402099  0.7318917
  0.3   3         0.6               0.5000000  150      0.4424061  0.7295021
  0.3   3         0.6               0.5000000  200      0.4492573  0.7226050
  0.3   3         0.6               0.5000000  250      0.4501285  0.7215635
  0.3   3         0.6               0.5000000  300      0.4530391  0.7188511
  0.3   3         0.6               0.5000000  350      0.4541150  0.7174009
  0.3   3         0.6               0.5000000  400      0.4563458  0.7149936
  0.3   3         0.6               0.5000000  450      0.4610222  0.7099126
  0.3   3         0.6               0.5000000  500      0.4624347  0.7086361
  0.3   3         0.6               0.5555556   50      0.4408461  0.7314330
  0.3   3         0.6               0.5555556  100      0.4366480  0.7361186
  0.3   3         0.6               0.5555556  150      0.4415107  0.7308438
  0.3   3         0.6               0.5555556  200      0.4436567  0.7285615
  0.3   3         0.6               0.5555556  250      0.4473918  0.7245007
  0.3   3         0.6               0.5555556  300      0.4498647  0.7216285
  0.3   3         0.6               0.5555556  350      0.4541617  0.7174464
  0.3   3         0.6               0.5555556  400      0.4575192  0.7138521
  0.3   3         0.6               0.5555556  450      0.4587327  0.7118804
  0.3   3         0.6               0.5555556  500      0.4619703  0.7084859
  0.3   3         0.6               0.6111111   50      0.4463201  0.7238742
  0.3   3         0.6               0.6111111  100      0.4386258  0.7328778
  0.3   3         0.6               0.6111111  150      0.4384991  0.7334857
  0.3   3         0.6               0.6111111  200      0.4409608  0.7308880
  0.3   3         0.6               0.6111111  250      0.4436904  0.7279058
  0.3   3         0.6               0.6111111  300      0.4472572  0.7240929
  0.3   3         0.6               0.6111111  350      0.4496503  0.7222186
  0.3   3         0.6               0.6111111  400      0.4527844  0.7181667
  0.3   3         0.6               0.6111111  450      0.4546088  0.7157461
  0.3   3         0.6               0.6111111  500      0.4572548  0.7130857
  0.3   3         0.6               0.6666667   50      0.4431329  0.7286021
  0.3   3         0.6               0.6666667  100      0.4407361  0.7314432
  0.3   3         0.6               0.6666667  150      0.4443051  0.7271197
  0.3   3         0.6               0.6666667  200      0.4471105  0.7242379
  0.3   3         0.6               0.6666667  250      0.4516221  0.7194139
  0.3   3         0.6               0.6666667  300      0.4511108  0.7203367
  0.3   3         0.6               0.6666667  350      0.4542325  0.7172052
  0.3   3         0.6               0.6666667  400      0.4579060  0.7129908
  0.3   3         0.6               0.6666667  450      0.4572443  0.7142906
  0.3   3         0.6               0.6666667  500      0.4597216  0.7112607
  0.3   3         0.6               0.7222222   50      0.4455223  0.7252181
  0.3   3         0.6               0.7222222  100      0.4426747  0.7284596
  0.3   3         0.6               0.7222222  150      0.4459090  0.7248305
  0.3   3         0.6               0.7222222  200      0.4462730  0.7246222
  0.3   3         0.6               0.7222222  250      0.4485590  0.7223561
  0.3   3         0.6               0.7222222  300      0.4535795  0.7164410
  0.3   3         0.6               0.7222222  350      0.4561863  0.7136291
  0.3   3         0.6               0.7222222  400      0.4577577  0.7118778
  0.3   3         0.6               0.7222222  450      0.4601294  0.7093410
  0.3   3         0.6               0.7222222  500      0.4605044  0.7094799
  0.3   3         0.6               0.7777778   50      0.4465638  0.7231866
  0.3   3         0.6               0.7777778  100      0.4421595  0.7289496
  0.3   3         0.6               0.7777778  150      0.4430380  0.7282950
  0.3   3         0.6               0.7777778  200      0.4458574  0.7254696
  0.3   3         0.6               0.7777778  250      0.4471305  0.7244700
  0.3   3         0.6               0.7777778  300      0.4493127  0.7222938
  0.3   3         0.6               0.7777778  350      0.4528681  0.7184627
  0.3   3         0.6               0.7777778  400      0.4571533  0.7135094
  0.3   3         0.6               0.7777778  450      0.4598076  0.7107840
  0.3   3         0.6               0.7777778  500      0.4613299  0.7092194
  0.3   3         0.6               0.8333333   50      0.4442680  0.7270113
  0.3   3         0.6               0.8333333  100      0.4441932  0.7269425
  0.3   3         0.6               0.8333333  150      0.4428245  0.7288026
  0.3   3         0.6               0.8333333  200      0.4485888  0.7228078
  0.3   3         0.6               0.8333333  250      0.4509876  0.7204641
  0.3   3         0.6               0.8333333  300      0.4553685  0.7158435
  0.3   3         0.6               0.8333333  350      0.4606832  0.7097322
  0.3   3         0.6               0.8333333  400      0.4610580  0.7096575
  0.3   3         0.6               0.8333333  450      0.4658457  0.7044277
  0.3   3         0.6               0.8333333  500      0.4671998  0.7033682
  0.3   3         0.6               0.8888889   50      0.4471648  0.7234258
  0.3   3         0.6               0.8888889  100      0.4417555  0.7294633
  0.3   3         0.6               0.8888889  150      0.4424363  0.7289162
  0.3   3         0.6               0.8888889  200      0.4470165  0.7238152
  0.3   3         0.6               0.8888889  250      0.4503587  0.7201262
  0.3   3         0.6               0.8888889  300      0.4530616  0.7173613
  0.3   3         0.6               0.8888889  350      0.4547572  0.7158244
  0.3   3         0.6               0.8888889  400      0.4582254  0.7120127
  0.3   3         0.6               0.8888889  450      0.4603896  0.7096606
  0.3   3         0.6               0.8888889  500      0.4631240  0.7069513
  0.3   3         0.6               0.9444444   50      0.4363091  0.7358947
  0.3   3         0.6               0.9444444  100      0.4357651  0.7364285
  0.3   3         0.6               0.9444444  150      0.4345905  0.7383689
  0.3   3         0.6               0.9444444  200      0.4368278  0.7361110
  0.3   3         0.6               0.9444444  250      0.4403880  0.7322311
  0.3   3         0.6               0.9444444  300      0.4440766  0.7279010
  0.3   3         0.6               0.9444444  350      0.4469643  0.7246578
  0.3   3         0.6               0.9444444  400      0.4496936  0.7217822
  0.3   3         0.6               0.9444444  450      0.4527559  0.7183827
  0.3   3         0.6               0.9444444  500      0.4556140  0.7152816
  0.3   3         0.6               1.0000000   50      0.4384945  0.7336704
  0.3   3         0.6               1.0000000  100      0.4423479  0.7294906
  0.3   3         0.6               1.0000000  150      0.4443926  0.7272000
  0.3   3         0.6               1.0000000  200      0.4475046  0.7238328
  0.3   3         0.6               1.0000000  250      0.4477854  0.7237061
  0.3   3         0.6               1.0000000  300      0.4506392  0.7208719
  0.3   3         0.6               1.0000000  350      0.4538163  0.7173478
  0.3   3         0.6               1.0000000  400      0.4573590  0.7136227
  0.3   3         0.6               1.0000000  450      0.4595505  0.7112976
  0.3   3         0.6               1.0000000  500      0.4620645  0.7086746
  0.3   3         0.8               0.5000000   50      0.4404389  0.7317037
  0.3   3         0.8               0.5000000  100      0.4404779  0.7324566
  0.3   3         0.8               0.5000000  150      0.4450752  0.7269461
  0.3   3         0.8               0.5000000  200      0.4482617  0.7233751
  0.3   3         0.8               0.5000000  250      0.4512359  0.7204826
  0.3   3         0.8               0.5000000  300      0.4589092  0.7117692
  0.3   3         0.8               0.5000000  350      0.4590518  0.7126397
  0.3   3         0.8               0.5000000  400      0.4602090  0.7108290
  0.3   3         0.8               0.5000000  450      0.4664223  0.7040218
  0.3   3         0.8               0.5000000  500      0.4681853  0.7024465
  0.3   3         0.8               0.5555556   50      0.4442983  0.7264494
  0.3   3         0.8               0.5555556  100      0.4426750  0.7294270
  0.3   3         0.8               0.5555556  150      0.4443545  0.7274955
  0.3   3         0.8               0.5555556  200      0.4503303  0.7208978
  0.3   3         0.8               0.5555556  250      0.4520141  0.7192734
  0.3   3         0.8               0.5555556  300      0.4519873  0.7195367
  0.3   3         0.8               0.5555556  350      0.4549826  0.7165881
  0.3   3         0.8               0.5555556  400      0.4565150  0.7149448
  0.3   3         0.8               0.5555556  450      0.4585258  0.7128344
  0.3   3         0.8               0.5555556  500      0.4628275  0.7085936
  0.3   3         0.8               0.6111111   50      0.4411619  0.7309021
  0.3   3         0.8               0.6111111  100      0.4419708  0.7301589
  0.3   3         0.8               0.6111111  150      0.4444240  0.7276033
  0.3   3         0.8               0.6111111  200      0.4456119  0.7269165
  0.3   3         0.8               0.6111111  250      0.4510126  0.7212437
  0.3   3         0.8               0.6111111  300      0.4561241  0.7161324
  0.3   3         0.8               0.6111111  350      0.4567688  0.7161554
  0.3   3         0.8               0.6111111  400      0.4633807  0.7086265
  0.3   3         0.8               0.6111111  450      0.4625909  0.7099235
  0.3   3         0.8               0.6111111  500      0.4648564  0.7071686
  0.3   3         0.8               0.6666667   50      0.4477720  0.7219160
  0.3   3         0.8               0.6666667  100      0.4465260  0.7242715
  0.3   3         0.8               0.6666667  150      0.4430820  0.7290411
  0.3   3         0.8               0.6666667  200      0.4467260  0.7246794
  0.3   3         0.8               0.6666667  250      0.4522646  0.7187519
  0.3   3         0.8               0.6666667  300      0.4526147  0.7189815
  0.3   3         0.8               0.6666667  350      0.4554238  0.7157227
  0.3   3         0.8               0.6666667  400      0.4579381  0.7130566
  0.3   3         0.8               0.6666667  450      0.4617123  0.7091210
  0.3   3         0.8               0.6666667  500      0.4619343  0.7088815
  0.3   3         0.8               0.7222222   50      0.4392016  0.7325821
  0.3   3         0.8               0.7222222  100      0.4356680  0.7367824
  0.3   3         0.8               0.7222222  150      0.4360623  0.7369158
  0.3   3         0.8               0.7222222  200      0.4400435  0.7326168
  0.3   3         0.8               0.7222222  250      0.4429151  0.7296016
  0.3   3         0.8               0.7222222  300      0.4472375  0.7248719
  0.3   3         0.8               0.7222222  350      0.4495565  0.7223005
  0.3   3         0.8               0.7222222  400      0.4556557  0.7154558
  0.3   3         0.8               0.7222222  450      0.4575845  0.7135409
  0.3   3         0.8               0.7222222  500      0.4612441  0.7096747
  0.3   3         0.8               0.7777778   50      0.4363382  0.7363051
  0.3   3         0.8               0.7777778  100      0.4329548  0.7407438
  0.3   3         0.8               0.7777778  150      0.4369309  0.7360328
  0.3   3         0.8               0.7777778  200      0.4420649  0.7301757
  0.3   3         0.8               0.7777778  250      0.4447705  0.7272906
  0.3   3         0.8               0.7777778  300      0.4487571  0.7229722
  0.3   3         0.8               0.7777778  350      0.4505230  0.7211456
  0.3   3         0.8               0.7777778  400      0.4551452  0.7166086
  0.3   3         0.8               0.7777778  450      0.4592092  0.7117421
  0.3   3         0.8               0.7777778  500      0.4606627  0.7104845
  0.3   3         0.8               0.8333333   50      0.4365614  0.7354710
  0.3   3         0.8               0.8333333  100      0.4409997  0.7304576
  0.3   3         0.8               0.8333333  150      0.4461269  0.7249207
  0.3   3         0.8               0.8333333  200      0.4496043  0.7211488
  0.3   3         0.8               0.8333333  250      0.4534262  0.7173931
  0.3   3         0.8               0.8333333  300      0.4552553  0.7157485
  0.3   3         0.8               0.8333333  350      0.4593290  0.7114494
  0.3   3         0.8               0.8333333  400      0.4615492  0.7093748
  0.3   3         0.8               0.8333333  450      0.4635245  0.7073684
  0.3   3         0.8               0.8333333  500      0.4670905  0.7039744
  0.3   3         0.8               0.8888889   50      0.4453384  0.7255230
  0.3   3         0.8               0.8888889  100      0.4446189  0.7267789
  0.3   3         0.8               0.8888889  150      0.4443164  0.7277248
  0.3   3         0.8               0.8888889  200      0.4476711  0.7240909
  0.3   3         0.8               0.8888889  250      0.4512276  0.7205271
  0.3   3         0.8               0.8888889  300      0.4549607  0.7164634
  0.3   3         0.8               0.8888889  350      0.4567652  0.7147776
  0.3   3         0.8               0.8888889  400      0.4604739  0.7109757
  0.3   3         0.8               0.8888889  450      0.4634810  0.7077827
  0.3   3         0.8               0.8888889  500      0.4662673  0.7046998
  0.3   3         0.8               0.9444444   50      0.4396924  0.7318968
  0.3   3         0.8               0.9444444  100      0.4392292  0.7328453
  0.3   3         0.8               0.9444444  150      0.4437008  0.7281493
  0.3   3         0.8               0.9444444  200      0.4484148  0.7229637
  0.3   3         0.8               0.9444444  250      0.4512351  0.7200233
  0.3   3         0.8               0.9444444  300      0.4539711  0.7172224
  0.3   3         0.8               0.9444444  350      0.4586392  0.7120129
  0.3   3         0.8               0.9444444  400      0.4609931  0.7093603
  0.3   3         0.8               0.9444444  450      0.4624280  0.7081302
  0.3   3         0.8               0.9444444  500      0.4649726  0.7054796
  0.3   3         0.8               1.0000000   50      0.4390990  0.7327318
  0.3   3         0.8               1.0000000  100      0.4381744  0.7332954
  0.3   3         0.8               1.0000000  150      0.4392597  0.7322281
  0.3   3         0.8               1.0000000  200      0.4433478  0.7280427
  0.3   3         0.8               1.0000000  250      0.4459662  0.7252837
  0.3   3         0.8               1.0000000  300      0.4482775  0.7226650
  0.3   3         0.8               1.0000000  350      0.4509043  0.7198467
  0.3   3         0.8               1.0000000  400      0.4541279  0.7163705
  0.3   3         0.8               1.0000000  450      0.4567892  0.7135268
  0.3   3         0.8               1.0000000  500      0.4592398  0.7108915
  0.3   4         0.6               0.5000000   50      0.4491261  0.7214115
  0.3   4         0.6               0.5000000  100      0.4486656  0.7229394
  0.3   4         0.6               0.5000000  150      0.4539740  0.7167187
  0.3   4         0.6               0.5000000  200      0.4570480  0.7141486
  0.3   4         0.6               0.5000000  250      0.4639454  0.7070775
  0.3   4         0.6               0.5000000  300      0.4675131  0.7039523
  0.3   4         0.6               0.5000000  350      0.4701947  0.7008117
  0.3   4         0.6               0.5000000  400      0.4769763  0.6933227
  0.3   4         0.6               0.5000000  450      0.4767831  0.6933808
  0.3   4         0.6               0.5000000  500      0.4777838  0.6929637
  0.3   4         0.6               0.5555556   50      0.4476863  0.7226494
  0.3   4         0.6               0.5555556  100      0.4419832  0.7297139
  0.3   4         0.6               0.5555556  150      0.4508424  0.7200117
  0.3   4         0.6               0.5555556  200      0.4546919  0.7157096
  0.3   4         0.6               0.5555556  250      0.4592237  0.7112404
  0.3   4         0.6               0.5555556  300      0.4626719  0.7074824
  0.3   4         0.6               0.5555556  350      0.4680312  0.7014121
  0.3   4         0.6               0.5555556  400      0.4715249  0.6979313
  0.3   4         0.6               0.5555556  450      0.4754279  0.6942324
  0.3   4         0.6               0.5555556  500      0.4773106  0.6927997
  0.3   4         0.6               0.6111111   50      0.4385449  0.7340718
  0.3   4         0.6               0.6111111  100      0.4427648  0.7297214
  0.3   4         0.6               0.6111111  150      0.4472302  0.7256526
  0.3   4         0.6               0.6111111  200      0.4523400  0.7202206
  0.3   4         0.6               0.6111111  250      0.4543043  0.7178386
  0.3   4         0.6               0.6111111  300      0.4634447  0.7083130
  0.3   4         0.6               0.6111111  350      0.4645307  0.7075211
  0.3   4         0.6               0.6111111  400      0.4696073  0.7019783
  0.3   4         0.6               0.6111111  450      0.4696888  0.7020112
  0.3   4         0.6               0.6111111  500      0.4747346  0.6966082
  0.3   4         0.6               0.6666667   50      0.4446428  0.7260821
  0.3   4         0.6               0.6666667  100      0.4450145  0.7261372
  0.3   4         0.6               0.6666667  150      0.4494888  0.7214313
  0.3   4         0.6               0.6666667  200      0.4522556  0.7186580
  0.3   4         0.6               0.6666667  250      0.4571738  0.7134683
  0.3   4         0.6               0.6666667  300      0.4632647  0.7071549
  0.3   4         0.6               0.6666667  350      0.4662753  0.7037873
  0.3   4         0.6               0.6666667  400      0.4700563  0.7000088
  0.3   4         0.6               0.6666667  450      0.4737676  0.6954939
  0.3   4         0.6               0.6666667  500      0.4756069  0.6935962
  0.3   4         0.6               0.7222222   50      0.4489659  0.7203054
  0.3   4         0.6               0.7222222  100      0.4458303  0.7247233
  0.3   4         0.6               0.7222222  150      0.4519054  0.7181515
  0.3   4         0.6               0.7222222  200      0.4565655  0.7133246
  0.3   4         0.6               0.7222222  250      0.4608290  0.7089586
  0.3   4         0.6               0.7222222  300      0.4643313  0.7051908
  0.3   4         0.6               0.7222222  350      0.4709645  0.6978391
  0.3   4         0.6               0.7222222  400      0.4746327  0.6942723
  0.3   4         0.6               0.7222222  450      0.4777265  0.6905404
  0.3   4         0.6               0.7222222  500      0.4805063  0.6879453
  0.3   4         0.6               0.7777778   50      0.4430455  0.7282575
  0.3   4         0.6               0.7777778  100      0.4452919  0.7264381
  0.3   4         0.6               0.7777778  150      0.4498815  0.7215772
  0.3   4         0.6               0.7777778  200      0.4553355  0.7157739
  0.3   4         0.6               0.7777778  250      0.4625551  0.7081014
  0.3   4         0.6               0.7777778  300      0.4656369  0.7045211
  0.3   4         0.6               0.7777778  350      0.4696289  0.7006006
  0.3   4         0.6               0.7777778  400      0.4748608  0.6950925
  0.3   4         0.6               0.7777778  450      0.4771393  0.6928030
  0.3   4         0.6               0.7777778  500      0.4816259  0.6883751
  0.3   4         0.6               0.8333333   50      0.4430395  0.7283872
  0.3   4         0.6               0.8333333  100      0.4445701  0.7270909
  0.3   4         0.6               0.8333333  150      0.4500237  0.7211377
  0.3   4         0.6               0.8333333  200      0.4531432  0.7180294
  0.3   4         0.6               0.8333333  250      0.4593832  0.7113366
  0.3   4         0.6               0.8333333  300      0.4635290  0.7072267
  0.3   4         0.6               0.8333333  350      0.4696923  0.7002462
  0.3   4         0.6               0.8333333  400      0.4744252  0.6954945
  0.3   4         0.6               0.8333333  450      0.4764477  0.6935467
  0.3   4         0.6               0.8333333  500      0.4785154  0.6914645
  0.3   4         0.6               0.8888889   50      0.4407088  0.7304407
  0.3   4         0.6               0.8888889  100      0.4427916  0.7285653
  0.3   4         0.6               0.8888889  150      0.4486321  0.7223039
  0.3   4         0.6               0.8888889  200      0.4557175  0.7149965
  0.3   4         0.6               0.8888889  250      0.4628979  0.7073775
  0.3   4         0.6               0.8888889  300      0.4675484  0.7024306
  0.3   4         0.6               0.8888889  350      0.4728505  0.6967909
  0.3   4         0.6               0.8888889  400      0.4769354  0.6923624
  0.3   4         0.6               0.8888889  450      0.4804373  0.6886762
  0.3   4         0.6               0.8888889  500      0.4843452  0.6845526
  0.3   4         0.6               0.9444444   50      0.4383257  0.7339809
  0.3   4         0.6               0.9444444  100      0.4462092  0.7254797
  0.3   4         0.6               0.9444444  150      0.4512934  0.7199680
  0.3   4         0.6               0.9444444  200      0.4563523  0.7148201
  0.3   4         0.6               0.9444444  250      0.4620842  0.7086337
  0.3   4         0.6               0.9444444  300      0.4664690  0.7040499
  0.3   4         0.6               0.9444444  350      0.4708490  0.6992941
  0.3   4         0.6               0.9444444  400      0.4747988  0.6952326
  0.3   4         0.6               0.9444444  450      0.4780520  0.6920146
  0.3   4         0.6               0.9444444  500      0.4809507  0.6895155
  0.3   4         0.6               1.0000000   50      0.4468432  0.7235841
  0.3   4         0.6               1.0000000  100      0.4510635  0.7185455
  0.3   4         0.6               1.0000000  150      0.4544135  0.7149972
  0.3   4         0.6               1.0000000  200      0.4589440  0.7101614
  0.3   4         0.6               1.0000000  250      0.4632170  0.7056657
  0.3   4         0.6               1.0000000  300      0.4671999  0.7015539
  0.3   4         0.6               1.0000000  350      0.4700215  0.6986778
  0.3   4         0.6               1.0000000  400      0.4725600  0.6959824
  0.3   4         0.6               1.0000000  450      0.4772679  0.6908789
  0.3   4         0.6               1.0000000  500      0.4792633  0.6888035
  0.3   4         0.8               0.5000000   50      0.4433368  0.7288741
  0.3   4         0.8               0.5000000  100      0.4470043  0.7259828
  0.3   4         0.8               0.5000000  150      0.4610601  0.7094625
  0.3   4         0.8               0.5000000  200      0.4688375  0.7018963
  0.3   4         0.8               0.5000000  250      0.4710910  0.7001877
  0.3   4         0.8               0.5000000  300      0.4814180  0.6899021
  0.3   4         0.8               0.5000000  350      0.4862942  0.6850875
  0.3   4         0.8               0.5000000  400      0.4891239  0.6814949
  0.3   4         0.8               0.5000000  450      0.4908944  0.6806374
  0.3   4         0.8               0.5000000  500      0.4931044  0.6780263
  0.3   4         0.8               0.5555556   50      0.4419557  0.7298653
  0.3   4         0.8               0.5555556  100      0.4474222  0.7237179
  0.3   4         0.8               0.5555556  150      0.4549361  0.7154799
  0.3   4         0.8               0.5555556  200      0.4613938  0.7086329
  0.3   4         0.8               0.5555556  250      0.4699693  0.6995291
  0.3   4         0.8               0.5555556  300      0.4718679  0.6975722
  0.3   4         0.8               0.5555556  350      0.4785682  0.6902214
  0.3   4         0.8               0.5555556  400      0.4841879  0.6842770
  0.3   4         0.8               0.5555556  450      0.4849659  0.6833517
  0.3   4         0.8               0.5555556  500      0.4880528  0.6804177
  0.3   4         0.8               0.6111111   50      0.4416127  0.7295410
  0.3   4         0.8               0.6111111  100      0.4471940  0.7243955
  0.3   4         0.8               0.6111111  150      0.4532545  0.7176980
  0.3   4         0.8               0.6111111  200      0.4643217  0.7062391
  0.3   4         0.8               0.6111111  250      0.4722326  0.6979394
  0.3   4         0.8               0.6111111  300      0.4754198  0.6942190
  0.3   4         0.8               0.6111111  350      0.4809976  0.6885133
  0.3   4         0.8               0.6111111  400      0.4836294  0.6853093
  0.3   4         0.8               0.6111111  450      0.4849329  0.6845904
  0.3   4         0.8               0.6111111  500      0.4878543  0.6818654
  0.3   4         0.8               0.6666667   50      0.4344100  0.7393952
  0.3   4         0.8               0.6666667  100      0.4453704  0.7274168
  0.3   4         0.8               0.6666667  150      0.4527019  0.7191041
  0.3   4         0.8               0.6666667  200      0.4575463  0.7147945
  0.3   4         0.8               0.6666667  250      0.4608179  0.7113816
  0.3   4         0.8               0.6666667  300      0.4652121  0.7071378
  0.3   4         0.8               0.6666667  350      0.4702421  0.7018049
  0.3   4         0.8               0.6666667  400      0.4750693  0.6971064
  0.3   4         0.8               0.6666667  450      0.4792247  0.6921357
  0.3   4         0.8               0.6666667  500      0.4826684  0.6889150
  0.3   4         0.8               0.7222222   50      0.4384010  0.7335689
  0.3   4         0.8               0.7222222  100      0.4415710  0.7305863
  0.3   4         0.8               0.7222222  150      0.4494492  0.7221530
  0.3   4         0.8               0.7222222  200      0.4540395  0.7171613
  0.3   4         0.8               0.7222222  250      0.4612670  0.7097763
  0.3   4         0.8               0.7222222  300      0.4655906  0.7047781
  0.3   4         0.8               0.7222222  350      0.4692285  0.7012283
  0.3   4         0.8               0.7222222  400      0.4735962  0.6964801
  0.3   4         0.8               0.7222222  450      0.4786813  0.6908176
  0.3   4         0.8               0.7222222  500      0.4815299  0.6877358
  0.3   4         0.8               0.7777778   50      0.4394294  0.7325654
  0.3   4         0.8               0.7777778  100      0.4483569  0.7231946
  0.3   4         0.8               0.7777778  150      0.4538244  0.7175972
  0.3   4         0.8               0.7777778  200      0.4579210  0.7136614
  0.3   4         0.8               0.7777778  250      0.4660680  0.7048093
  0.3   4         0.8               0.7777778  300      0.4716876  0.6990244
  0.3   4         0.8               0.7777778  350      0.4736549  0.6973326
  0.3   4         0.8               0.7777778  400      0.4782713  0.6930116
  0.3   4         0.8               0.7777778  450      0.4827898  0.6878173
  0.3   4         0.8               0.7777778  500      0.4862963  0.6845061
  0.3   4         0.8               0.8333333   50      0.4321019  0.7408569
  0.3   4         0.8               0.8333333  100      0.4396785  0.7330207
  0.3   4         0.8               0.8333333  150      0.4458728  0.7263021
  0.3   4         0.8               0.8333333  200      0.4519283  0.7199783
  0.3   4         0.8               0.8333333  250      0.4581082  0.7131910
  0.3   4         0.8               0.8333333  300      0.4613696  0.7097260
  0.3   4         0.8               0.8333333  350      0.4657052  0.7054555
  0.3   4         0.8               0.8333333  400      0.4703150  0.7010314
  0.3   4         0.8               0.8333333  450      0.4742640  0.6964979
  0.3   4         0.8               0.8333333  500      0.4785640  0.6918230
  0.3   4         0.8               0.8888889   50      0.4344440  0.7381107
  0.3   4         0.8               0.8888889  100      0.4379580  0.7346447
  0.3   4         0.8               0.8888889  150      0.4456384  0.7263541
  0.3   4         0.8               0.8888889  200      0.4527057  0.7190073
  0.3   4         0.8               0.8888889  250      0.4580148  0.7132421
  0.3   4         0.8               0.8888889  300      0.4620869  0.7095912
  0.3   4         0.8               0.8888889  350      0.4677948  0.7034076
  0.3   4         0.8               0.8888889  400      0.4715955  0.6994838
  0.3   4         0.8               0.8888889  450      0.4751867  0.6958733
  0.3   4         0.8               0.8888889  500      0.4771209  0.6940180
  0.3   4         0.8               0.9444444   50      0.4362129  0.7366934
  0.3   4         0.8               0.9444444  100      0.4407222  0.7317733
  0.3   4         0.8               0.9444444  150      0.4492617  0.7224385
  0.3   4         0.8               0.9444444  200      0.4574514  0.7134566
  0.3   4         0.8               0.9444444  250      0.4651841  0.7048372
  0.3   4         0.8               0.9444444  300      0.4719174  0.6977110
  0.3   4         0.8               0.9444444  350      0.4770950  0.6920739
  0.3   4         0.8               0.9444444  400      0.4811085  0.6880407
  0.3   4         0.8               0.9444444  450      0.4845804  0.6843643
  0.3   4         0.8               0.9444444  500      0.4880467  0.6807333
  0.3   4         0.8               1.0000000   50      0.4373473  0.7347684
  0.3   4         0.8               1.0000000  100      0.4410741  0.7308601
  0.3   4         0.8               1.0000000  150      0.4477547  0.7235330
  0.3   4         0.8               1.0000000  200      0.4538975  0.7167818
  0.3   4         0.8               1.0000000  250      0.4575935  0.7129148
  0.3   4         0.8               1.0000000  300      0.4610716  0.7091465
  0.3   4         0.8               1.0000000  350      0.4645738  0.7052951
  0.3   4         0.8               1.0000000  400      0.4677259  0.7021507
  0.3   4         0.8               1.0000000  450      0.4711884  0.6983719
  0.3   4         0.8               1.0000000  500      0.4743834  0.6950103
  0.3   5         0.6               0.5000000   50      0.4554225  0.7145704
  0.3   5         0.6               0.5000000  100      0.4636632  0.7052074
  0.3   5         0.6               0.5000000  150      0.4712612  0.6969773
  0.3   5         0.6               0.5000000  200      0.4782498  0.6901480
  0.3   5         0.6               0.5000000  250      0.4822128  0.6865975
  0.3   5         0.6               0.5000000  300      0.4877032  0.6800506
  0.3   5         0.6               0.5000000  350      0.4919597  0.6760541
  0.3   5         0.6               0.5000000  400      0.4948477  0.6739232
  0.3   5         0.6               0.5000000  450      0.4983118  0.6706527
  0.3   5         0.6               0.5000000  500      0.5045740  0.6635468
  0.3   5         0.6               0.5555556   50      0.4418327  0.7288877
  0.3   5         0.6               0.5555556  100      0.4556788  0.7141040
  0.3   5         0.6               0.5555556  150      0.4635461  0.7062728
  0.3   5         0.6               0.5555556  200      0.4722143  0.6976350
  0.3   5         0.6               0.5555556  250      0.4775879  0.6932375
  0.3   5         0.6               0.5555556  300      0.4867260  0.6828917
  0.3   5         0.6               0.5555556  350      0.4911928  0.6783152
  0.3   5         0.6               0.5555556  400      0.4921213  0.6775797
  0.3   5         0.6               0.5555556  450      0.4949830  0.6748611
  0.3   5         0.6               0.5555556  500      0.4967330  0.6724214
  0.3   5         0.6               0.6111111   50      0.4371046  0.7350614
  0.3   5         0.6               0.6111111  100      0.4434505  0.7288473
  0.3   5         0.6               0.6111111  150      0.4522246  0.7197541
  0.3   5         0.6               0.6111111  200      0.4607682  0.7110319
  0.3   5         0.6               0.6111111  250      0.4675386  0.7036899
  0.3   5         0.6               0.6111111  300      0.4726698  0.6978990
  0.3   5         0.6               0.6111111  350      0.4797848  0.6903701
  0.3   5         0.6               0.6111111  400      0.4862770  0.6839647
  0.3   5         0.6               0.6111111  450      0.4913224  0.6786648
  0.3   5         0.6               0.6111111  500      0.4938625  0.6757580
  0.3   5         0.6               0.6666667   50      0.4394229  0.7322430
  0.3   5         0.6               0.6666667  100      0.4435153  0.7281093
  0.3   5         0.6               0.6666667  150      0.4524784  0.7188625
  0.3   5         0.6               0.6666667  200      0.4617731  0.7086947
  0.3   5         0.6               0.6666667  250      0.4668554  0.7036892
  0.3   5         0.6               0.6666667  300      0.4738581  0.6959482
  0.3   5         0.6               0.6666667  350      0.4784265  0.6910225
  0.3   5         0.6               0.6666667  400      0.4824146  0.6865601
  0.3   5         0.6               0.6666667  450      0.4844759  0.6848692
  0.3   5         0.6               0.6666667  500      0.4871046  0.6821098
  0.3   5         0.6               0.7222222   50      0.4505233  0.7197752
  0.3   5         0.6               0.7222222  100      0.4574674  0.7126818
  0.3   5         0.6               0.7222222  150      0.4629403  0.7075992
  0.3   5         0.6               0.7222222  200      0.4677082  0.7023836
  0.3   5         0.6               0.7222222  250      0.4738029  0.6957781
  0.3   5         0.6               0.7222222  300      0.4788700  0.6905999
  0.3   5         0.6               0.7222222  350      0.4853182  0.6837968
  0.3   5         0.6               0.7222222  400      0.4900351  0.6789061
  0.3   5         0.6               0.7222222  450      0.4943598  0.6744294
  0.3   5         0.6               0.7222222  500      0.4978510  0.6704521
  0.3   5         0.6               0.7777778   50      0.4478940  0.7231183
  0.3   5         0.6               0.7777778  100      0.4557106  0.7146303
  0.3   5         0.6               0.7777778  150      0.4657544  0.7042197
  0.3   5         0.6               0.7777778  200      0.4718644  0.6977945
  0.3   5         0.6               0.7777778  250      0.4790477  0.6904836
  0.3   5         0.6               0.7777778  300      0.4840147  0.6848797
  0.3   5         0.6               0.7777778  350      0.4894510  0.6794555
  0.3   5         0.6               0.7777778  400      0.4938135  0.6748813
  0.3   5         0.6               0.7777778  450      0.4973743  0.6707622
  0.3   5         0.6               0.7777778  500      0.5006252  0.6673515
  0.3   5         0.6               0.8333333   50      0.4490138  0.7212503
  0.3   5         0.6               0.8333333  100      0.4590159  0.7101926
  0.3   5         0.6               0.8333333  150      0.4672566  0.7012847
  0.3   5         0.6               0.8333333  200      0.4711183  0.6976765
  0.3   5         0.6               0.8333333  250      0.4791819  0.6892718
  0.3   5         0.6               0.8333333  300      0.4837007  0.6845864
  0.3   5         0.6               0.8333333  350      0.4857684  0.6827821
  0.3   5         0.6               0.8333333  400      0.4898083  0.6784481
  0.3   5         0.6               0.8333333  450      0.4934602  0.6748461
  0.3   5         0.6               0.8333333  500      0.4958579  0.6724264
  0.3   5         0.6               0.8888889   50      0.4399038  0.7320086
  0.3   5         0.6               0.8888889  100      0.4448148  0.7266409
  0.3   5         0.6               0.8888889  150      0.4543284  0.7164995
  0.3   5         0.6               0.8888889  200      0.4605126  0.7096658
  0.3   5         0.6               0.8888889  250      0.4660930  0.7038760
  0.3   5         0.6               0.8888889  300      0.4712056  0.6986708
  0.3   5         0.6               0.8888889  350      0.4744468  0.6956932
  0.3   5         0.6               0.8888889  400      0.4788752  0.6910582
  0.3   5         0.6               0.8888889  450      0.4824685  0.6873723
  0.3   5         0.6               0.8888889  500      0.4847390  0.6852045
  0.3   5         0.6               0.9444444   50      0.4417848  0.7291259
  0.3   5         0.6               0.9444444  100      0.4476034  0.7230167
  0.3   5         0.6               0.9444444  150      0.4546787  0.7151627
  0.3   5         0.6               0.9444444  200      0.4613350  0.7076168
  0.3   5         0.6               0.9444444  250      0.4689708  0.6993651
  0.3   5         0.6               0.9444444  300      0.4764501  0.6914522
  0.3   5         0.6               0.9444444  350      0.4815497  0.6861780
  0.3   5         0.6               0.9444444  400      0.4862853  0.6812184
  0.3   5         0.6               0.9444444  450      0.4911284  0.6763412
  0.3   5         0.6               0.9444444  500      0.4936766  0.6737468
  0.3   5         0.6               1.0000000   50      0.4433641  0.7281746
  0.3   5         0.6               1.0000000  100      0.4490908  0.7222360
  0.3   5         0.6               1.0000000  150      0.4546782  0.7159245
  0.3   5         0.6               1.0000000  200      0.4591949  0.7111045
  0.3   5         0.6               1.0000000  250      0.4645316  0.7051570
  0.3   5         0.6               1.0000000  300      0.4677510  0.7015401
  0.3   5         0.6               1.0000000  350      0.4735021  0.6952938
  0.3   5         0.6               1.0000000  400      0.4769877  0.6917089
  0.3   5         0.6               1.0000000  450      0.4799136  0.6887879
  0.3   5         0.6               1.0000000  500      0.4832292  0.6852378
  0.3   5         0.8               0.5000000   50      0.4452627  0.7264626
  0.3   5         0.8               0.5000000  100      0.4629500  0.7070760
  0.3   5         0.8               0.5000000  150      0.4760689  0.6927484
  0.3   5         0.8               0.5000000  200      0.4811075  0.6881341
  0.3   5         0.8               0.5000000  250      0.4911131  0.6774336
  0.3   5         0.8               0.5000000  300      0.4954932  0.6727725
  0.3   5         0.8               0.5000000  350      0.4989388  0.6702198
  0.3   5         0.8               0.5000000  400      0.5039195  0.6642059
  0.3   5         0.8               0.5000000  450      0.5079674  0.6606888
  0.3   5         0.8               0.5000000  500      0.5120295  0.6567413
  0.3   5         0.8               0.5555556   50      0.4417067  0.7303953
  0.3   5         0.8               0.5555556  100      0.4560526  0.7148730
  0.3   5         0.8               0.5555556  150      0.4690470  0.7022860
  0.3   5         0.8               0.5555556  200      0.4772143  0.6933143
  0.3   5         0.8               0.5555556  250      0.4850462  0.6850036
  0.3   5         0.8               0.5555556  300      0.4925656  0.6771390
  0.3   5         0.8               0.5555556  350      0.4995105  0.6706765
  0.3   5         0.8               0.5555556  400      0.5019425  0.6679569
  0.3   5         0.8               0.5555556  450      0.5047184  0.6658152
  0.3   5         0.8               0.5555556  500      0.5092377  0.6611291
  0.3   5         0.8               0.6111111   50      0.4420962  0.7303148
  0.3   5         0.8               0.6111111  100      0.4570003  0.7141932
  0.3   5         0.8               0.6111111  150      0.4662118  0.7050101
  0.3   5         0.8               0.6111111  200      0.4746550  0.6962698
  0.3   5         0.8               0.6111111  250      0.4789653  0.6914157
  0.3   5         0.8               0.6111111  300      0.4866646  0.6831553
  0.3   5         0.8               0.6111111  350      0.4913178  0.6787245
  0.3   5         0.8               0.6111111  400      0.4966365  0.6731125
  0.3   5         0.8               0.6111111  450      0.4996302  0.6697316
  0.3   5         0.8               0.6111111  500      0.5027412  0.6665183
  0.3   5         0.8               0.6666667   50      0.4439064  0.7269844
  0.3   5         0.8               0.6666667  100      0.4507532  0.7208442
  0.3   5         0.8               0.6666667  150      0.4631539  0.7081596
  0.3   5         0.8               0.6666667  200      0.4700339  0.7008918
  0.3   5         0.8               0.6666667  250      0.4764755  0.6940033
  0.3   5         0.8               0.6666667  300      0.4828144  0.6869808
  0.3   5         0.8               0.6666667  350      0.4881932  0.6815484
  0.3   5         0.8               0.6666667  400      0.4939164  0.6749693
  0.3   5         0.8               0.6666667  450      0.4977992  0.6716541
  0.3   5         0.8               0.6666667  500      0.5020365  0.6670346
  0.3   5         0.8               0.7222222   50      0.4445351  0.7274036
  0.3   5         0.8               0.7222222  100      0.4554097  0.7161508
  0.3   5         0.8               0.7222222  150      0.4662649  0.7051243
  0.3   5         0.8               0.7222222  200      0.4707969  0.7005768
  0.3   5         0.8               0.7222222  250      0.4760277  0.6955911
  0.3   5         0.8               0.7222222  300      0.4817921  0.6896947
  0.3   5         0.8               0.7222222  350      0.4864971  0.6845234
  0.3   5         0.8               0.7222222  400      0.4921673  0.6784325
  0.3   5         0.8               0.7222222  450      0.4944997  0.6759341
  0.3   5         0.8               0.7222222  500      0.4981924  0.6721928
  0.3   5         0.8               0.7777778   50      0.4418476  0.7295341
  0.3   5         0.8               0.7777778  100      0.4521896  0.7189039
  0.3   5         0.8               0.7777778  150      0.4643925  0.7062411
  0.3   5         0.8               0.7777778  200      0.4724933  0.6978731
  0.3   5         0.8               0.7777778  250      0.4781193  0.6921742
  0.3   5         0.8               0.7777778  300      0.4822141  0.6882080
  0.3   5         0.8               0.7777778  350      0.4864464  0.6839328
  0.3   5         0.8               0.7777778  400      0.4913561  0.6785991
  0.3   5         0.8               0.7777778  450      0.4953391  0.6745154
  0.3   5         0.8               0.7777778  500      0.5006835  0.6687707
  0.3   5         0.8               0.8333333   50      0.4379265  0.7352452
  0.3   5         0.8               0.8333333  100      0.4518877  0.7202625
  0.3   5         0.8               0.8333333  150      0.4613253  0.7099664
  0.3   5         0.8               0.8333333  200      0.4684210  0.7028841
  0.3   5         0.8               0.8333333  250      0.4737525  0.6970134
  0.3   5         0.8               0.8333333  300      0.4800401  0.6905963
  0.3   5         0.8               0.8333333  350      0.4826476  0.6879527
  0.3   5         0.8               0.8333333  400      0.4863075  0.6842986
  0.3   5         0.8               0.8333333  450      0.4896092  0.6810091
  0.3   5         0.8               0.8333333  500      0.4937048  0.6765550
  0.3   5         0.8               0.8888889   50      0.4449426  0.7261091
  0.3   5         0.8               0.8888889  100      0.4578350  0.7123126
  0.3   5         0.8               0.8888889  150      0.4676049  0.7020467
  0.3   5         0.8               0.8888889  200      0.4766189  0.6923001
  0.3   5         0.8               0.8888889  250      0.4848043  0.6838791
  0.3   5         0.8               0.8888889  300      0.4910687  0.6771104
  0.3   5         0.8               0.8888889  350      0.4954307  0.6728058
  0.3   5         0.8               0.8888889  400      0.4988222  0.6697441
  0.3   5         0.8               0.8888889  450      0.5028539  0.6652795
  0.3   5         0.8               0.8888889  500      0.5057246  0.6625017
  0.3   5         0.8               0.9444444   50      0.4449821  0.7259346
  0.3   5         0.8               0.9444444  100      0.4525333  0.7179752
  0.3   5         0.8               0.9444444  150      0.4621374  0.7078142
  0.3   5         0.8               0.9444444  200      0.4683904  0.7014606
  0.3   5         0.8               0.9444444  250      0.4763868  0.6927530
  0.3   5         0.8               0.9444444  300      0.4825079  0.6863924
  0.3   5         0.8               0.9444444  350      0.4873318  0.6811754
  0.3   5         0.8               0.9444444  400      0.4917313  0.6766221
  0.3   5         0.8               0.9444444  450      0.4954787  0.6729755
  0.3   5         0.8               0.9444444  500      0.4991931  0.6692090
  0.3   5         0.8               1.0000000   50      0.4344128  0.7387588
  0.3   5         0.8               1.0000000  100      0.4423035  0.7303073
  0.3   5         0.8               1.0000000  150      0.4503480  0.7218246
  0.3   5         0.8               1.0000000  200      0.4586743  0.7127596
  0.3   5         0.8               1.0000000  250      0.4647756  0.7063164
  0.3   5         0.8               1.0000000  300      0.4701674  0.7006294
  0.3   5         0.8               1.0000000  350      0.4737561  0.6969944
  0.3   5         0.8               1.0000000  400      0.4776299  0.6929822
  0.3   5         0.8               1.0000000  450      0.4807309  0.6897477
  0.3   5         0.8               1.0000000  500      0.4839822  0.6863918
  0.3   6         0.6               0.5000000   50      0.4494688  0.7203388
  0.3   6         0.6               0.5000000  100      0.4616484  0.7081316
  0.3   6         0.6               0.5000000  150      0.4730787  0.6958717
  0.3   6         0.6               0.5000000  200      0.4824214  0.6865057
  0.3   6         0.6               0.5000000  250      0.4924744  0.6754786
  0.3   6         0.6               0.5000000  300      0.4973273  0.6700782
  0.3   6         0.6               0.5000000  350      0.5036917  0.6637717
  0.3   6         0.6               0.5000000  400      0.5122348  0.6540640
  0.3   6         0.6               0.5000000  450      0.5130553  0.6535437
  0.3   6         0.6               0.5000000  500      0.5148080  0.6519127
  0.3   6         0.6               0.5555556   50      0.4480194  0.7233266
  0.3   6         0.6               0.5555556  100      0.4595767  0.7116219
  0.3   6         0.6               0.5555556  150      0.4679084  0.7039524
  0.3   6         0.6               0.5555556  200      0.4801639  0.6912565
  0.3   6         0.6               0.5555556  250      0.4868710  0.6836083
  0.3   6         0.6               0.5555556  300      0.4904799  0.6814596
  0.3   6         0.6               0.5555556  350      0.4934695  0.6788909
  0.3   6         0.6               0.5555556  400      0.4976439  0.6743195
  0.3   6         0.6               0.5555556  450      0.5018328  0.6700229
  0.3   6         0.6               0.5555556  500      0.5044992  0.6678054
  0.3   6         0.6               0.6111111   50      0.4502152  0.7199263
  0.3   6         0.6               0.6111111  100      0.4583242  0.7122932
  0.3   6         0.6               0.6111111  150      0.4722654  0.6972102
  0.3   6         0.6               0.6111111  200      0.4767042  0.6928096
  0.3   6         0.6               0.6111111  250      0.4843439  0.6844466
  0.3   6         0.6               0.6111111  300      0.4912283  0.6771987
  0.3   6         0.6               0.6111111  350      0.4972328  0.6709568
  0.3   6         0.6               0.6111111  400      0.5002259  0.6674528
  0.3   6         0.6               0.6111111  450      0.5037611  0.6643247
  0.3   6         0.6               0.6111111  500      0.5081604  0.6597501
  0.3   6         0.6               0.6666667   50      0.4394498  0.7335094
  0.3   6         0.6               0.6666667  100      0.4510601  0.7214506
  0.3   6         0.6               0.6666667  150      0.4608901  0.7112067
  0.3   6         0.6               0.6666667  200      0.4676741  0.7045559
  0.3   6         0.6               0.6666667  250      0.4737913  0.6983971
  0.3   6         0.6               0.6666667  300      0.4810221  0.6909814
  0.3   6         0.6               0.6666667  350      0.4856782  0.6860557
  0.3   6         0.6               0.6666667  400      0.4893922  0.6821518
  0.3   6         0.6               0.6666667  450      0.4943358  0.6769956
  0.3   6         0.6               0.6666667  500      0.4973948  0.6740761
  0.3   6         0.6               0.7222222   50      0.4466036  0.7249669
  0.3   6         0.6               0.7222222  100      0.4545086  0.7175858
  0.3   6         0.6               0.7222222  150      0.4665825  0.7046853
  0.3   6         0.6               0.7222222  200      0.4787497  0.6920483
  0.3   6         0.6               0.7222222  250      0.4855550  0.6851680
  0.3   6         0.6               0.7222222  300      0.4939558  0.6762513
  0.3   6         0.6               0.7222222  350      0.4977663  0.6726252
  0.3   6         0.6               0.7222222  400      0.5036505  0.6666322
  0.3   6         0.6               0.7222222  450      0.5075638  0.6627839
  0.3   6         0.6               0.7222222  500      0.5096435  0.6607794
  0.3   6         0.6               0.7777778   50      0.4495684  0.7205790
  0.3   6         0.6               0.7777778  100      0.4613471  0.7088802
  0.3   6         0.6               0.7777778  150      0.4702778  0.6997501
  0.3   6         0.6               0.7777778  200      0.4800687  0.6893737
  0.3   6         0.6               0.7777778  250      0.4855873  0.6837496
  0.3   6         0.6               0.7777778  300      0.4919847  0.6771566
  0.3   6         0.6               0.7777778  350      0.4967320  0.6718436
  0.3   6         0.6               0.7777778  400      0.4995601  0.6687969
  0.3   6         0.6               0.7777778  450      0.5038321  0.6644008
  0.3   6         0.6               0.7777778  500      0.5070530  0.6611907
  0.3   6         0.6               0.8333333   50      0.4516223  0.7181015
  0.3   6         0.6               0.8333333  100      0.4596872  0.7100638
  0.3   6         0.6               0.8333333  150      0.4704569  0.6985187
  0.3   6         0.6               0.8333333  200      0.4795198  0.6889674
  0.3   6         0.6               0.8333333  250      0.4859546  0.6816751
  0.3   6         0.6               0.8333333  300      0.4925845  0.6744673
  0.3   6         0.6               0.8333333  350      0.4993118  0.6672211
  0.3   6         0.6               0.8333333  400      0.5022870  0.6641992
  0.3   6         0.6               0.8333333  450      0.5047369  0.6620560
  0.3   6         0.6               0.8333333  500      0.5083007  0.6581029
  0.3   6         0.6               0.8888889   50      0.4441213  0.7270987
  0.3   6         0.6               0.8888889  100      0.4542649  0.7166810
  0.3   6         0.6               0.8888889  150      0.4640021  0.7063318
  0.3   6         0.6               0.8888889  200      0.4731548  0.6964823
  0.3   6         0.6               0.8888889  250      0.4819589  0.6870702
  0.3   6         0.6               0.8888889  300      0.4874547  0.6814047
  0.3   6         0.6               0.8888889  350      0.4936065  0.6747771
  0.3   6         0.6               0.8888889  400      0.4978046  0.6706438
  0.3   6         0.6               0.8888889  450      0.5015517  0.6673507
  0.3   6         0.6               0.8888889  500      0.5046336  0.6639936
  0.3   6         0.6               0.9444444   50      0.4455301  0.7259647
  0.3   6         0.6               0.9444444  100      0.4539776  0.7172322
  0.3   6         0.6               0.9444444  150      0.4658384  0.7045031
  0.3   6         0.6               0.9444444  200      0.4729385  0.6968169
  0.3   6         0.6               0.9444444  250      0.4801483  0.6894353
  0.3   6         0.6               0.9444444  300      0.4847775  0.6848013
  0.3   6         0.6               0.9444444  350      0.4902337  0.6794406
  0.3   6         0.6               0.9444444  400      0.4938341  0.6759708
  0.3   6         0.6               0.9444444  450      0.4964634  0.6732085
  0.3   6         0.6               0.9444444  500      0.5007031  0.6688452
  0.3   6         0.6               1.0000000   50      0.4499644  0.7205556
  0.3   6         0.6               1.0000000  100      0.4570734  0.7128800
  0.3   6         0.6               1.0000000  150      0.4623586  0.7071643
  0.3   6         0.6               1.0000000  200      0.4679946  0.7011077
  0.3   6         0.6               1.0000000  250      0.4732968  0.6956166
  0.3   6         0.6               1.0000000  300      0.4790688  0.6895728
  0.3   6         0.6               1.0000000  350      0.4836569  0.6848456
  0.3   6         0.6               1.0000000  400      0.4879707  0.6799192
  0.3   6         0.6               1.0000000  450      0.4910524  0.6767508
  0.3   6         0.6               1.0000000  500      0.4933613  0.6744819
  0.3   6         0.8               0.5000000   50      0.4508850  0.7197516
  0.3   6         0.8               0.5000000  100      0.4602532  0.7106182
  0.3   6         0.8               0.5000000  150      0.4741594  0.6960371
  0.3   6         0.8               0.5000000  200      0.4821967  0.6881077
  0.3   6         0.8               0.5000000  250      0.4912588  0.6777690
  0.3   6         0.8               0.5000000  300      0.4979360  0.6708043
  0.3   6         0.8               0.5000000  350      0.5031651  0.6663863
  0.3   6         0.8               0.5000000  400      0.5074686  0.6620650
  0.3   6         0.8               0.5000000  450      0.5114003  0.6580772
  0.3   6         0.8               0.5000000  500      0.5152019  0.6540203
  0.3   6         0.8               0.5555556   50      0.4459524  0.7253548
  0.3   6         0.8               0.5555556  100      0.4630610  0.7070877
  0.3   6         0.8               0.5555556  150      0.4790288  0.6905039
  0.3   6         0.8               0.5555556  200      0.4897680  0.6791259
  0.3   6         0.8               0.5555556  250      0.4970978  0.6718015
  0.3   6         0.8               0.5555556  300      0.5020691  0.6675839
  0.3   6         0.8               0.5555556  350      0.5099345  0.6581524
  0.3   6         0.8               0.5555556  400      0.5163034  0.6515853
  0.3   6         0.8               0.5555556  450      0.5218498  0.6454297
  0.3   6         0.8               0.5555556  500      0.5237986  0.6440506
  0.3   6         0.8               0.6111111   50      0.4477012  0.7239613
  0.3   6         0.8               0.6111111  100      0.4672804  0.7035175
  0.3   6         0.8               0.6111111  150      0.4808291  0.6894741
  0.3   6         0.8               0.6111111  200      0.4919073  0.6770967
  0.3   6         0.8               0.6111111  250      0.4967916  0.6721759
  0.3   6         0.8               0.6111111  300      0.5011102  0.6678666
  0.3   6         0.8               0.6111111  350      0.5066289  0.6615319
  0.3   6         0.8               0.6111111  400      0.5090774  0.6598741
  0.3   6         0.8               0.6111111  450      0.5118182  0.6568154
  0.3   6         0.8               0.6111111  500      0.5169185  0.6518179
  0.3   6         0.8               0.6666667   50      0.4458247  0.7254556
  0.3   6         0.8               0.6666667  100      0.4674203  0.7021526
  0.3   6         0.8               0.6666667  150      0.4816903  0.6871007
  0.3   6         0.8               0.6666667  200      0.4910422  0.6772911
  0.3   6         0.8               0.6666667  250      0.4971736  0.6708036
  0.3   6         0.8               0.6666667  300      0.5026761  0.6654700
  0.3   6         0.8               0.6666667  350      0.5086025  0.6588722
  0.3   6         0.8               0.6666667  400      0.5144212  0.6521163
  0.3   6         0.8               0.6666667  450      0.5175969  0.6486746
  0.3   6         0.8               0.6666667  500      0.5206309  0.6454038
  0.3   6         0.8               0.7222222   50      0.4501185  0.7208653
  0.3   6         0.8               0.7222222  100      0.4670445  0.7032389
  0.3   6         0.8               0.7222222  150      0.4790796  0.6906174
  0.3   6         0.8               0.7222222  200      0.4886803  0.6804388
  0.3   6         0.8               0.7222222  250      0.4958045  0.6734531
  0.3   6         0.8               0.7222222  300      0.5006871  0.6686222
  0.3   6         0.8               0.7222222  350      0.5052190  0.6639488
  0.3   6         0.8               0.7222222  400      0.5076185  0.6621971
  0.3   6         0.8               0.7222222  450      0.5106147  0.6590504
  0.3   6         0.8               0.7222222  500      0.5117629  0.6575895
  0.3   6         0.8               0.7777778   50      0.4458138  0.7250159
  0.3   6         0.8               0.7777778  100      0.4625190  0.7072493
  0.3   6         0.8               0.7777778  150      0.4747948  0.6938602
  0.3   6         0.8               0.7777778  200      0.4854454  0.6829323
  0.3   6         0.8               0.7777778  250      0.4939345  0.6738323
  0.3   6         0.8               0.7777778  300      0.4992805  0.6681594
  0.3   6         0.8               0.7777778  350      0.5026026  0.6645464
  0.3   6         0.8               0.7777778  400      0.5082438  0.6583325
  0.3   6         0.8               0.7777778  450      0.5127675  0.6540320
  0.3   6         0.8               0.7777778  500      0.5159175  0.6504242
  0.3   6         0.8               0.8333333   50      0.4403320  0.7324063
  0.3   6         0.8               0.8333333  100      0.4553766  0.7163669
  0.3   6         0.8               0.8333333  150      0.4716811  0.6991045
  0.3   6         0.8               0.8333333  200      0.4811589  0.6892080
  0.3   6         0.8               0.8333333  250      0.4896680  0.6802760
  0.3   6         0.8               0.8333333  300      0.4967356  0.6730844
  0.3   6         0.8               0.8333333  350      0.5033784  0.6662278
  0.3   6         0.8               0.8333333  400      0.5070860  0.6624184
  0.3   6         0.8               0.8333333  450      0.5104428  0.6590993
  0.3   6         0.8               0.8333333  500      0.5139113  0.6551436
  0.3   6         0.8               0.8888889   50      0.4479162  0.7231508
  0.3   6         0.8               0.8888889  100      0.4639206  0.7065891
  0.3   6         0.8               0.8888889  150      0.4783712  0.6906867
  0.3   6         0.8               0.8888889  200      0.4883218  0.6799888
  0.3   6         0.8               0.8888889  250      0.4953575  0.6724657
  0.3   6         0.8               0.8888889  300      0.5007364  0.6669124
  0.3   6         0.8               0.8888889  350      0.5050297  0.6626435
  0.3   6         0.8               0.8888889  400      0.5098617  0.6578050
  0.3   6         0.8               0.8888889  450      0.5130995  0.6546677
  0.3   6         0.8               0.8888889  500      0.5150111  0.6526337
  0.3   6         0.8               0.9444444   50      0.4454082  0.7263138
  0.3   6         0.8               0.9444444  100      0.4593843  0.7116967
  0.3   6         0.8               0.9444444  150      0.4712088  0.6994685
  0.3   6         0.8               0.9444444  200      0.4813750  0.6886541
  0.3   6         0.8               0.9444444  250      0.4892680  0.6807315
  0.3   6         0.8               0.9444444  300      0.4939340  0.6760873
  0.3   6         0.8               0.9444444  350      0.4996780  0.6699217
  0.3   6         0.8               0.9444444  400      0.5028690  0.6668270
  0.3   6         0.8               0.9444444  450      0.5064440  0.6628554
  0.3   6         0.8               0.9444444  500      0.5096773  0.6596007
  0.3   6         0.8               1.0000000   50      0.4409681  0.7312624
  0.3   6         0.8               1.0000000  100      0.4508675  0.7207558
  0.3   6         0.8               1.0000000  150      0.4613690  0.7093262
  0.3   6         0.8               1.0000000  200      0.4686132  0.7017055
  0.3   6         0.8               1.0000000  250      0.4749030  0.6954216
  0.3   6         0.8               1.0000000  300      0.4794939  0.6905725
  0.3   6         0.8               1.0000000  350      0.4837103  0.6862111
  0.3   6         0.8               1.0000000  400      0.4878327  0.6820083
  0.3   6         0.8               1.0000000  450      0.4918898  0.6778673
  0.3   6         0.8               1.0000000  500      0.4948595  0.6748870
  0.3   7         0.6               0.5000000   50      0.4498622  0.7218135
  0.3   7         0.6               0.5000000  100      0.4682208  0.7030317
  0.3   7         0.6               0.5000000  150      0.4807586  0.6903210
  0.3   7         0.6               0.5000000  200      0.4908860  0.6794725
  0.3   7         0.6               0.5000000  250      0.4992167  0.6709807
  0.3   7         0.6               0.5000000  300      0.5079516  0.6621254
  0.3   7         0.6               0.5000000  350      0.5132192  0.6564322
  0.3   7         0.6               0.5000000  400      0.5164939  0.6528754
  0.3   7         0.6               0.5000000  450      0.5190812  0.6504125
  0.3   7         0.6               0.5000000  500      0.5221941  0.6474103
  0.3   7         0.6               0.5555556   50      0.4574348  0.7125112
  0.3   7         0.6               0.5555556  100      0.4760600  0.6926491
  0.3   7         0.6               0.5555556  150      0.4862944  0.6816917
  0.3   7         0.6               0.5555556  200      0.4934863  0.6755267
  0.3   7         0.6               0.5555556  250      0.4987340  0.6702522
  0.3   7         0.6               0.5555556  300      0.5069553  0.6622228
  0.3   7         0.6               0.5555556  350      0.5130174  0.6561240
  0.3   7         0.6               0.5555556  400      0.5159645  0.6529666
  0.3   7         0.6               0.5555556  450      0.5189410  0.6505653
  0.3   7         0.6               0.5555556  500      0.5224749  0.6467581
  0.3   7         0.6               0.6111111   50      0.4559801  0.7145044
  0.3   7         0.6               0.6111111  100      0.4734238  0.6965580
  0.3   7         0.6               0.6111111  150      0.4845665  0.6851502
  0.3   7         0.6               0.6111111  200      0.4927259  0.6772704
  0.3   7         0.6               0.6111111  250      0.4984346  0.6709400
  0.3   7         0.6               0.6111111  300      0.5070269  0.6624105
  0.3   7         0.6               0.6111111  350      0.5150875  0.6541756
  0.3   7         0.6               0.6111111  400      0.5187187  0.6508065
  0.3   7         0.6               0.6111111  450      0.5222358  0.6465400
  0.3   7         0.6               0.6111111  500      0.5241371  0.6447043
  0.3   7         0.6               0.6666667   50      0.4506890  0.7195162
  0.3   7         0.6               0.6666667  100      0.4615905  0.7094466
  0.3   7         0.6               0.6666667  150      0.4760560  0.6936699
  0.3   7         0.6               0.6666667  200      0.4856562  0.6832877
  0.3   7         0.6               0.6666667  250      0.4923905  0.6774060
  0.3   7         0.6               0.6666667  300      0.4985095  0.6706991
  0.3   7         0.6               0.6666667  350      0.5007511  0.6688292
  0.3   7         0.6               0.6666667  400      0.5060057  0.6632924
  0.3   7         0.6               0.6666667  450      0.5113199  0.6570148
  0.3   7         0.6               0.6666667  500      0.5139856  0.6539505
  0.3   7         0.6               0.7222222   50      0.4478431  0.7235280
  0.3   7         0.6               0.7222222  100      0.4641183  0.7063816
  0.3   7         0.6               0.7222222  150      0.4791628  0.6904709
  0.3   7         0.6               0.7222222  200      0.4872653  0.6818769
  0.3   7         0.6               0.7222222  250      0.4956772  0.6732939
  0.3   7         0.6               0.7222222  300      0.5040084  0.6646283
  0.3   7         0.6               0.7222222  350      0.5083787  0.6598784
  0.3   7         0.6               0.7222222  400      0.5141261  0.6535828
  0.3   7         0.6               0.7222222  450      0.5170585  0.6511943
  0.3   7         0.6               0.7222222  500      0.5208593  0.6472991
  0.3   7         0.6               0.7777778   50      0.4519966  0.7183258
  0.3   7         0.6               0.7777778  100      0.4690480  0.6993791
  0.3   7         0.6               0.7777778  150      0.4810029  0.6868169
  0.3   7         0.6               0.7777778  200      0.4903518  0.6766895
  0.3   7         0.6               0.7777778  250      0.4994463  0.6675269
  0.3   7         0.6               0.7777778  300      0.5053994  0.6609323
  0.3   7         0.6               0.7777778  350      0.5112805  0.6552462
  0.3   7         0.6               0.7777778  400      0.5142776  0.6522282
  0.3   7         0.6               0.7777778  450      0.5167352  0.6494183
  0.3   7         0.6               0.7777778  500      0.5192311  0.6473544
  0.3   7         0.6               0.8333333   50      0.4533531  0.7163020
  0.3   7         0.6               0.8333333  100      0.4671937  0.7013572
  0.3   7         0.6               0.8333333  150      0.4812559  0.6864912
  0.3   7         0.6               0.8333333  200      0.4915646  0.6757526
  0.3   7         0.6               0.8333333  250      0.4986329  0.6682673
  0.3   7         0.6               0.8333333  300      0.5035061  0.6631449
  0.3   7         0.6               0.8333333  350      0.5090812  0.6572869
  0.3   7         0.6               0.8333333  400      0.5138250  0.6525294
  0.3   7         0.6               0.8333333  450      0.5172018  0.6488933
  0.3   7         0.6               0.8333333  500      0.5200565  0.6453875
  0.3   7         0.6               0.8888889   50      0.4541126  0.7162406
  0.3   7         0.6               0.8888889  100      0.4688053  0.7004076
  0.3   7         0.6               0.8888889  150      0.4772676  0.6919132
  0.3   7         0.6               0.8888889  200      0.4880262  0.6807646
  0.3   7         0.6               0.8888889  250      0.4956850  0.6727964
  0.3   7         0.6               0.8888889  300      0.5010413  0.6671115
  0.3   7         0.6               0.8888889  350      0.5060577  0.6619450
  0.3   7         0.6               0.8888889  400      0.5090912  0.6584636
  0.3   7         0.6               0.8888889  450      0.5122271  0.6554528
  0.3   7         0.6               0.8888889  500      0.5159542  0.6516696
  0.3   7         0.6               0.9444444   50      0.4517401  0.7188367
  0.3   7         0.6               0.9444444  100      0.4644179  0.7050824
  0.3   7         0.6               0.9444444  150      0.4745591  0.6942621
  0.3   7         0.6               0.9444444  200      0.4826442  0.6859993
  0.3   7         0.6               0.9444444  250      0.4896479  0.6784682
  0.3   7         0.6               0.9444444  300      0.4976781  0.6700356
  0.3   7         0.6               0.9444444  350      0.5015784  0.6659785
  0.3   7         0.6               0.9444444  400      0.5061598  0.6615054
  0.3   7         0.6               0.9444444  450      0.5094611  0.6582402
  0.3   7         0.6               0.9444444  500      0.5119104  0.6557836
  0.3   7         0.6               1.0000000   50      0.4449534  0.7265499
  0.3   7         0.6               1.0000000  100      0.4569107  0.7138235
  0.3   7         0.6               1.0000000  150      0.4623517  0.7084785
  0.3   7         0.6               1.0000000  200      0.4699628  0.7005253
  0.3   7         0.6               1.0000000  250      0.4770502  0.6928845
  0.3   7         0.6               1.0000000  300      0.4819126  0.6879026
  0.3   7         0.6               1.0000000  350      0.4869846  0.6825451
  0.3   7         0.6               1.0000000  400      0.4917496  0.6777568
  0.3   7         0.6               1.0000000  450      0.4948504  0.6745627
  0.3   7         0.6               1.0000000  500      0.4981860  0.6711205
  0.3   7         0.8               0.5000000   50      0.4599638  0.7090252
  0.3   7         0.8               0.5000000  100      0.4820311  0.6864481
  0.3   7         0.8               0.5000000  150      0.4966422  0.6704997
  0.3   7         0.8               0.5000000  200      0.5092611  0.6571402
  0.3   7         0.8               0.5000000  250      0.5175962  0.6477035
  0.3   7         0.8               0.5000000  300      0.5218293  0.6443941
  0.3   7         0.8               0.5000000  350      0.5258614  0.6406616
  0.3   7         0.8               0.5000000  400      0.5300524  0.6362520
  0.3   7         0.8               0.5000000  450      0.5334653  0.6326094
  0.3   7         0.8               0.5000000  500      0.5375233  0.6283877
  0.3   7         0.8               0.5555556   50      0.4523721  0.7189571
  0.3   7         0.8               0.5555556  100      0.4764045  0.6930814
  0.3   7         0.8               0.5555556  150      0.4914416  0.6782065
  0.3   7         0.8               0.5555556  200      0.5008142  0.6682533
  0.3   7         0.8               0.5555556  250      0.5049087  0.6637886
  0.3   7         0.8               0.5555556  300      0.5135083  0.6546363
  0.3   7         0.8               0.5555556  350      0.5167042  0.6519322
  0.3   7         0.8               0.5555556  400      0.5189467  0.6500848
  0.3   7         0.8               0.5555556  450      0.5265359  0.6422938
  0.3   7         0.8               0.5555556  500      0.5307181  0.6375704
  0.3   7         0.8               0.6111111   50      0.4532870  0.7180102
  0.3   7         0.8               0.6111111  100      0.4686245  0.7025525
  0.3   7         0.8               0.6111111  150      0.4856152  0.6855933
  0.3   7         0.8               0.6111111  200      0.4949428  0.6759348
  0.3   7         0.8               0.6111111  250      0.5040010  0.6665478
  0.3   7         0.8               0.6111111  300      0.5101711  0.6606070
  0.3   7         0.8               0.6111111  350      0.5159594  0.6539479
  0.3   7         0.8               0.6111111  400      0.5185058  0.6513178
  0.3   7         0.8               0.6111111  450      0.5226614  0.6475706
  0.3   7         0.8               0.6111111  500      0.5239022  0.6464839
  0.3   7         0.8               0.6666667   50      0.4527193  0.7186604
  0.3   7         0.8               0.6666667  100      0.4697545  0.7010474
  0.3   7         0.8               0.6666667  150      0.4834485  0.6867677
  0.3   7         0.8               0.6666667  200      0.4929433  0.6769391
  0.3   7         0.8               0.6666667  250      0.4986210  0.6712978
  0.3   7         0.8               0.6666667  300      0.5024149  0.6677408
  0.3   7         0.8               0.6666667  350      0.5066619  0.6640527
  0.3   7         0.8               0.6666667  400      0.5114917  0.6591558
  0.3   7         0.8               0.6666667  450      0.5129487  0.6578767
  0.3   7         0.8               0.6666667  500      0.5173377  0.6533315
  0.3   7         0.8               0.7222222   50      0.4525955  0.7178867
  0.3   7         0.8               0.7222222  100      0.4728085  0.6966704
  0.3   7         0.8               0.7222222  150      0.4884943  0.6800028
  0.3   7         0.8               0.7222222  200      0.4983447  0.6698692
  0.3   7         0.8               0.7222222  250      0.5028696  0.6658406
  0.3   7         0.8               0.7222222  300      0.5102899  0.6575383
  0.3   7         0.8               0.7222222  350      0.5147451  0.6527127
  0.3   7         0.8               0.7222222  400      0.5196122  0.6480761
  0.3   7         0.8               0.7222222  450      0.5212283  0.6464800
  0.3   7         0.8               0.7222222  500      0.5241733  0.6433055
  0.3   7         0.8               0.7777778   50      0.4502454  0.7213875
  0.3   7         0.8               0.7777778  100      0.4711345  0.6992652
  0.3   7         0.8               0.7777778  150      0.4850725  0.6851104
  0.3   7         0.8               0.7777778  200      0.4938361  0.6755938
  0.3   7         0.8               0.7777778  250      0.5009853  0.6682415
  0.3   7         0.8               0.7777778  300      0.5064301  0.6625330
  0.3   7         0.8               0.7777778  350      0.5095134  0.6591629
  0.3   7         0.8               0.7777778  400      0.5134146  0.6553199
  0.3   7         0.8               0.7777778  450      0.5157443  0.6530301
  0.3   7         0.8               0.7777778  500      0.5181954  0.6503091
  0.3   7         0.8               0.8333333   50      0.4513077  0.7196827
  0.3   7         0.8               0.8333333  100      0.4744450  0.6943025
  0.3   7         0.8               0.8333333  150      0.4877360  0.6802598
  0.3   7         0.8               0.8333333  200      0.4994339  0.6685189
  0.3   7         0.8               0.8333333  250      0.5062444  0.6615139
  0.3   7         0.8               0.8333333  300      0.5134440  0.6541206
  0.3   7         0.8               0.8333333  350      0.5174063  0.6499767
  0.3   7         0.8               0.8333333  400      0.5208186  0.6462562
  0.3   7         0.8               0.8333333  450      0.5220633  0.6452319
  0.3   7         0.8               0.8333333  500      0.5243399  0.6426935
  0.3   7         0.8               0.8888889   50      0.4595362  0.7095833
  0.3   7         0.8               0.8888889  100      0.4752181  0.6935158
  0.3   7         0.8               0.8888889  150      0.4898543  0.6783812
  0.3   7         0.8               0.8888889  200      0.4989341  0.6683230
  0.3   7         0.8               0.8888889  250      0.5078869  0.6592439
  0.3   7         0.8               0.8888889  300      0.5124771  0.6546596
  0.3   7         0.8               0.8888889  350      0.5165091  0.6507261
  0.3   7         0.8               0.8888889  400      0.5199594  0.6472651
  0.3   7         0.8               0.8888889  450      0.5226027  0.6446036
  0.3   7         0.8               0.8888889  500      0.5244556  0.6428573
  0.3   7         0.8               0.9444444   50      0.4539320  0.7163640
  0.3   7         0.8               0.9444444  100      0.4726331  0.6964555
  0.3   7         0.8               0.9444444  150      0.4861886  0.6823667
  0.3   7         0.8               0.9444444  200      0.4982432  0.6695490
  0.3   7         0.8               0.9444444  250      0.5049966  0.6628045
  0.3   7         0.8               0.9444444  300      0.5100839  0.6573100
  0.3   7         0.8               0.9444444  350      0.5137554  0.6537149
  0.3   7         0.8               0.9444444  400      0.5170093  0.6503055
  0.3   7         0.8               0.9444444  450      0.5196636  0.6474894
  0.3   7         0.8               0.9444444  500      0.5227793  0.6444227
  0.3   7         0.8               1.0000000   50      0.4467990  0.7253685
  0.3   7         0.8               1.0000000  100      0.4608874  0.7103199
  0.3   7         0.8               1.0000000  150      0.4702567  0.7001348
  0.3   7         0.8               1.0000000  200      0.4780406  0.6917723
  0.3   7         0.8               1.0000000  250      0.4851525  0.6843666
  0.3   7         0.8               1.0000000  300      0.4914276  0.6777283
  0.3   7         0.8               1.0000000  350      0.4955544  0.6734120
  0.3   7         0.8               1.0000000  400      0.4991271  0.6694791
  0.3   7         0.8               1.0000000  450      0.5025101  0.6660326
  0.3   7         0.8               1.0000000  500      0.5063358  0.6620217
  0.3   8         0.6               0.5000000   50      0.4668532  0.7021833
  0.3   8         0.6               0.5000000  100      0.4816979  0.6874182
  0.3   8         0.6               0.5000000  150      0.4890896  0.6797937
  0.3   8         0.6               0.5000000  200      0.4990080  0.6698076
  0.3   8         0.6               0.5000000  250      0.5061322  0.6626817
  0.3   8         0.6               0.5000000  300      0.5159347  0.6530502
  0.3   8         0.6               0.5000000  350      0.5205013  0.6484250
  0.3   8         0.6               0.5000000  400      0.5237518  0.6453290
  0.3   8         0.6               0.5000000  450      0.5285086  0.6397211
  0.3   8         0.6               0.5000000  500      0.5317103  0.6363905
  0.3   8         0.6               0.5555556   50      0.4610130  0.7088247
  0.3   8         0.6               0.5555556  100      0.4861062  0.6821871
  0.3   8         0.6               0.5555556  150      0.4998601  0.6678738
  0.3   8         0.6               0.5555556  200      0.5110570  0.6560837
  0.3   8         0.6               0.5555556  250      0.5161240  0.6511906
  0.3   8         0.6               0.5555556  300      0.5219990  0.6449570
  0.3   8         0.6               0.5555556  350      0.5278632  0.6383805
  0.3   8         0.6               0.5555556  400      0.5315193  0.6352088
  0.3   8         0.6               0.5555556  450      0.5346027  0.6321893
  0.3   8         0.6               0.5555556  500      0.5373725  0.6294090
  0.3   8         0.6               0.6111111   50      0.4618030  0.7070855
  0.3   8         0.6               0.6111111  100      0.4803504  0.6879153
  0.3   8         0.6               0.6111111  150      0.4974084  0.6695973
  0.3   8         0.6               0.6111111  200      0.5079873  0.6593205
  0.3   8         0.6               0.6111111  250      0.5144362  0.6531346
  0.3   8         0.6               0.6111111  300      0.5194429  0.6476667
  0.3   8         0.6               0.6111111  350      0.5233515  0.6438296
  0.3   8         0.6               0.6111111  400      0.5277669  0.6398412
  0.3   8         0.6               0.6111111  450      0.5319135  0.6357098
  0.3   8         0.6               0.6111111  500      0.5346919  0.6329324
  0.3   8         0.6               0.6666667   50      0.4551305  0.7143574
  0.3   8         0.6               0.6666667  100      0.4741927  0.6948377
  0.3   8         0.6               0.6666667  150      0.4867657  0.6818104
  0.3   8         0.6               0.6666667  200      0.4969356  0.6716229
  0.3   8         0.6               0.6666667  250      0.5055149  0.6622949
  0.3   8         0.6               0.6666667  300      0.5109452  0.6564221
  0.3   8         0.6               0.6666667  350      0.5134246  0.6540776
  0.3   8         0.6               0.6666667  400      0.5184430  0.6493350
  0.3   8         0.6               0.6666667  450      0.5225613  0.6448229
  0.3   8         0.6               0.6666667  500      0.5257994  0.6413382
  0.3   8         0.6               0.7222222   50      0.4549296  0.7156669
  0.3   8         0.6               0.7222222  100      0.4724407  0.6971563
  0.3   8         0.6               0.7222222  150      0.4823296  0.6872302
  0.3   8         0.6               0.7222222  200      0.4912268  0.6779038
  0.3   8         0.6               0.7222222  250      0.5008386  0.6675407
  0.3   8         0.6               0.7222222  300      0.5044540  0.6642897
  0.3   8         0.6               0.7222222  350      0.5099584  0.6584722
  0.3   8         0.6               0.7222222  400      0.5131902  0.6547490
  0.3   8         0.6               0.7222222  450      0.5163201  0.6514517
  0.3   8         0.6               0.7222222  500      0.5195374  0.6480125
  0.3   8         0.6               0.7777778   50      0.4609411  0.7074307
  0.3   8         0.6               0.7777778  100      0.4793037  0.6889911
  0.3   8         0.6               0.7777778  150      0.4931625  0.6747209
  0.3   8         0.6               0.7777778  200      0.5028519  0.6650038
  0.3   8         0.6               0.7777778  250      0.5097433  0.6576028
  0.3   8         0.6               0.7777778  300      0.5163967  0.6503557
  0.3   8         0.6               0.7777778  350      0.5218798  0.6450491
  0.3   8         0.6               0.7777778  400      0.5266537  0.6397570
  0.3   8         0.6               0.7777778  450      0.5289861  0.6376620
  0.3   8         0.6               0.7777778  500      0.5307245  0.6362334
  0.3   8         0.6               0.8333333   50      0.4483935  0.7232203
  0.3   8         0.6               0.8333333  100      0.4683458  0.7019835
  0.3   8         0.6               0.8333333  150      0.4818091  0.6876846
  0.3   8         0.6               0.8333333  200      0.4904054  0.6784543
  0.3   8         0.6               0.8333333  250      0.4986126  0.6699256
  0.3   8         0.6               0.8333333  300      0.5036183  0.6647741
  0.3   8         0.6               0.8333333  350      0.5081179  0.6596691
  0.3   8         0.6               0.8333333  400      0.5108632  0.6573489
  0.3   8         0.6               0.8333333  450      0.5136601  0.6544075
  0.3   8         0.6               0.8333333  500      0.5171703  0.6505368
  0.3   8         0.6               0.8888889   50      0.4523520  0.7185869
  0.3   8         0.6               0.8888889  100      0.4708152  0.6992180
  0.3   8         0.6               0.8888889  150      0.4829588  0.6869564
  0.3   8         0.6               0.8888889  200      0.4942934  0.6749398
  0.3   8         0.6               0.8888889  250      0.5006797  0.6685182
  0.3   8         0.6               0.8888889  300      0.5068405  0.6621484
  0.3   8         0.6               0.8888889  350      0.5110711  0.6579039
  0.3   8         0.6               0.8888889  400      0.5147925  0.6542702
  0.3   8         0.6               0.8888889  450      0.5176439  0.6513263
  0.3   8         0.6               0.8888889  500      0.5196829  0.6494218
  0.3   8         0.6               0.9444444   50      0.4490569  0.7223323
  0.3   8         0.6               0.9444444  100      0.4720262  0.6975839
  0.3   8         0.6               0.9444444  150      0.4832461  0.6856099
  0.3   8         0.6               0.9444444  200      0.4936102  0.6748456
  0.3   8         0.6               0.9444444  250      0.5015483  0.6663217
  0.3   8         0.6               0.9444444  300      0.5086464  0.6590087
  0.3   8         0.6               0.9444444  350      0.5126109  0.6551724
  0.3   8         0.6               0.9444444  400      0.5163713  0.6510733
  0.3   8         0.6               0.9444444  450      0.5196636  0.6477004
  0.3   8         0.6               0.9444444  500      0.5224023  0.6449791
  0.3   8         0.6               1.0000000   50      0.4551877  0.7148573
  0.3   8         0.6               1.0000000  100      0.4670550  0.7025870
  0.3   8         0.6               1.0000000  150      0.4752642  0.6941513
  0.3   8         0.6               1.0000000  200      0.4835960  0.6853177
  0.3   8         0.6               1.0000000  250      0.4906310  0.6781774
  0.3   8         0.6               1.0000000  300      0.4955836  0.6728144
  0.3   8         0.6               1.0000000  350      0.5001851  0.6678536
  0.3   8         0.6               1.0000000  400      0.5042591  0.6635975
  0.3   8         0.6               1.0000000  450      0.5082455  0.6594611
  0.3   8         0.6               1.0000000  500      0.5109058  0.6567267
  0.3   8         0.8               0.5000000   50      0.4621619  0.7084138
  0.3   8         0.8               0.5000000  100      0.4869492  0.6833986
  0.3   8         0.8               0.5000000  150      0.4987214  0.6716861
  0.3   8         0.8               0.5000000  200      0.5073228  0.6622024
  0.3   8         0.8               0.5000000  250      0.5166133  0.6534675
  0.3   8         0.8               0.5000000  300      0.5220474  0.6478766
  0.3   8         0.8               0.5000000  350      0.5281631  0.6412901
  0.3   8         0.8               0.5000000  400      0.5321610  0.6368119
  0.3   8         0.8               0.5000000  450      0.5344133  0.6358972
  0.3   8         0.8               0.5000000  500      0.5352324  0.6351005
  0.3   8         0.8               0.5555556   50      0.4521415  0.7192986
  0.3   8         0.8               0.5555556  100      0.4762145  0.6937060
  0.3   8         0.8               0.5555556  150      0.4898812  0.6799526
  0.3   8         0.8               0.5555556  200      0.4985399  0.6714422
  0.3   8         0.8               0.5555556  250      0.5060528  0.6638355
  0.3   8         0.8               0.5555556  300      0.5128910  0.6562290
  0.3   8         0.8               0.5555556  350      0.5180165  0.6508048
  0.3   8         0.8               0.5555556  400      0.5193942  0.6491073
  0.3   8         0.8               0.5555556  450      0.5227245  0.6448204
  0.3   8         0.8               0.5555556  500      0.5243213  0.6437631
  0.3   8         0.8               0.6111111   50      0.4611911  0.7101649
  0.3   8         0.8               0.6111111  100      0.4878880  0.6829935
  0.3   8         0.8               0.6111111  150      0.5070512  0.6630291
  0.3   8         0.8               0.6111111  200      0.5186766  0.6507270
  0.3   8         0.8               0.6111111  250      0.5255507  0.6444109
  0.3   8         0.8               0.6111111  300      0.5306564  0.6383668
  0.3   8         0.8               0.6111111  350      0.5338596  0.6352383
  0.3   8         0.8               0.6111111  400      0.5360434  0.6333530
  0.3   8         0.8               0.6111111  450      0.5380354  0.6317006
  0.3   8         0.8               0.6111111  500      0.5439098  0.6250715
  0.3   8         0.8               0.6666667   50      0.4650548  0.7044570
  0.3   8         0.8               0.6666667  100      0.4886434  0.6800265
  0.3   8         0.8               0.6666667  150      0.5007860  0.6677688
  0.3   8         0.8               0.6666667  200      0.5085804  0.6598256
  0.3   8         0.8               0.6666667  250      0.5149340  0.6532724
  0.3   8         0.8               0.6666667  300      0.5201037  0.6481362
  0.3   8         0.8               0.6666667  350      0.5247886  0.6437275
  0.3   8         0.8               0.6666667  400      0.5294471  0.6387583
  0.3   8         0.8               0.6666667  450      0.5308497  0.6374106
  0.3   8         0.8               0.6666667  500      0.5332905  0.6354383
  0.3   8         0.8               0.7222222   50      0.4612604  0.7097989
  0.3   8         0.8               0.7222222  100      0.4923443  0.6770885
  0.3   8         0.8               0.7222222  150      0.5052911  0.6636301
  0.3   8         0.8               0.7222222  200      0.5144070  0.6542198
  0.3   8         0.8               0.7222222  250      0.5215767  0.6465527
  0.3   8         0.8               0.7222222  300      0.5265495  0.6416602
  0.3   8         0.8               0.7222222  350      0.5292124  0.6390194
  0.3   8         0.8               0.7222222  400      0.5328375  0.6349909
  0.3   8         0.8               0.7222222  450      0.5347255  0.6330584
  0.3   8         0.8               0.7222222  500      0.5371192  0.6307590
  0.3   8         0.8               0.7777778   50      0.4563273  0.7137027
  0.3   8         0.8               0.7777778  100      0.4792203  0.6895280
  0.3   8         0.8               0.7777778  150      0.4952866  0.6726819
  0.3   8         0.8               0.7777778  200      0.5039352  0.6642578
  0.3   8         0.8               0.7777778  250      0.5105610  0.6577387
  0.3   8         0.8               0.7777778  300      0.5139080  0.6544099
  0.3   8         0.8               0.7777778  350      0.5164609  0.6523732
  0.3   8         0.8               0.7777778  400      0.5197424  0.6487626
  0.3   8         0.8               0.7777778  450      0.5227368  0.6454215
  0.3   8         0.8               0.7777778  500      0.5249612  0.6432905
  0.3   8         0.8               0.8333333   50      0.4526921  0.7189093
  0.3   8         0.8               0.8333333  100      0.4747394  0.6961588
  0.3   8         0.8               0.8333333  150      0.4904756  0.6801539
  0.3   8         0.8               0.8333333  200      0.4981454  0.6724064
  0.3   8         0.8               0.8333333  250      0.5045780  0.6657668
  0.3   8         0.8               0.8333333  300      0.5074355  0.6632742
  0.3   8         0.8               0.8333333  350      0.5101349  0.6603108
  0.3   8         0.8               0.8333333  400      0.5123309  0.6580087
  0.3   8         0.8               0.8333333  450      0.5140535  0.6567757
  0.3   8         0.8               0.8333333  500      0.5166003  0.6542794
  0.3   8         0.8               0.8888889   50      0.4554869  0.7147360
  0.3   8         0.8               0.8888889  100      0.4775462  0.6915467
  0.3   8         0.8               0.8888889  150      0.4916849  0.6769807
  0.3   8         0.8               0.8888889  200      0.5015676  0.6668577
  0.3   8         0.8               0.8888889  250      0.5072106  0.6607959
  0.3   8         0.8               0.8888889  300      0.5114285  0.6567227
  0.3   8         0.8               0.8888889  350      0.5136112  0.6547578
  0.3   8         0.8               0.8888889  400      0.5172300  0.6507209
  0.3   8         0.8               0.8888889  450      0.5185869  0.6494909
  0.3   8         0.8               0.8888889  500      0.5203167  0.6475470
  0.3   8         0.8               0.9444444   50      0.4566894  0.7143497
  0.3   8         0.8               0.9444444  100      0.4750416  0.6953938
  0.3   8         0.8               0.9444444  150      0.4893808  0.6805649
  0.3   8         0.8               0.9444444  200      0.4987392  0.6706608
  0.3   8         0.8               0.9444444  250      0.5065692  0.6622762
  0.3   8         0.8               0.9444444  300      0.5110940  0.6575284
  0.3   8         0.8               0.9444444  350      0.5139404  0.6550384
  0.3   8         0.8               0.9444444  400      0.5170789  0.6514605
  0.3   8         0.8               0.9444444  450      0.5185278  0.6501850
  0.3   8         0.8               0.9444444  500      0.5184734  0.6503361
  0.3   8         0.8               1.0000000   50      0.4586153  0.7113746
  0.3   8         0.8               1.0000000  100      0.4708521  0.6988527
  0.3   8         0.8               1.0000000  150      0.4818759  0.6869926
  0.3   8         0.8               1.0000000  200      0.4904938  0.6776353
  0.3   8         0.8               1.0000000  250      0.4961908  0.6716236
  0.3   8         0.8               1.0000000  300      0.5014148  0.6661354
  0.3   8         0.8               1.0000000  350      0.5066257  0.6607155
  0.3   8         0.8               1.0000000  400      0.5098282  0.6574030
  0.3   8         0.8               1.0000000  450      0.5128424  0.6541766
  0.3   8         0.8               1.0000000  500      0.5149556  0.6518889
  0.3   9         0.6               0.5000000   50      0.4671057  0.7007799
  0.3   9         0.6               0.5000000  100      0.4837613  0.6837413
  0.3   9         0.6               0.5000000  150      0.4950674  0.6716469
  0.3   9         0.6               0.5000000  200      0.5053385  0.6611489
  0.3   9         0.6               0.5000000  250      0.5149783  0.6510170
  0.3   9         0.6               0.5000000  300      0.5172815  0.6498854
  0.3   9         0.6               0.5000000  350      0.5243820  0.6423622
  0.3   9         0.6               0.5000000  400      0.5268650  0.6404506
  0.3   9         0.6               0.5000000  450      0.5310728  0.6360828
  0.3   9         0.6               0.5000000  500      0.5372170  0.6295761
  0.3   9         0.6               0.5555556   50      0.4729938  0.6945648
  0.3   9         0.6               0.5555556  100      0.4950096  0.6703707
  0.3   9         0.6               0.5555556  150      0.5091942  0.6560111
  0.3   9         0.6               0.5555556  200      0.5170678  0.6477795
  0.3   9         0.6               0.5555556  250      0.5225132  0.6428626
  0.3   9         0.6               0.5555556  300      0.5304159  0.6344793
  0.3   9         0.6               0.5555556  350      0.5345038  0.6298591
  0.3   9         0.6               0.5555556  400      0.5383601  0.6258420
  0.3   9         0.6               0.5555556  450      0.5420149  0.6223367
  0.3   9         0.6               0.5555556  500      0.5445905  0.6198072
  0.3   9         0.6               0.6111111   50      0.4629965  0.7052681
  0.3   9         0.6               0.6111111  100      0.4812156  0.6866766
  0.3   9         0.6               0.6111111  150      0.4960436  0.6714725
  0.3   9         0.6               0.6111111  200      0.5050880  0.6618000
  0.3   9         0.6               0.6111111  250      0.5101714  0.6571523
  0.3   9         0.6               0.6111111  300      0.5144026  0.6527333
  0.3   9         0.6               0.6111111  350      0.5195008  0.6477092
  0.3   9         0.6               0.6111111  400      0.5213081  0.6454517
  0.3   9         0.6               0.6111111  450      0.5253146  0.6416520
  0.3   9         0.6               0.6111111  500      0.5287685  0.6381180
  0.3   9         0.6               0.6666667   50      0.4686392  0.6995112
  0.3   9         0.6               0.6666667  100      0.4889856  0.6781325
  0.3   9         0.6               0.6666667  150      0.5060839  0.6598363
  0.3   9         0.6               0.6666667  200      0.5142735  0.6516886
  0.3   9         0.6               0.6666667  250      0.5214207  0.6451545
  0.3   9         0.6               0.6666667  300      0.5261347  0.6401617
  0.3   9         0.6               0.6666667  350      0.5304375  0.6352111
  0.3   9         0.6               0.6666667  400      0.5332037  0.6324012
  0.3   9         0.6               0.6666667  450      0.5365640  0.6290988
  0.3   9         0.6               0.6666667  500      0.5409698  0.6235468
  0.3   9         0.6               0.7222222   50      0.4686043  0.6998912
  0.3   9         0.6               0.7222222  100      0.4896184  0.6788547
  0.3   9         0.6               0.7222222  150      0.5029370  0.6653252
  0.3   9         0.6               0.7222222  200      0.5126479  0.6551290
  0.3   9         0.6               0.7222222  250      0.5205337  0.6470053
  0.3   9         0.6               0.7222222  300      0.5248459  0.6429861
  0.3   9         0.6               0.7222222  350      0.5297043  0.6380597
  0.3   9         0.6               0.7222222  400      0.5323132  0.6356588
  0.3   9         0.6               0.7222222  450      0.5351663  0.6324158
  0.3   9         0.6               0.7222222  500      0.5384969  0.6293138
  0.3   9         0.6               0.7777778   50      0.4597119  0.7099583
  0.3   9         0.6               0.7777778  100      0.4794851  0.6900722
  0.3   9         0.6               0.7777778  150      0.4953353  0.6732481
  0.3   9         0.6               0.7777778  200      0.5058334  0.6620447
  0.3   9         0.6               0.7777778  250      0.5103477  0.6576877
  0.3   9         0.6               0.7777778  300      0.5159826  0.6520170
  0.3   9         0.6               0.7777778  350      0.5214260  0.6454817
  0.3   9         0.6               0.7777778  400      0.5232810  0.6439899
  0.3   9         0.6               0.7777778  450      0.5256294  0.6417669
  0.3   9         0.6               0.7777778  500      0.5287364  0.6379496
  0.3   9         0.6               0.8333333   50      0.4529500  0.7182907
  0.3   9         0.6               0.8333333  100      0.4725867  0.6975049
  0.3   9         0.6               0.8333333  150      0.4888101  0.6801053
  0.3   9         0.6               0.8333333  200      0.4991239  0.6696764
  0.3   9         0.6               0.8333333  250      0.5050711  0.6637632
  0.3   9         0.6               0.8333333  300      0.5105069  0.6580056
  0.3   9         0.6               0.8333333  350      0.5126651  0.6562921
  0.3   9         0.6               0.8333333  400      0.5171429  0.6512410
  0.3   9         0.6               0.8333333  450      0.5197694  0.6488759
  0.3   9         0.6               0.8333333  500      0.5214459  0.6468782
  0.3   9         0.6               0.8888889   50      0.4648195  0.7024730
  0.3   9         0.6               0.8888889  100      0.4804831  0.6869098
  0.3   9         0.6               0.8888889  150      0.4932672  0.6739606
  0.3   9         0.6               0.8888889  200      0.5030216  0.6638034
  0.3   9         0.6               0.8888889  250      0.5090293  0.6574850
  0.3   9         0.6               0.8888889  300      0.5123790  0.6542435
  0.3   9         0.6               0.8888889  350      0.5171417  0.6493115
  0.3   9         0.6               0.8888889  400      0.5194273  0.6469487
  0.3   9         0.6               0.8888889  450      0.5216955  0.6449769
  0.3   9         0.6               0.8888889  500      0.5249031  0.6415339
  0.3   9         0.6               0.9444444   50      0.4705762  0.6958515
  0.3   9         0.6               0.9444444  100      0.4896043  0.6763203
  0.3   9         0.6               0.9444444  150      0.5022010  0.6632000
  0.3   9         0.6               0.9444444  200      0.5122366  0.6525835
  0.3   9         0.6               0.9444444  250      0.5182830  0.6466416
  0.3   9         0.6               0.9444444  300      0.5237747  0.6410056
  0.3   9         0.6               0.9444444  350      0.5287475  0.6359538
  0.3   9         0.6               0.9444444  400      0.5326973  0.6318483
  0.3   9         0.6               0.9444444  450      0.5344888  0.6299298
  0.3   9         0.6               0.9444444  500      0.5357590  0.6287492
  0.3   9         0.6               1.0000000   50      0.4538763  0.7168456
  0.3   9         0.6               1.0000000  100      0.4669939  0.7026760
  0.3   9         0.6               1.0000000  150      0.4768330  0.6921282
  0.3   9         0.6               1.0000000  200      0.4842457  0.6843024
  0.3   9         0.6               1.0000000  250      0.4907573  0.6773497
  0.3   9         0.6               1.0000000  300      0.4959734  0.6718344
  0.3   9         0.6               1.0000000  350      0.5006662  0.6668730
  0.3   9         0.6               1.0000000  400      0.5044203  0.6629274
  0.3   9         0.6               1.0000000  450      0.5080505  0.6590434
  0.3   9         0.6               1.0000000  500      0.5108884  0.6559788
  0.3   9         0.8               0.5000000   50      0.4725412  0.6958160
  0.3   9         0.8               0.5000000  100      0.4976825  0.6692771
  0.3   9         0.8               0.5000000  150      0.5117191  0.6563368
  0.3   9         0.8               0.5000000  200      0.5204989  0.6474017
  0.3   9         0.8               0.5000000  250      0.5272078  0.6414710
  0.3   9         0.8               0.5000000  300      0.5321230  0.6377038
  0.3   9         0.8               0.5000000  350      0.5329476  0.6370026
  0.3   9         0.8               0.5000000  400      0.5385895  0.6303245
  0.3   9         0.8               0.5000000  450      0.5404927  0.6282908
  0.3   9         0.8               0.5000000  500      0.5407381  0.6288460
  0.3   9         0.8               0.5555556   50      0.4654352  0.7034529
  0.3   9         0.8               0.5555556  100      0.4879064  0.6799809
  0.3   9         0.8               0.5555556  150      0.4996296  0.6675805
  0.3   9         0.8               0.5555556  200      0.5081470  0.6589295
  0.3   9         0.8               0.5555556  250      0.5160557  0.6505959
  0.3   9         0.8               0.5555556  300      0.5200820  0.6473091
  0.3   9         0.8               0.5555556  350      0.5217759  0.6464462
  0.3   9         0.8               0.5555556  400      0.5224970  0.6455388
  0.3   9         0.8               0.5555556  450      0.5239381  0.6441217
  0.3   9         0.8               0.5555556  500      0.5263403  0.6420810
  0.3   9         0.8               0.6111111   50      0.4723581  0.6976212
  0.3   9         0.8               0.6111111  100      0.4964875  0.6725087
  0.3   9         0.8               0.6111111  150      0.5110999  0.6577693
  0.3   9         0.8               0.6111111  200      0.5187905  0.6500151
  0.3   9         0.8               0.6111111  250      0.5254128  0.6434577
  0.3   9         0.8               0.6111111  300      0.5309370  0.6380344
  0.3   9         0.8               0.6111111  350      0.5348689  0.6345324
  0.3   9         0.8               0.6111111  400      0.5383296  0.6305272
  0.3   9         0.8               0.6111111  450      0.5414579  0.6281678
  0.3   9         0.8               0.6111111  500      0.5423297  0.6266267
  0.3   9         0.8               0.6666667   50      0.4674011  0.7016795
  0.3   9         0.8               0.6666667  100      0.4942240  0.6738243
  0.3   9         0.8               0.6666667  150      0.5097071  0.6583757
  0.3   9         0.8               0.6666667  200      0.5202247  0.6477257
  0.3   9         0.8               0.6666667  250      0.5244177  0.6436693
  0.3   9         0.8               0.6666667  300      0.5300200  0.6373961
  0.3   9         0.8               0.6666667  350      0.5313915  0.6360943
  0.3   9         0.8               0.6666667  400      0.5351559  0.6322317
  0.3   9         0.8               0.6666667  450      0.5346338  0.6331351
  0.3   9         0.8               0.6666667  500      0.5401863  0.6260614
  0.3   9         0.8               0.7222222   50      0.4636451  0.7070788
  0.3   9         0.8               0.7222222  100      0.4928283  0.6761225
  0.3   9         0.8               0.7222222  150      0.5074610  0.6609564
  0.3   9         0.8               0.7222222  200      0.5142186  0.6542220
  0.3   9         0.8               0.7222222  250      0.5196266  0.6486213
  0.3   9         0.8               0.7222222  300      0.5237569  0.6446552
  0.3   9         0.8               0.7222222  350      0.5252956  0.6429142
  0.3   9         0.8               0.7222222  400      0.5269137  0.6414633
  0.3   9         0.8               0.7222222  450      0.5288759  0.6395436
  0.3   9         0.8               0.7222222  500      0.5301781  0.6381933
  0.3   9         0.8               0.7777778   50      0.4602291  0.7117044
  0.3   9         0.8               0.7777778  100      0.4871475  0.6830751
  0.3   9         0.8               0.7777778  150      0.5034007  0.6659279
  0.3   9         0.8               0.7777778  200      0.5123733  0.6563384
  0.3   9         0.8               0.7777778  250      0.5169463  0.6518711
  0.3   9         0.8               0.7777778  300      0.5199748  0.6485241
  0.3   9         0.8               0.7777778  350      0.5222367  0.6463930
  0.3   9         0.8               0.7777778  400      0.5237778  0.6447564
  0.3   9         0.8               0.7777778  450      0.5256235  0.6429960
  0.3   9         0.8               0.7777778  500      0.5258072  0.6429111
  0.3   9         0.8               0.8333333   50      0.4657240  0.7026800
  0.3   9         0.8               0.8333333  100      0.4899628  0.6772073
  0.3   9         0.8               0.8333333  150      0.5015676  0.6649643
  0.3   9         0.8               0.8333333  200      0.5094844  0.6567899
  0.3   9         0.8               0.8333333  250      0.5140559  0.6523364
  0.3   9         0.8               0.8333333  300      0.5174167  0.6491494
  0.3   9         0.8               0.8333333  350      0.5213697  0.6450373
  0.3   9         0.8               0.8333333  400      0.5229663  0.6433528
  0.3   9         0.8               0.8333333  450      0.5228135  0.6442041
  0.3   9         0.8               0.8333333  500      0.5240510  0.6423626
  0.3   9         0.8               0.8888889   50      0.4601655  0.7107804
  0.3   9         0.8               0.8888889  100      0.4836191  0.6866096
  0.3   9         0.8               0.8888889  150      0.4959142  0.6736410
  0.3   9         0.8               0.8888889  200      0.5032248  0.6661331
  0.3   9         0.8               0.8888889  250      0.5082361  0.6605353
  0.3   9         0.8               0.8888889  300      0.5107976  0.6584785
  0.3   9         0.8               0.8888889  350      0.5131545  0.6560212
  0.3   9         0.8               0.8888889  400      0.5145836  0.6545103
  0.3   9         0.8               0.8888889  450      0.5167851  0.6524407
  0.3   9         0.8               0.8888889  500      0.5182752  0.6506304
  0.3   9         0.8               0.9444444   50      0.4575745  0.7136263
  0.3   9         0.8               0.9444444  100      0.4823597  0.6871974
  0.3   9         0.8               0.9444444  150      0.4965318  0.6726076
  0.3   9         0.8               0.9444444  200      0.5050183  0.6637406
  0.3   9         0.8               0.9444444  250      0.5105125  0.6582016
  0.3   9         0.8               0.9444444  300      0.5149743  0.6533095
  0.3   9         0.8               0.9444444  350      0.5161793  0.6522551
  0.3   9         0.8               0.9444444  400      0.5172107  0.6508931
  0.3   9         0.8               0.9444444  450      0.5185936  0.6492891
  0.3   9         0.8               0.9444444  500      0.5194895  0.6483021
  0.3   9         0.8               1.0000000   50      0.4516748  0.7203218
  0.3   9         0.8               1.0000000  100      0.4688771  0.7023543
  0.3   9         0.8               1.0000000  150      0.4823672  0.6884800
  0.3   9         0.8               1.0000000  200      0.4909668  0.6794017
  0.3   9         0.8               1.0000000  250      0.4975263  0.6727279
  0.3   9         0.8               1.0000000  300      0.5026738  0.6675977
  0.3   9         0.8               1.0000000  350      0.5065640  0.6635697
  0.3   9         0.8               1.0000000  400      0.5092838  0.6606993
  0.3   9         0.8               1.0000000  450      0.5110612  0.6589755
  0.3   9         0.8               1.0000000  500      0.5120683  0.6579821
  0.3  10         0.6               0.5000000   50      0.4710740  0.6954638
  0.3  10         0.6               0.5000000  100      0.4965280  0.6702967
  0.3  10         0.6               0.5000000  150      0.5109270  0.6551579
  0.3  10         0.6               0.5000000  200      0.5223930  0.6434112
  0.3  10         0.6               0.5000000  250      0.5312771  0.6338059
  0.3  10         0.6               0.5000000  300      0.5355410  0.6293675
  0.3  10         0.6               0.5000000  350      0.5370455  0.6280924
  0.3  10         0.6               0.5000000  400      0.5441000  0.6207452
  0.3  10         0.6               0.5000000  450      0.5474402  0.6176808
  0.3  10         0.6               0.5000000  500      0.5522533  0.6130331
  0.3  10         0.6               0.5555556   50      0.4699516  0.6978729
  0.3  10         0.6               0.5555556  100      0.4907792  0.6765557
  0.3  10         0.6               0.5555556  150      0.5058920  0.6599685
  0.3  10         0.6               0.5555556  200      0.5187901  0.6464285
  0.3  10         0.6               0.5555556  250      0.5249169  0.6403802
  0.3  10         0.6               0.5555556  300      0.5288246  0.6361110
  0.3  10         0.6               0.5555556  350      0.5325813  0.6325533
  0.3  10         0.6               0.5555556  400      0.5344339  0.6315777
  0.3  10         0.6               0.5555556  450      0.5382868  0.6268871
  0.3  10         0.6               0.5555556  500      0.5408111  0.6237068
  0.3  10         0.6               0.6111111   50      0.4642164  0.7041107
  0.3  10         0.6               0.6111111  100      0.4860602  0.6818949
  0.3  10         0.6               0.6111111  150      0.5029669  0.6635208
  0.3  10         0.6               0.6111111  200      0.5096350  0.6571006
  0.3  10         0.6               0.6111111  250      0.5172433  0.6484705
  0.3  10         0.6               0.6111111  300      0.5212124  0.6442347
  0.3  10         0.6               0.6111111  350      0.5259625  0.6395150
  0.3  10         0.6               0.6111111  400      0.5290069  0.6368911
  0.3  10         0.6               0.6111111  450      0.5314326  0.6341894
  0.3  10         0.6               0.6111111  500      0.5327160  0.6332340
  0.3  10         0.6               0.6666667   50      0.4683188  0.7005285
  0.3  10         0.6               0.6666667  100      0.4924987  0.6755484
  0.3  10         0.6               0.6666667  150      0.5067976  0.6610382
  0.3  10         0.6               0.6666667  200      0.5146610  0.6530166
  0.3  10         0.6               0.6666667  250      0.5221738  0.6453278
  0.3  10         0.6               0.6666667  300      0.5273682  0.6400230
  0.3  10         0.6               0.6666667  350      0.5322405  0.6347057
  0.3  10         0.6               0.6666667  400      0.5345274  0.6331562
  0.3  10         0.6               0.6666667  450      0.5396674  0.6272321
  0.3  10         0.6               0.6666667  500      0.5386508  0.6295085
  0.3  10         0.6               0.7222222   50      0.4687213  0.6994782
  0.3  10         0.6               0.7222222  100      0.4910454  0.6759376
  0.3  10         0.6               0.7222222  150      0.5017684  0.6649685
  0.3  10         0.6               0.7222222  200      0.5106596  0.6549361
  0.3  10         0.6               0.7222222  250      0.5144865  0.6507871
  0.3  10         0.6               0.7222222  300      0.5210560  0.6446194
  0.3  10         0.6               0.7222222  350      0.5256031  0.6393346
  0.3  10         0.6               0.7222222  400      0.5282851  0.6368764
  0.3  10         0.6               0.7222222  450      0.5322262  0.6323808
  0.3  10         0.6               0.7222222  500      0.5320711  0.6324887
  0.3  10         0.6               0.7777778   50      0.4685394  0.7000523
  0.3  10         0.6               0.7777778  100      0.4905677  0.6772620
  0.3  10         0.6               0.7777778  150      0.5019371  0.6664023
  0.3  10         0.6               0.7777778  200      0.5101953  0.6577026
  0.3  10         0.6               0.7777778  250      0.5159859  0.6518900
  0.3  10         0.6               0.7777778  300      0.5203834  0.6477025
  0.3  10         0.6               0.7777778  350      0.5243450  0.6434388
  0.3  10         0.6               0.7777778  400      0.5269567  0.6404380
  0.3  10         0.6               0.7777778  450      0.5294681  0.6383729
  0.3  10         0.6               0.7777778  500      0.5306836  0.6373089
  0.3  10         0.6               0.8333333   50      0.4672221  0.7006060
  0.3  10         0.6               0.8333333  100      0.4881560  0.6785011
  0.3  10         0.6               0.8333333  150      0.5002775  0.6655639
  0.3  10         0.6               0.8333333  200      0.5078806  0.6580735
  0.3  10         0.6               0.8333333  250      0.5135385  0.6517737
  0.3  10         0.6               0.8333333  300      0.5193185  0.6457793
  0.3  10         0.6               0.8333333  350      0.5232966  0.6414169
  0.3  10         0.6               0.8333333  400      0.5260779  0.6385311
  0.3  10         0.6               0.8333333  450      0.5284248  0.6360681
  0.3  10         0.6               0.8333333  500      0.5288865  0.6361931
  0.3  10         0.6               0.8888889   50      0.4662985  0.7032670
  0.3  10         0.6               0.8888889  100      0.4924072  0.6754100
  0.3  10         0.6               0.8888889  150      0.5048393  0.6625169
  0.3  10         0.6               0.8888889  200      0.5127100  0.6541983
  0.3  10         0.6               0.8888889  250      0.5177787  0.6490609
  0.3  10         0.6               0.8888889  300      0.5226596  0.6439585
  0.3  10         0.6               0.8888889  350      0.5247575  0.6419807
  0.3  10         0.6               0.8888889  400      0.5264387  0.6404961
  0.3  10         0.6               0.8888889  450      0.5273162  0.6397312
  0.3  10         0.6               0.8888889  500      0.5288798  0.6381753
  0.3  10         0.6               0.9444444   50      0.4623721  0.7070620
  0.3  10         0.6               0.9444444  100      0.4828294  0.6852033
  0.3  10         0.6               0.9444444  150      0.4958156  0.6718251
  0.3  10         0.6               0.9444444  200      0.5038613  0.6635526
  0.3  10         0.6               0.9444444  250      0.5097181  0.6575382
  0.3  10         0.6               0.9444444  300      0.5133369  0.6536161
  0.3  10         0.6               0.9444444  350      0.5162914  0.6505835
  0.3  10         0.6               0.9444444  400      0.5193410  0.6472516
  0.3  10         0.6               0.9444444  450      0.5215156  0.6448833
  0.3  10         0.6               0.9444444  500      0.5232708  0.6431891
  0.3  10         0.6               1.0000000   50      0.4680829  0.7011601
  0.3  10         0.6               1.0000000  100      0.4812935  0.6879291
  0.3  10         0.6               1.0000000  150      0.4909928  0.6780420
  0.3  10         0.6               1.0000000  200      0.4976449  0.6711591
  0.3  10         0.6               1.0000000  250      0.5049670  0.6632191
  0.3  10         0.6               1.0000000  300      0.5103662  0.6572746
  0.3  10         0.6               1.0000000  350      0.5145229  0.6528747
  0.3  10         0.6               1.0000000  400      0.5186805  0.6484518
  0.3  10         0.6               1.0000000  450      0.5216999  0.6452433
  0.3  10         0.6               1.0000000  500      0.5241831  0.6425895
  0.3  10         0.8               0.5000000   50      0.4770741  0.6916715
  0.3  10         0.8               0.5000000  100      0.5026024  0.6659843
  0.3  10         0.8               0.5000000  150      0.5150388  0.6530714
  0.3  10         0.8               0.5000000  200      0.5240461  0.6435849
  0.3  10         0.8               0.5000000  250      0.5286773  0.6392278
  0.3  10         0.8               0.5000000  300      0.5310633  0.6371121
  0.3  10         0.8               0.5000000  350      0.5359709  0.6313012
  0.3  10         0.8               0.5000000  400      0.5384412  0.6288778
  0.3  10         0.8               0.5000000  450      0.5410321  0.6263370
  0.3  10         0.8               0.5000000  500      0.5466583  0.6199718
  0.3  10         0.8               0.5555556   50      0.4805594  0.6884265
  0.3  10         0.8               0.5555556  100      0.5098714  0.6588139
  0.3  10         0.8               0.5555556  150      0.5220139  0.6461729
  0.3  10         0.8               0.5555556  200      0.5302294  0.6390836
  0.3  10         0.8               0.5555556  250      0.5366883  0.6319842
  0.3  10         0.8               0.5555556  300      0.5430434  0.6252723
  0.3  10         0.8               0.5555556  350      0.5459522  0.6231780
  0.3  10         0.8               0.5555556  400      0.5494436  0.6205890
  0.3  10         0.8               0.5555556  450      0.5536601  0.6158812
  0.3  10         0.8               0.5555556  500      0.5538438  0.6156360
  0.3  10         0.8               0.6111111   50      0.4773826  0.6915512
  0.3  10         0.8               0.6111111  100      0.4996585  0.6682531
  0.3  10         0.8               0.6111111  150      0.5114490  0.6560217
  0.3  10         0.8               0.6111111  200      0.5212450  0.6455680
  0.3  10         0.8               0.6111111  250      0.5252797  0.6421828
  0.3  10         0.8               0.6111111  300      0.5303918  0.6371708
  0.3  10         0.8               0.6111111  350      0.5312634  0.6364281
  0.3  10         0.8               0.6111111  400      0.5342860  0.6335600
  0.3  10         0.8               0.6111111  450      0.5369905  0.6306794
  0.3  10         0.8               0.6111111  500      0.5370188  0.6306632
  0.3  10         0.8               0.6666667   50      0.4690549  0.7016399
  0.3  10         0.8               0.6666667  100      0.4959747  0.6734037
  0.3  10         0.8               0.6666667  150      0.5108129  0.6579980
  0.3  10         0.8               0.6666667  200      0.5182032  0.6507365
  0.3  10         0.8               0.6666667  250      0.5219926  0.6469372
  0.3  10         0.8               0.6666667  300      0.5264011  0.6421216
  0.3  10         0.8               0.6666667  350      0.5279310  0.6397442
  0.3  10         0.8               0.6666667  400      0.5293635  0.6383242
  0.3  10         0.8               0.6666667  450      0.5290202  0.6383917
  0.3  10         0.8               0.6666667  500      0.5310629  0.6364660
  0.3  10         0.8               0.7222222   50      0.4734098  0.6955935
  0.3  10         0.8               0.7222222  100      0.5009237  0.6667658
  0.3  10         0.8               0.7222222  150      0.5121858  0.6545155
  0.3  10         0.8               0.7222222  200      0.5178454  0.6485182
  0.3  10         0.8               0.7222222  250      0.5214583  0.6445126
  0.3  10         0.8               0.7222222  300      0.5220167  0.6438446
  0.3  10         0.8               0.7222222  350      0.5251975  0.6402599
  0.3  10         0.8               0.7222222  400      0.5280440  0.6371089
  0.3  10         0.8               0.7222222  450      0.5282421  0.6368797
  0.3  10         0.8               0.7222222  500      0.5312489  0.6343042
  0.3  10         0.8               0.7777778   50      0.4640907  0.7068057
  0.3  10         0.8               0.7777778  100      0.4898428  0.6793907
  0.3  10         0.8               0.7777778  150      0.5053035  0.6632067
  0.3  10         0.8               0.7777778  200      0.5126578  0.6554126
  0.3  10         0.8               0.7777778  250      0.5148872  0.6530155
  0.3  10         0.8               0.7777778  300      0.5169780  0.6505535
  0.3  10         0.8               0.7777778  350      0.5177940  0.6503402
  0.3  10         0.8               0.7777778  400      0.5201564  0.6482236
  0.3  10         0.8               0.7777778  450      0.5204214  0.6478146
  0.3  10         0.8               0.7777778  500      0.5229893  0.6448058
  0.3  10         0.8               0.8333333   50      0.4675782  0.7014547
  0.3  10         0.8               0.8333333  100      0.4947504  0.6727314
  0.3  10         0.8               0.8333333  150      0.5056676  0.6614984
  0.3  10         0.8               0.8333333  200      0.5102270  0.6569291
  0.3  10         0.8               0.8333333  250      0.5134954  0.6535182
  0.3  10         0.8               0.8333333  300      0.5150937  0.6518344
  0.3  10         0.8               0.8333333  350      0.5159179  0.6510010
  0.3  10         0.8               0.8333333  400      0.5170944  0.6500927
  0.3  10         0.8               0.8333333  450      0.5183816  0.6483753
  0.3  10         0.8               0.8333333  500      0.5189960  0.6477499
  0.3  10         0.8               0.8888889   50      0.4682216  0.7015208
  0.3  10         0.8               0.8888889  100      0.4932451  0.6755685
  0.3  10         0.8               0.8888889  150      0.5057218  0.6621340
  0.3  10         0.8               0.8888889  200      0.5117442  0.6558623
  0.3  10         0.8               0.8888889  250      0.5158454  0.6518493
  0.3  10         0.8               0.8888889  300      0.5190162  0.6487036
  0.3  10         0.8               0.8888889  350      0.5211436  0.6465099
  0.3  10         0.8               0.8888889  400      0.5202915  0.6476138
  0.3  10         0.8               0.8888889  450      0.5226696  0.6451303
  0.3  10         0.8               0.8888889  500      0.5227235  0.6450541
  0.3  10         0.8               0.9444444   50      0.4696641  0.7000182
  0.3  10         0.8               0.9444444  100      0.4935902  0.6746628
  0.3  10         0.8               0.9444444  150      0.5062658  0.6615238
  0.3  10         0.8               0.9444444  200      0.5141632  0.6531616
  0.3  10         0.8               0.9444444  250      0.5171943  0.6502878
  0.3  10         0.8               0.9444444  300      0.5185953  0.6489461
  0.3  10         0.8               0.9444444  350      0.5207930  0.6467300
  0.3  10         0.8               0.9444444  400      0.5221380  0.6452389
  0.3  10         0.8               0.9444444  450      0.5233539  0.6439545
  0.3  10         0.8               0.9444444  500      0.5230253  0.6441631
  0.3  10         0.8               1.0000000   50      0.4666166  0.7031700
  0.3  10         0.8               1.0000000  100      0.4831791  0.6855376
  0.3  10         0.8               1.0000000  150      0.4935176  0.6747416
  0.3  10         0.8               1.0000000  200      0.5031263  0.6646068
  0.3  10         0.8               1.0000000  250      0.5087673  0.6587551
  0.3  10         0.8               1.0000000  300      0.5131297  0.6540726
  0.3  10         0.8               1.0000000  350      0.5164430  0.6506176
  0.3  10         0.8               1.0000000  400      0.5180433  0.6489518
  0.3  10         0.8               1.0000000  450      0.5183836  0.6485879
  0.3  10         0.8               1.0000000  500      0.5183836  0.6485879
  0.4   1         0.6               0.5000000   50      0.5035684  0.6516293
  0.4   1         0.6               0.5000000  100      0.5021963  0.6525805
  0.4   1         0.6               0.5000000  150      0.5021020  0.6520618
  0.4   1         0.6               0.5000000  200      0.5031782  0.6516826
  0.4   1         0.6               0.5000000  250      0.5044488  0.6504553
  0.4   1         0.6               0.5000000  300      0.5045447  0.6499942
  0.4   1         0.6               0.5000000  350      0.5075618  0.6460005
  0.4   1         0.6               0.5000000  400      0.5119821  0.6401951
  0.4   1         0.6               0.5000000  450      0.5099334  0.6427927
  0.4   1         0.6               0.5000000  500      0.5081684  0.6454748
  0.4   1         0.6               0.5555556   50      0.5034089  0.6516684
  0.4   1         0.6               0.5555556  100      0.5008746  0.6539323
  0.4   1         0.6               0.5555556  150      0.4986811  0.6570810
  0.4   1         0.6               0.5555556  200      0.5016192  0.6529495
  0.4   1         0.6               0.5555556  250      0.5083951  0.6435620
  0.4   1         0.6               0.5555556  300      0.5027677  0.6511276
  0.4   1         0.6               0.5555556  350      0.5055116  0.6475249
  0.4   1         0.6               0.5555556  400      0.5017873  0.6525654
  0.4   1         0.6               0.5555556  450      0.5080123  0.6450154
  0.4   1         0.6               0.5555556  500      0.5080959  0.6447703
  0.4   1         0.6               0.6111111   50      0.5020565  0.6519124
  0.4   1         0.6               0.6111111  100      0.5026780  0.6517486
  0.4   1         0.6               0.6111111  150      0.4963324  0.6601689
  0.4   1         0.6               0.6111111  200      0.5011627  0.6541015
  0.4   1         0.6               0.6111111  250      0.5003895  0.6548310
  0.4   1         0.6               0.6111111  300      0.5001425  0.6550596
  0.4   1         0.6               0.6111111  350      0.5009977  0.6544850
  0.4   1         0.6               0.6111111  400      0.5030934  0.6518553
  0.4   1         0.6               0.6111111  450      0.5078031  0.6456791
  0.4   1         0.6               0.6111111  500      0.5035658  0.6510580
  0.4   1         0.6               0.6666667   50      0.5032127  0.6508408
  0.4   1         0.6               0.6666667  100      0.4999381  0.6549706
  0.4   1         0.6               0.6666667  150      0.5043494  0.6494023
  0.4   1         0.6               0.6666667  200      0.5062218  0.6469659
  0.4   1         0.6               0.6666667  250      0.5039767  0.6501828
  0.4   1         0.6               0.6666667  300      0.5101979  0.6420833
  0.4   1         0.6               0.6666667  350      0.5027849  0.6521460
  0.4   1         0.6               0.6666667  400      0.5048114  0.6490607
  0.4   1         0.6               0.6666667  450      0.5097751  0.6426503
  0.4   1         0.6               0.6666667  500      0.5076509  0.6455097
  0.4   1         0.6               0.7222222   50      0.5026370  0.6521530
  0.4   1         0.6               0.7222222  100      0.5001169  0.6551420
  0.4   1         0.6               0.7222222  150      0.4984521  0.6583772
  0.4   1         0.6               0.7222222  200      0.4981789  0.6582683
  0.4   1         0.6               0.7222222  250      0.5004062  0.6547023
  0.4   1         0.6               0.7222222  300      0.5069150  0.6469291
  0.4   1         0.6               0.7222222  350      0.5068177  0.6469906
  0.4   1         0.6               0.7222222  400      0.5050238  0.6497148
  0.4   1         0.6               0.7222222  450      0.5050257  0.6500226
  0.4   1         0.6               0.7222222  500      0.5049786  0.6494689
  0.4   1         0.6               0.7777778   50      0.5019853  0.6529471
  0.4   1         0.6               0.7777778  100      0.4980131  0.6582773
  0.4   1         0.6               0.7777778  150      0.4982613  0.6581497
  0.4   1         0.6               0.7777778  200      0.5025554  0.6528840
  0.4   1         0.6               0.7777778  250      0.5033316  0.6522106
  0.4   1         0.6               0.7777778  300      0.5004788  0.6555019
  0.4   1         0.6               0.7777778  350      0.5033781  0.6520806
  0.4   1         0.6               0.7777778  400      0.5054890  0.6487093
  0.4   1         0.6               0.7777778  450      0.5052775  0.6490407
  0.4   1         0.6               0.7777778  500      0.5062547  0.6481745
  0.4   1         0.6               0.8333333   50      0.4997597  0.6559340
  0.4   1         0.6               0.8333333  100      0.4978285  0.6577742
  0.4   1         0.6               0.8333333  150      0.4971676  0.6588724
  0.4   1         0.6               0.8333333  200      0.5016669  0.6530049
  0.4   1         0.6               0.8333333  250      0.5034489  0.6509591
  0.4   1         0.6               0.8333333  300      0.5045474  0.6495360
  0.4   1         0.6               0.8333333  350      0.5065965  0.6473797
  0.4   1         0.6               0.8333333  400      0.5088444  0.6441833
  0.4   1         0.6               0.8333333  450      0.5065052  0.6469916
  0.4   1         0.6               0.8333333  500      0.5095487  0.6431190
  0.4   1         0.6               0.8888889   50      0.5004803  0.6547824
  0.4   1         0.6               0.8888889  100      0.4957713  0.6607488
  0.4   1         0.6               0.8888889  150      0.4972648  0.6588148
  0.4   1         0.6               0.8888889  200      0.4981130  0.6579545
  0.4   1         0.6               0.8888889  250      0.5001282  0.6552069
  0.4   1         0.6               0.8888889  300      0.5018352  0.6533633
  0.4   1         0.6               0.8888889  350      0.5029534  0.6518732
  0.4   1         0.6               0.8888889  400      0.5045503  0.6500522
  0.4   1         0.6               0.8888889  450      0.5039727  0.6507058
  0.4   1         0.6               0.8888889  500      0.5053276  0.6493937
  0.4   1         0.6               0.9444444   50      0.5031220  0.6512405
  0.4   1         0.6               0.9444444  100      0.4958155  0.6605887
  0.4   1         0.6               0.9444444  150      0.4965756  0.6597397
  0.4   1         0.6               0.9444444  200      0.4974262  0.6586676
  0.4   1         0.6               0.9444444  250      0.5010097  0.6540732
  0.4   1         0.6               0.9444444  300      0.5005722  0.6548443
  0.4   1         0.6               0.9444444  350      0.5018766  0.6534748
  0.4   1         0.6               0.9444444  400      0.5029434  0.6518891
  0.4   1         0.6               0.9444444  450      0.5051355  0.6492161
  0.4   1         0.6               0.9444444  500      0.5048087  0.6497197
  0.4   1         0.6               1.0000000   50      0.4993298  0.6567132
  0.4   1         0.6               1.0000000  100      0.4943920  0.6624249
  0.4   1         0.6               1.0000000  150      0.4936171  0.6635062
  0.4   1         0.6               1.0000000  200      0.4932836  0.6640480
  0.4   1         0.6               1.0000000  250      0.4932040  0.6643452
  0.4   1         0.6               1.0000000  300      0.4933566  0.6644727
  0.4   1         0.6               1.0000000  350      0.4942122  0.6634296
  0.4   1         0.6               1.0000000  400      0.4953442  0.6620775
  0.4   1         0.6               1.0000000  450      0.4953368  0.6621480
  0.4   1         0.6               1.0000000  500      0.4963145  0.6608925
  0.4   1         0.8               0.5000000   50      0.5060440  0.6470604
  0.4   1         0.8               0.5000000  100      0.5000235  0.6552317
  0.4   1         0.8               0.5000000  150      0.5022573  0.6525691
  0.4   1         0.8               0.5000000  200      0.5061332  0.6473822
  0.4   1         0.8               0.5000000  250      0.5030069  0.6510988
  0.4   1         0.8               0.5000000  300      0.5059740  0.6470251
  0.4   1         0.8               0.5000000  350      0.5106776  0.6422033
  0.4   1         0.8               0.5000000  400      0.5092795  0.6439825
  0.4   1         0.8               0.5000000  450      0.5097564  0.6432730
  0.4   1         0.8               0.5000000  500      0.5089407  0.6445838
  0.4   1         0.8               0.5555556   50      0.5067199  0.6471200
  0.4   1         0.8               0.5555556  100      0.5026258  0.6519876
  0.4   1         0.8               0.5555556  150      0.5006259  0.6545850
  0.4   1         0.8               0.5555556  200      0.5057497  0.6480248
  0.4   1         0.8               0.5555556  250      0.5089844  0.6431732
  0.4   1         0.8               0.5555556  300      0.5085701  0.6444114
  0.4   1         0.8               0.5555556  350      0.5084991  0.6448312
  0.4   1         0.8               0.5555556  400      0.5078800  0.6455287
  0.4   1         0.8               0.5555556  450      0.5124069  0.6399747
  0.4   1         0.8               0.5555556  500      0.5142587  0.6372534
  0.4   1         0.8               0.6111111   50      0.5031097  0.6507925
  0.4   1         0.8               0.6111111  100      0.5013635  0.6530688
  0.4   1         0.8               0.6111111  150      0.5017502  0.6529833
  0.4   1         0.8               0.6111111  200      0.5023594  0.6525060
  0.4   1         0.8               0.6111111  250      0.5098983  0.6422667
  0.4   1         0.8               0.6111111  300      0.5115674  0.6407281
  0.4   1         0.8               0.6111111  350      0.5110519  0.6407326
  0.4   1         0.8               0.6111111  400      0.5119155  0.6407150
  0.4   1         0.8               0.6111111  450      0.5049659  0.6482128
  0.4   1         0.8               0.6111111  500      0.5116605  0.6403376
  0.4   1         0.8               0.6666667   50      0.5008771  0.6534420
  0.4   1         0.8               0.6666667  100      0.5041636  0.6499413
  0.4   1         0.8               0.6666667  150      0.5035810  0.6503608
  0.4   1         0.8               0.6666667  200      0.5026550  0.6519731
  0.4   1         0.8               0.6666667  250      0.5021947  0.6528958
  0.4   1         0.8               0.6666667  300      0.5025402  0.6524465
  0.4   1         0.8               0.6666667  350      0.5043942  0.6496325
  0.4   1         0.8               0.6666667  400      0.5035205  0.6512012
  0.4   1         0.8               0.6666667  450      0.5088321  0.6439339
  0.4   1         0.8               0.6666667  500      0.5075947  0.6459977
  0.4   1         0.8               0.7222222   50      0.4978117  0.6583637
  0.4   1         0.8               0.7222222  100      0.4965085  0.6602150
  0.4   1         0.8               0.7222222  150      0.4970652  0.6593608
  0.4   1         0.8               0.7222222  200      0.4984331  0.6580282
  0.4   1         0.8               0.7222222  250      0.5027033  0.6523450
  0.4   1         0.8               0.7222222  300      0.5032090  0.6520853
  0.4   1         0.8               0.7222222  350      0.5042644  0.6501310
  0.4   1         0.8               0.7222222  400      0.5079342  0.6457825
  0.4   1         0.8               0.7222222  450      0.5082965  0.6453341
  0.4   1         0.8               0.7222222  500      0.5095125  0.6440603
  0.4   1         0.8               0.7777778   50      0.5005468  0.6538038
  0.4   1         0.8               0.7777778  100      0.5030575  0.6512697
  0.4   1         0.8               0.7777778  150      0.5008990  0.6547601
  0.4   1         0.8               0.7777778  200      0.5021823  0.6531242
  0.4   1         0.8               0.7777778  250      0.5017005  0.6537204
  0.4   1         0.8               0.7777778  300      0.5055635  0.6485584
  0.4   1         0.8               0.7777778  350      0.5048456  0.6497368
  0.4   1         0.8               0.7777778  400      0.5075971  0.6457329
  0.4   1         0.8               0.7777778  450      0.5121520  0.6404688
  0.4   1         0.8               0.7777778  500      0.5105104  0.6417848
  0.4   1         0.8               0.8333333   50      0.4930617  0.6643344
  0.4   1         0.8               0.8333333  100      0.4944830  0.6623921
  0.4   1         0.8               0.8333333  150      0.4987364  0.6572772
  0.4   1         0.8               0.8333333  200      0.4978355  0.6581187
  0.4   1         0.8               0.8333333  250      0.5034429  0.6504856
  0.4   1         0.8               0.8333333  300      0.5020030  0.6523816
  0.4   1         0.8               0.8333333  350      0.5022577  0.6519613
  0.4   1         0.8               0.8333333  400      0.5040927  0.6499539
  0.4   1         0.8               0.8333333  450      0.5026674  0.6514631
  0.4   1         0.8               0.8333333  500      0.5051251  0.6486572
  0.4   1         0.8               0.8888889   50      0.4980259  0.6577381
  0.4   1         0.8               0.8888889  100      0.4954530  0.6611533
  0.4   1         0.8               0.8888889  150      0.4996491  0.6557245
  0.4   1         0.8               0.8888889  200      0.5013608  0.6533545
  0.4   1         0.8               0.8888889  250      0.4999357  0.6553444
  0.4   1         0.8               0.8888889  300      0.5030296  0.6515640
  0.4   1         0.8               0.8888889  350      0.5041311  0.6501489
  0.4   1         0.8               0.8888889  400      0.5035092  0.6510120
  0.4   1         0.8               0.8888889  450      0.5030858  0.6514202
  0.4   1         0.8               0.8888889  500      0.5036185  0.6508217
  0.4   1         0.8               0.9444444   50      0.5003621  0.6543480
  0.4   1         0.8               0.9444444  100      0.4976335  0.6576345
  0.4   1         0.8               0.9444444  150      0.5003893  0.6543891
  0.4   1         0.8               0.9444444  200      0.5011734  0.6537165
  0.4   1         0.8               0.9444444  250      0.5017340  0.6531663
  0.4   1         0.8               0.9444444  300      0.5024698  0.6520718
  0.4   1         0.8               0.9444444  350      0.5036184  0.6511047
  0.4   1         0.8               0.9444444  400      0.5039947  0.6507982
  0.4   1         0.8               0.9444444  450      0.5054200  0.6486748
  0.4   1         0.8               0.9444444  500      0.5065739  0.6474098
  0.4   1         0.8               1.0000000   50      0.4973439  0.6592034
  0.4   1         0.8               1.0000000  100      0.4947861  0.6619964
  0.4   1         0.8               1.0000000  150      0.4937984  0.6634423
  0.4   1         0.8               1.0000000  200      0.4941766  0.6631224
  0.4   1         0.8               1.0000000  250      0.4934564  0.6643703
  0.4   1         0.8               1.0000000  300      0.4941980  0.6636108
  0.4   1         0.8               1.0000000  350      0.4946302  0.6631425
  0.4   1         0.8               1.0000000  400      0.4957578  0.6616896
  0.4   1         0.8               1.0000000  450      0.4958508  0.6616846
  0.4   1         0.8               1.0000000  500      0.4962363  0.6612421
  0.4   2         0.6               0.5000000   50      0.4619353  0.7047565
  0.4   2         0.6               0.5000000  100      0.4495109  0.7203111
  0.4   2         0.6               0.5000000  150      0.4465179  0.7243660
  0.4   2         0.6               0.5000000  200      0.4469289  0.7246154
  0.4   2         0.6               0.5000000  250      0.4503379  0.7197275
  0.4   2         0.6               0.5000000  300      0.4474065  0.7232244
  0.4   2         0.6               0.5000000  350      0.4488471  0.7221083
  0.4   2         0.6               0.5000000  400      0.4495722  0.7213781
  0.4   2         0.6               0.5000000  450      0.4545069  0.7160997
  0.4   2         0.6               0.5000000  500      0.4548999  0.7157572
  0.4   2         0.6               0.5555556   50      0.4643559  0.7026148
  0.4   2         0.6               0.5555556  100      0.4540874  0.7154642
  0.4   2         0.6               0.5555556  150      0.4534071  0.7165070
  0.4   2         0.6               0.5555556  200      0.4524708  0.7179171
  0.4   2         0.6               0.5555556  250      0.4525258  0.7183445
  0.4   2         0.6               0.5555556  300      0.4507427  0.7199409
  0.4   2         0.6               0.5555556  350      0.4527530  0.7181347
  0.4   2         0.6               0.5555556  400      0.4541002  0.7167130
  0.4   2         0.6               0.5555556  450      0.4534140  0.7177094
  0.4   2         0.6               0.5555556  500      0.4546495  0.7167126
  0.4   2         0.6               0.6111111   50      0.4621345  0.7049579
  0.4   2         0.6               0.6111111  100      0.4523282  0.7169311
  0.4   2         0.6               0.6111111  150      0.4482227  0.7221028
  0.4   2         0.6               0.6111111  200      0.4470192  0.7237785
  0.4   2         0.6               0.6111111  250      0.4463791  0.7249647
  0.4   2         0.6               0.6111111  300      0.4517156  0.7190279
  0.4   2         0.6               0.6111111  350      0.4525460  0.7180845
  0.4   2         0.6               0.6111111  400      0.4504501  0.7210096
  0.4   2         0.6               0.6111111  450      0.4506987  0.7202012
  0.4   2         0.6               0.6111111  500      0.4500213  0.7214188
  0.4   2         0.6               0.6666667   50      0.4627213  0.7046649
  0.4   2         0.6               0.6666667  100      0.4500796  0.7200010
  0.4   2         0.6               0.6666667  150      0.4484028  0.7219993
  0.4   2         0.6               0.6666667  200      0.4484874  0.7223693
  0.4   2         0.6               0.6666667  250      0.4504896  0.7202631
  0.4   2         0.6               0.6666667  300      0.4526598  0.7180761
  0.4   2         0.6               0.6666667  350      0.4518435  0.7190368
  0.4   2         0.6               0.6666667  400      0.4552849  0.7154343
  0.4   2         0.6               0.6666667  450      0.4536523  0.7173485
  0.4   2         0.6               0.6666667  500      0.4571270  0.7134864
  0.4   2         0.6               0.7222222   50      0.4572697  0.7114558
  0.4   2         0.6               0.7222222  100      0.4518456  0.7183184
  0.4   2         0.6               0.7222222  150      0.4486700  0.7216343
  0.4   2         0.6               0.7222222  200      0.4456776  0.7256618
  0.4   2         0.6               0.7222222  250      0.4476094  0.7234480
  0.4   2         0.6               0.7222222  300      0.4497109  0.7214284
  0.4   2         0.6               0.7222222  350      0.4506718  0.7202601
  0.4   2         0.6               0.7222222  400      0.4535104  0.7170098
  0.4   2         0.6               0.7222222  450      0.4544546  0.7163190
  0.4   2         0.6               0.7222222  500      0.4533370  0.7179512
  0.4   2         0.6               0.7777778   50      0.4563406  0.7123356
  0.4   2         0.6               0.7777778  100      0.4492634  0.7208268
  0.4   2         0.6               0.7777778  150      0.4475180  0.7229288
  0.4   2         0.6               0.7777778  200      0.4490774  0.7209122
  0.4   2         0.6               0.7777778  250      0.4501118  0.7200484
  0.4   2         0.6               0.7777778  300      0.4481566  0.7227479
  0.4   2         0.6               0.7777778  350      0.4494437  0.7212159
  0.4   2         0.6               0.7777778  400      0.4503404  0.7203904
  0.4   2         0.6               0.7777778  450      0.4515339  0.7190813
  0.4   2         0.6               0.7777778  500      0.4520571  0.7188520
  0.4   2         0.6               0.8333333   50      0.4535917  0.7162120
  0.4   2         0.6               0.8333333  100      0.4460376  0.7255313
  0.4   2         0.6               0.8333333  150      0.4453187  0.7263253
  0.4   2         0.6               0.8333333  200      0.4444142  0.7278362
  0.4   2         0.6               0.8333333  250      0.4469227  0.7248906
  0.4   2         0.6               0.8333333  300      0.4489300  0.7228608
  0.4   2         0.6               0.8333333  350      0.4481519  0.7237356
  0.4   2         0.6               0.8333333  400      0.4499374  0.7221346
  0.4   2         0.6               0.8333333  450      0.4514877  0.7203414
  0.4   2         0.6               0.8333333  500      0.4515987  0.7204453
  0.4   2         0.6               0.8888889   50      0.4535861  0.7157617
  0.4   2         0.6               0.8888889  100      0.4477189  0.7226639
  0.4   2         0.6               0.8888889  150      0.4441815  0.7268674
  0.4   2         0.6               0.8888889  200      0.4425711  0.7287634
  0.4   2         0.6               0.8888889  250      0.4434247  0.7280177
  0.4   2         0.6               0.8888889  300      0.4457196  0.7249844
  0.4   2         0.6               0.8888889  350      0.4467961  0.7239810
  0.4   2         0.6               0.8888889  400      0.4487927  0.7217472
  0.4   2         0.6               0.8888889  450      0.4492458  0.7214416
  0.4   2         0.6               0.8888889  500      0.4504555  0.7202158
  0.4   2         0.6               0.9444444   50      0.4579971  0.7107710
  0.4   2         0.6               0.9444444  100      0.4554907  0.7136112
  0.4   2         0.6               0.9444444  150      0.4552770  0.7138864
  0.4   2         0.6               0.9444444  200      0.4572627  0.7116100
  0.4   2         0.6               0.9444444  250      0.4586927  0.7102057
  0.4   2         0.6               0.9444444  300      0.4605798  0.7084991
  0.4   2         0.6               0.9444444  350      0.4620204  0.7069719
  0.4   2         0.6               0.9444444  400      0.4624959  0.7064179
  0.4   2         0.6               0.9444444  450      0.4650650  0.7036045
  0.4   2         0.6               0.9444444  500      0.4651895  0.7036017
  0.4   2         0.6               1.0000000   50      0.4553050  0.7138012
  0.4   2         0.6               1.0000000  100      0.4488807  0.7209562
  0.4   2         0.6               1.0000000  150      0.4498962  0.7197200
  0.4   2         0.6               1.0000000  200      0.4507838  0.7192657
  0.4   2         0.6               1.0000000  250      0.4527709  0.7171420
  0.4   2         0.6               1.0000000  300      0.4549878  0.7147694
  0.4   2         0.6               1.0000000  350      0.4567512  0.7129094
  0.4   2         0.6               1.0000000  400      0.4597417  0.7093727
  0.4   2         0.6               1.0000000  450      0.4600008  0.7092250
  0.4   2         0.6               1.0000000  500      0.4618697  0.7071792
  0.4   2         0.8               0.5000000   50      0.4634029  0.7030986
  0.4   2         0.8               0.5000000  100      0.4504478  0.7201678
  0.4   2         0.8               0.5000000  150      0.4441478  0.7274145
  0.4   2         0.8               0.5000000  200      0.4458545  0.7265969
  0.4   2         0.8               0.5000000  250      0.4514383  0.7194208
  0.4   2         0.8               0.5000000  300      0.4506419  0.7208328
  0.4   2         0.8               0.5000000  350      0.4609124  0.7086371
  0.4   2         0.8               0.5000000  400      0.4586802  0.7120331
  0.4   2         0.8               0.5000000  450      0.4621566  0.7080228
  0.4   2         0.8               0.5000000  500      0.4627813  0.7074147
  0.4   2         0.8               0.5555556   50      0.4558179  0.7134073
  0.4   2         0.8               0.5555556  100      0.4481310  0.7226195
  0.4   2         0.8               0.5555556  150      0.4468292  0.7244371
  0.4   2         0.8               0.5555556  200      0.4440938  0.7275924
  0.4   2         0.8               0.5555556  250      0.4477892  0.7228395
  0.4   2         0.8               0.5555556  300      0.4509267  0.7198195
  0.4   2         0.8               0.5555556  350      0.4515732  0.7190356
  0.4   2         0.8               0.5555556  400      0.4570416  0.7128952
  0.4   2         0.8               0.5555556  450      0.4565802  0.7132411
  0.4   2         0.8               0.5555556  500      0.4604168  0.7096029
  0.4   2         0.8               0.6111111   50      0.4520112  0.7175470
  0.4   2         0.8               0.6111111  100      0.4462749  0.7241944
  0.4   2         0.8               0.6111111  150      0.4448965  0.7263167
  0.4   2         0.8               0.6111111  200      0.4478128  0.7227234
  0.4   2         0.8               0.6111111  250      0.4518005  0.7184666
  0.4   2         0.8               0.6111111  300      0.4522889  0.7178335
  0.4   2         0.8               0.6111111  350      0.4529633  0.7172736
  0.4   2         0.8               0.6111111  400      0.4551695  0.7145380
  0.4   2         0.8               0.6111111  450      0.4549853  0.7154823
  0.4   2         0.8               0.6111111  500      0.4535883  0.7169203
  0.4   2         0.8               0.6666667   50      0.4553899  0.7136836
  0.4   2         0.8               0.6666667  100      0.4545221  0.7147903
  0.4   2         0.8               0.6666667  150      0.4529530  0.7168177
  0.4   2         0.8               0.6666667  200      0.4519286  0.7187394
  0.4   2         0.8               0.6666667  250      0.4544035  0.7157591
  0.4   2         0.8               0.6666667  300      0.4568979  0.7124509
  0.4   2         0.8               0.6666667  350      0.4574907  0.7121121
  0.4   2         0.8               0.6666667  400      0.4591646  0.7102049
  0.4   2         0.8               0.6666667  450      0.4586575  0.7108199
  0.4   2         0.8               0.6666667  500      0.4606939  0.7082467
  0.4   2         0.8               0.7222222   50      0.4470157  0.7233380
  0.4   2         0.8               0.7222222  100      0.4411826  0.7305665
  0.4   2         0.8               0.7222222  150      0.4409842  0.7308838
  0.4   2         0.8               0.7222222  200      0.4428113  0.7287776
  0.4   2         0.8               0.7222222  250      0.4431130  0.7285014
  0.4   2         0.8               0.7222222  300      0.4443300  0.7274525
  0.4   2         0.8               0.7222222  350      0.4473105  0.7238670
  0.4   2         0.8               0.7222222  400      0.4496304  0.7212593
  0.4   2         0.8               0.7222222  450      0.4514339  0.7194448
  0.4   2         0.8               0.7222222  500      0.4514119  0.7198030
  0.4   2         0.8               0.7777778   50      0.4511075  0.7188322
  0.4   2         0.8               0.7777778  100      0.4427971  0.7286750
  0.4   2         0.8               0.7777778  150      0.4439938  0.7271994
  0.4   2         0.8               0.7777778  200      0.4427333  0.7287819
  0.4   2         0.8               0.7777778  250      0.4437900  0.7279335
  0.4   2         0.8               0.7777778  300      0.4468708  0.7242939
  0.4   2         0.8               0.7777778  350      0.4486050  0.7224161
  0.4   2         0.8               0.7777778  400      0.4494010  0.7214373
  0.4   2         0.8               0.7777778  450      0.4507915  0.7198720
  0.4   2         0.8               0.7777778  500      0.4518801  0.7190804
  0.4   2         0.8               0.8333333   50      0.4489739  0.7214982
  0.4   2         0.8               0.8333333  100      0.4452707  0.7255995
  0.4   2         0.8               0.8333333  150      0.4437926  0.7276926
  0.4   2         0.8               0.8333333  200      0.4443659  0.7271835
  0.4   2         0.8               0.8333333  250      0.4459176  0.7253653
  0.4   2         0.8               0.8333333  300      0.4457739  0.7260018
  0.4   2         0.8               0.8333333  350      0.4475737  0.7239659
  0.4   2         0.8               0.8333333  400      0.4488203  0.7226750
  0.4   2         0.8               0.8333333  450      0.4498034  0.7215231
  0.4   2         0.8               0.8333333  500      0.4525850  0.7180563
  0.4   2         0.8               0.8888889   50      0.4518839  0.7177066
  0.4   2         0.8               0.8888889  100      0.4463494  0.7242237
  0.4   2         0.8               0.8888889  150      0.4447133  0.7267136
  0.4   2         0.8               0.8888889  200      0.4469651  0.7240238
  0.4   2         0.8               0.8888889  250      0.4484410  0.7222207
  0.4   2         0.8               0.8888889  300      0.4505617  0.7201819
  0.4   2         0.8               0.8888889  350      0.4509854  0.7196242
  0.4   2         0.8               0.8888889  400      0.4536566  0.7166445
  0.4   2         0.8               0.8888889  450      0.4557321  0.7145717
  0.4   2         0.8               0.8888889  500      0.4574520  0.7125029
  0.4   2         0.8               0.9444444   50      0.4439400  0.7276684
  0.4   2         0.8               0.9444444  100      0.4408969  0.7308574
  0.4   2         0.8               0.9444444  150      0.4428973  0.7286157
  0.4   2         0.8               0.9444444  200      0.4429507  0.7285654
  0.4   2         0.8               0.9444444  250      0.4418828  0.7298174
  0.4   2         0.8               0.9444444  300      0.4449257  0.7263116
  0.4   2         0.8               0.9444444  350      0.4483473  0.7225878
  0.4   2         0.8               0.9444444  400      0.4504408  0.7203944
  0.4   2         0.8               0.9444444  450      0.4513367  0.7192909
  0.4   2         0.8               0.9444444  500      0.4536431  0.7168533
  0.4   2         0.8               1.0000000   50      0.4472434  0.7231152
  0.4   2         0.8               1.0000000  100      0.4409903  0.7300936
  0.4   2         0.8               1.0000000  150      0.4415227  0.7294477
  0.4   2         0.8               1.0000000  200      0.4448774  0.7257066
  0.4   2         0.8               1.0000000  250      0.4488054  0.7211705
  0.4   2         0.8               1.0000000  300      0.4529005  0.7168455
  0.4   2         0.8               1.0000000  350      0.4544271  0.7153413
  0.4   2         0.8               1.0000000  400      0.4567719  0.7128951
  0.4   2         0.8               1.0000000  450      0.4586850  0.7107795
  0.4   2         0.8               1.0000000  500      0.4600090  0.7091708
  0.4   3         0.6               0.5000000   50      0.4600737  0.7075823
  0.4   3         0.6               0.5000000  100      0.4546777  0.7147754
  0.4   3         0.6               0.5000000  150      0.4603866  0.7084250
  0.4   3         0.6               0.5000000  200      0.4603964  0.7096441
  0.4   3         0.6               0.5000000  250      0.4603163  0.7100473
  0.4   3         0.6               0.5000000  300      0.4625997  0.7072495
  0.4   3         0.6               0.5000000  350      0.4641770  0.7058523
  0.4   3         0.6               0.5000000  400      0.4648449  0.7056050
  0.4   3         0.6               0.5000000  450      0.4657981  0.7040909
  0.4   3         0.6               0.5000000  500      0.4701488  0.6999628
  0.4   3         0.6               0.5555556   50      0.4576775  0.7099008
  0.4   3         0.6               0.5555556  100      0.4590794  0.7096238
  0.4   3         0.6               0.5555556  150      0.4588054  0.7103209
  0.4   3         0.6               0.5555556  200      0.4604667  0.7087946
  0.4   3         0.6               0.5555556  250      0.4618940  0.7077206
  0.4   3         0.6               0.5555556  300      0.4653143  0.7046853
  0.4   3         0.6               0.5555556  350      0.4703894  0.6993863
  0.4   3         0.6               0.5555556  400      0.4775641  0.6913053
  0.4   3         0.6               0.5555556  450      0.4784412  0.6901932
  0.4   3         0.6               0.5555556  500      0.4766147  0.6928591
  0.4   3         0.6               0.6111111   50      0.4498903  0.7199469
  0.4   3         0.6               0.6111111  100      0.4485608  0.7216195
  0.4   3         0.6               0.6111111  150      0.4560548  0.7131850
  0.4   3         0.6               0.6111111  200      0.4576818  0.7119539
  0.4   3         0.6               0.6111111  250      0.4624190  0.7066905
  0.4   3         0.6               0.6111111  300      0.4657464  0.7034695
  0.4   3         0.6               0.6111111  350      0.4701187  0.6991629
  0.4   3         0.6               0.6111111  400      0.4717704  0.6976301
  0.4   3         0.6               0.6111111  450      0.4744371  0.6943611
  0.4   3         0.6               0.6111111  500      0.4723100  0.6966537
  0.4   3         0.6               0.6666667   50      0.4520390  0.7174946
  0.4   3         0.6               0.6666667  100      0.4506341  0.7197561
  0.4   3         0.6               0.6666667  150      0.4598462  0.7097999
  0.4   3         0.6               0.6666667  200      0.4623060  0.7068981
  0.4   3         0.6               0.6666667  250      0.4666992  0.7022063
  0.4   3         0.6               0.6666667  300      0.4698167  0.6984246
  0.4   3         0.6               0.6666667  350      0.4729560  0.6950054
  0.4   3         0.6               0.6666667  400      0.4744500  0.6938097
  0.4   3         0.6               0.6666667  450      0.4782800  0.6898634
  0.4   3         0.6               0.6666667  500      0.4809808  0.6869596
  0.4   3         0.6               0.7222222   50      0.4453015  0.7252797
  0.4   3         0.6               0.7222222  100      0.4453123  0.7262312
  0.4   3         0.6               0.7222222  150      0.4472894  0.7242750
  0.4   3         0.6               0.7222222  200      0.4515209  0.7193446
  0.4   3         0.6               0.7222222  250      0.4558969  0.7150717
  0.4   3         0.6               0.7222222  300      0.4631708  0.7072102
  0.4   3         0.6               0.7222222  350      0.4664714  0.7037538
  0.4   3         0.6               0.7222222  400      0.4705647  0.6997753
  0.4   3         0.6               0.7222222  450      0.4725324  0.6981081
  0.4   3         0.6               0.7222222  500      0.4766559  0.6933638
  0.4   3         0.6               0.7777778   50      0.4418527  0.7294566
  0.4   3         0.6               0.7777778  100      0.4382820  0.7343095
  0.4   3         0.6               0.7777778  150      0.4434858  0.7280850
  0.4   3         0.6               0.7777778  200      0.4472607  0.7243542
  0.4   3         0.6               0.7777778  250      0.4558304  0.7146563
  0.4   3         0.6               0.7777778  300      0.4563885  0.7140805
  0.4   3         0.6               0.7777778  350      0.4589291  0.7114474
  0.4   3         0.6               0.7777778  400      0.4628277  0.7074039
  0.4   3         0.6               0.7777778  450      0.4674816  0.7021127
  0.4   3         0.6               0.7777778  500      0.4720211  0.6973335
  0.4   3         0.6               0.8333333   50      0.4382055  0.7349466
  0.4   3         0.6               0.8333333  100      0.4365191  0.7369271
  0.4   3         0.6               0.8333333  150      0.4381804  0.7352794
  0.4   3         0.6               0.8333333  200      0.4413187  0.7318686
  0.4   3         0.6               0.8333333  250      0.4467072  0.7258792
  0.4   3         0.6               0.8333333  300      0.4508623  0.7208793
  0.4   3         0.6               0.8333333  350      0.4529910  0.7185011
  0.4   3         0.6               0.8333333  400      0.4553258  0.7162578
  0.4   3         0.6               0.8333333  450      0.4582312  0.7127682
  0.4   3         0.6               0.8333333  500      0.4612752  0.7093994
  0.4   3         0.6               0.8888889   50      0.4479214  0.7222897
  0.4   3         0.6               0.8888889  100      0.4445248  0.7270141
  0.4   3         0.6               0.8888889  150      0.4497857  0.7213538
  0.4   3         0.6               0.8888889  200      0.4532444  0.7175561
  0.4   3         0.6               0.8888889  250      0.4578218  0.7127002
  0.4   3         0.6               0.8888889  300      0.4642167  0.7059809
  0.4   3         0.6               0.8888889  350      0.4664666  0.7035209
  0.4   3         0.6               0.8888889  400      0.4705022  0.6991036
  0.4   3         0.6               0.8888889  450      0.4740668  0.6952244
  0.4   3         0.6               0.8888889  500      0.4767216  0.6921941
  0.4   3         0.6               0.9444444   50      0.4430258  0.7283674
  0.4   3         0.6               0.9444444  100      0.4414257  0.7306688
  0.4   3         0.6               0.9444444  150      0.4483619  0.7230808
  0.4   3         0.6               0.9444444  200      0.4538641  0.7169674
  0.4   3         0.6               0.9444444  250      0.4566780  0.7137878
  0.4   3         0.6               0.9444444  300      0.4621170  0.7076972
  0.4   3         0.6               0.9444444  350      0.4662314  0.7033181
  0.4   3         0.6               0.9444444  400      0.4683868  0.7012336
  0.4   3         0.6               0.9444444  450      0.4708937  0.6984012
  0.4   3         0.6               0.9444444  500      0.4739492  0.6950022
  0.4   3         0.6               1.0000000   50      0.4414822  0.7302204
  0.4   3         0.6               1.0000000  100      0.4412149  0.7304364
  0.4   3         0.6               1.0000000  150      0.4451671  0.7265624
  0.4   3         0.6               1.0000000  200      0.4477197  0.7240505
  0.4   3         0.6               1.0000000  250      0.4517684  0.7195058
  0.4   3         0.6               1.0000000  300      0.4551796  0.7154735
  0.4   3         0.6               1.0000000  350      0.4588895  0.7114373
  0.4   3         0.6               1.0000000  400      0.4610622  0.7090949
  0.4   3         0.6               1.0000000  450      0.4628922  0.7071476
  0.4   3         0.6               1.0000000  500      0.4660180  0.7037377
  0.4   3         0.8               0.5000000   50      0.4511663  0.7181906
  0.4   3         0.8               0.5000000  100      0.4499385  0.7212764
  0.4   3         0.8               0.5000000  150      0.4574316  0.7124857
  0.4   3         0.8               0.5000000  200      0.4613155  0.7083773
  0.4   3         0.8               0.5000000  250      0.4639073  0.7059183
  0.4   3         0.8               0.5000000  300      0.4648619  0.7048130
  0.4   3         0.8               0.5000000  350      0.4709944  0.6985203
  0.4   3         0.8               0.5000000  400      0.4744542  0.6955635
  0.4   3         0.8               0.5000000  450      0.4783429  0.6905930
  0.4   3         0.8               0.5000000  500      0.4796846  0.6895358
  0.4   3         0.8               0.5555556   50      0.4377557  0.7347170
  0.4   3         0.8               0.5555556  100      0.4408908  0.7320079
  0.4   3         0.8               0.5555556  150      0.4525674  0.7181681
  0.4   3         0.8               0.5555556  200      0.4590500  0.7114514
  0.4   3         0.8               0.5555556  250      0.4616826  0.7093183
  0.4   3         0.8               0.5555556  300      0.4642184  0.7064455
  0.4   3         0.8               0.5555556  350      0.4683556  0.7026116
  0.4   3         0.8               0.5555556  400      0.4715009  0.6996639
  0.4   3         0.8               0.5555556  450      0.4749817  0.6959673
  0.4   3         0.8               0.5555556  500      0.4767671  0.6941726
  0.4   3         0.8               0.6111111   50      0.4523231  0.7173170
  0.4   3         0.8               0.6111111  100      0.4479181  0.7238783
  0.4   3         0.8               0.6111111  150      0.4534844  0.7184311
  0.4   3         0.8               0.6111111  200      0.4586435  0.7122859
  0.4   3         0.8               0.6111111  250      0.4649162  0.7054788
  0.4   3         0.8               0.6111111  300      0.4687325  0.7017812
  0.4   3         0.8               0.6111111  350      0.4748737  0.6952933
  0.4   3         0.8               0.6111111  400      0.4767676  0.6935395
  0.4   3         0.8               0.6111111  450      0.4795055  0.6909982
  0.4   3         0.8               0.6111111  500      0.4839803  0.6869537
  0.4   3         0.8               0.6666667   50      0.4492261  0.7205108
  0.4   3         0.8               0.6666667  100      0.4495626  0.7208373
  0.4   3         0.8               0.6666667  150      0.4540322  0.7162516
  0.4   3         0.8               0.6666667  200      0.4593253  0.7107019
  0.4   3         0.8               0.6666667  250      0.4620849  0.7078823
  0.4   3         0.8               0.6666667  300      0.4673756  0.7016393
  0.4   3         0.8               0.6666667  350      0.4707179  0.6982962
  0.4   3         0.8               0.6666667  400      0.4736378  0.6953210
  0.4   3         0.8               0.6666667  450      0.4756702  0.6933330
  0.4   3         0.8               0.6666667  500      0.4819140  0.6861898
  0.4   3         0.8               0.7222222   50      0.4476295  0.7221903
  0.4   3         0.8               0.7222222  100      0.4501404  0.7196695
  0.4   3         0.8               0.7222222  150      0.4547064  0.7143685
  0.4   3         0.8               0.7222222  200      0.4607555  0.7079690
  0.4   3         0.8               0.7222222  250      0.4661051  0.7018700
  0.4   3         0.8               0.7222222  300      0.4679085  0.7003920
  0.4   3         0.8               0.7222222  350      0.4739348  0.6937462
  0.4   3         0.8               0.7222222  400      0.4780656  0.6893101
  0.4   3         0.8               0.7222222  450      0.4822057  0.6850172
  0.4   3         0.8               0.7222222  500      0.4835428  0.6840023
  0.4   3         0.8               0.7777778   50      0.4394372  0.7325177
  0.4   3         0.8               0.7777778  100      0.4455650  0.7255010
  0.4   3         0.8               0.7777778  150      0.4502171  0.7210524
  0.4   3         0.8               0.7777778  200      0.4581485  0.7124016
  0.4   3         0.8               0.7777778  250      0.4639435  0.7063618
  0.4   3         0.8               0.7777778  300      0.4655491  0.7045090
  0.4   3         0.8               0.7777778  350      0.4687985  0.7012773
  0.4   3         0.8               0.7777778  400      0.4711508  0.6989491
  0.4   3         0.8               0.7777778  450      0.4737358  0.6965726
  0.4   3         0.8               0.7777778  500      0.4740507  0.6966737
  0.4   3         0.8               0.8333333   50      0.4437396  0.7272167
  0.4   3         0.8               0.8333333  100      0.4466408  0.7248470
  0.4   3         0.8               0.8333333  150      0.4527085  0.7185122
  0.4   3         0.8               0.8333333  200      0.4561674  0.7147699
  0.4   3         0.8               0.8333333  250      0.4615777  0.7091970
  0.4   3         0.8               0.8333333  300      0.4653390  0.7049763
  0.4   3         0.8               0.8333333  350      0.4708179  0.6990883
  0.4   3         0.8               0.8333333  400      0.4740848  0.6956775
  0.4   3         0.8               0.8333333  450      0.4771373  0.6926481
  0.4   3         0.8               0.8333333  500      0.4792993  0.6903042
  0.4   3         0.8               0.8888889   50      0.4442880  0.7265776
  0.4   3         0.8               0.8888889  100      0.4497499  0.7207364
  0.4   3         0.8               0.8888889  150      0.4529554  0.7178482
  0.4   3         0.8               0.8888889  200      0.4581358  0.7126654
  0.4   3         0.8               0.8888889  250      0.4612395  0.7091596
  0.4   3         0.8               0.8888889  300      0.4641034  0.7062750
  0.4   3         0.8               0.8888889  350      0.4677301  0.7023751
  0.4   3         0.8               0.8888889  400      0.4714171  0.6987378
  0.4   3         0.8               0.8888889  450      0.4728989  0.6975061
  0.4   3         0.8               0.8888889  500      0.4752106  0.6953739
  0.4   3         0.8               0.9444444   50      0.4402656  0.7310744
  0.4   3         0.8               0.9444444  100      0.4426518  0.7287891
  0.4   3         0.8               0.9444444  150      0.4462066  0.7248929
  0.4   3         0.8               0.9444444  200      0.4519444  0.7187616
  0.4   3         0.8               0.9444444  250      0.4544854  0.7165337
  0.4   3         0.8               0.9444444  300      0.4584100  0.7127538
  0.4   3         0.8               0.9444444  350      0.4616149  0.7094019
  0.4   3         0.8               0.9444444  400      0.4661720  0.7043232
  0.4   3         0.8               0.9444444  450      0.4700509  0.7000533
  0.4   3         0.8               0.9444444  500      0.4749547  0.6948803
  0.4   3         0.8               1.0000000   50      0.4414148  0.7301392
  0.4   3         0.8               1.0000000  100      0.4437259  0.7280355
  0.4   3         0.8               1.0000000  150      0.4463321  0.7252600
  0.4   3         0.8               1.0000000  200      0.4511051  0.7201614
  0.4   3         0.8               1.0000000  250      0.4550723  0.7160282
  0.4   3         0.8               1.0000000  300      0.4584772  0.7122391
  0.4   3         0.8               1.0000000  350      0.4617332  0.7089617
  0.4   3         0.8               1.0000000  400      0.4641419  0.7062534
  0.4   3         0.8               1.0000000  450      0.4675501  0.7025168
  0.4   3         0.8               1.0000000  500      0.4698795  0.7001448
  0.4   4         0.6               0.5000000   50      0.4529967  0.7155536
  0.4   4         0.6               0.5000000  100      0.4618758  0.7069754
  0.4   4         0.6               0.5000000  150      0.4627438  0.7065561
  0.4   4         0.6               0.5000000  200      0.4709629  0.6975299
  0.4   4         0.6               0.5000000  250      0.4763860  0.6915251
  0.4   4         0.6               0.5000000  300      0.4811408  0.6871340
  0.4   4         0.6               0.5000000  350      0.4860447  0.6818405
  0.4   4         0.6               0.5000000  400      0.4938917  0.6732950
  0.4   4         0.6               0.5000000  450      0.4954440  0.6716939
  0.4   4         0.6               0.5000000  500      0.5017733  0.6646922
  0.4   4         0.6               0.5555556   50      0.4496298  0.7211709
  0.4   4         0.6               0.5555556  100      0.4573773  0.7145797
  0.4   4         0.6               0.5555556  150      0.4643975  0.7068499
  0.4   4         0.6               0.5555556  200      0.4736715  0.6965883
  0.4   4         0.6               0.5555556  250      0.4791835  0.6912065
  0.4   4         0.6               0.5555556  300      0.4836303  0.6871841
  0.4   4         0.6               0.5555556  350      0.4871618  0.6832354
  0.4   4         0.6               0.5555556  400      0.4923895  0.6768827
  0.4   4         0.6               0.5555556  450      0.4944759  0.6752071
  0.4   4         0.6               0.5555556  500      0.4961363  0.6744708
  0.4   4         0.6               0.6111111   50      0.4444887  0.7265962
  0.4   4         0.6               0.6111111  100      0.4522591  0.7187066
  0.4   4         0.6               0.6111111  150      0.4619969  0.7084821
  0.4   4         0.6               0.6111111  200      0.4729635  0.6966275
  0.4   4         0.6               0.6111111  250      0.4774686  0.6921583
  0.4   4         0.6               0.6111111  300      0.4818131  0.6877280
  0.4   4         0.6               0.6111111  350      0.4877419  0.6804316
  0.4   4         0.6               0.6111111  400      0.4912416  0.6766363
  0.4   4         0.6               0.6111111  450      0.4934511  0.6749537
  0.4   4         0.6               0.6111111  500      0.4954444  0.6734334
  0.4   4         0.6               0.6666667   50      0.4506516  0.7193804
  0.4   4         0.6               0.6666667  100      0.4577107  0.7122427
  0.4   4         0.6               0.6666667  150      0.4680765  0.7017703
  0.4   4         0.6               0.6666667  200      0.4736934  0.6964888
  0.4   4         0.6               0.6666667  250      0.4788752  0.6909901
  0.4   4         0.6               0.6666667  300      0.4830988  0.6867356
  0.4   4         0.6               0.6666667  350      0.4858750  0.6837985
  0.4   4         0.6               0.6666667  400      0.4902126  0.6794696
  0.4   4         0.6               0.6666667  450      0.4934795  0.6753498
  0.4   4         0.6               0.6666667  500      0.4977303  0.6711706
  0.4   4         0.6               0.7222222   50      0.4433466  0.7286145
  0.4   4         0.6               0.7222222  100      0.4525698  0.7186727
  0.4   4         0.6               0.7222222  150      0.4575971  0.7136321
  0.4   4         0.6               0.7222222  200      0.4657458  0.7048967
  0.4   4         0.6               0.7222222  250      0.4719687  0.6981803
  0.4   4         0.6               0.7222222  300      0.4762412  0.6934577
  0.4   4         0.6               0.7222222  350      0.4793849  0.6905299
  0.4   4         0.6               0.7222222  400      0.4829542  0.6868154
  0.4   4         0.6               0.7222222  450      0.4843314  0.6856918
  0.4   4         0.6               0.7222222  500      0.4892037  0.6805605
  0.4   4         0.6               0.7777778   50      0.4452738  0.7259208
  0.4   4         0.6               0.7777778  100      0.4500541  0.7212160
  0.4   4         0.6               0.7777778  150      0.4603910  0.7096890
  0.4   4         0.6               0.7777778  200      0.4664993  0.7037261
  0.4   4         0.6               0.7777778  250      0.4719406  0.6976841
  0.4   4         0.6               0.7777778  300      0.4763822  0.6930486
  0.4   4         0.6               0.7777778  350      0.4806511  0.6892846
  0.4   4         0.6               0.7777778  400      0.4823565  0.6874334
  0.4   4         0.6               0.7777778  450      0.4882963  0.6815401
  0.4   4         0.6               0.7777778  500      0.4910294  0.6783675
  0.4   4         0.6               0.8333333   50      0.4511413  0.7188448
  0.4   4         0.6               0.8333333  100      0.4558525  0.7143646
  0.4   4         0.6               0.8333333  150      0.4635074  0.7060244
  0.4   4         0.6               0.8333333  200      0.4701977  0.6991722
  0.4   4         0.6               0.8333333  250      0.4746802  0.6944453
  0.4   4         0.6               0.8333333  300      0.4787561  0.6900958
  0.4   4         0.6               0.8333333  350      0.4848255  0.6834037
  0.4   4         0.6               0.8333333  400      0.4881707  0.6801840
  0.4   4         0.6               0.8333333  450      0.4901078  0.6785302
  0.4   4         0.6               0.8333333  500      0.4927764  0.6749951
  0.4   4         0.6               0.8888889   50      0.4410109  0.7311714
  0.4   4         0.6               0.8888889  100      0.4443734  0.7276576
  0.4   4         0.6               0.8888889  150      0.4526129  0.7182755
  0.4   4         0.6               0.8888889  200      0.4608187  0.7094786
  0.4   4         0.6               0.8888889  250      0.4662227  0.7035627
  0.4   4         0.6               0.8888889  300      0.4717451  0.6977231
  0.4   4         0.6               0.8888889  350      0.4751974  0.6944254
  0.4   4         0.6               0.8888889  400      0.4800074  0.6892803
  0.4   4         0.6               0.8888889  450      0.4828408  0.6864105
  0.4   4         0.6               0.8888889  500      0.4854502  0.6837068
  0.4   4         0.6               0.9444444   50      0.4425654  0.7283837
  0.4   4         0.6               0.9444444  100      0.4503927  0.7198853
  0.4   4         0.6               0.9444444  150      0.4544321  0.7159742
  0.4   4         0.6               0.9444444  200      0.4592831  0.7109170
  0.4   4         0.6               0.9444444  250      0.4656377  0.7043250
  0.4   4         0.6               0.9444444  300      0.4711374  0.6984333
  0.4   4         0.6               0.9444444  350      0.4757150  0.6936265
  0.4   4         0.6               0.9444444  400      0.4793941  0.6902401
  0.4   4         0.6               0.9444444  450      0.4814727  0.6881786
  0.4   4         0.6               0.9444444  500      0.4846663  0.6848092
  0.4   4         0.6               1.0000000   50      0.4424340  0.7294663
  0.4   4         0.6               1.0000000  100      0.4452257  0.7268781
  0.4   4         0.6               1.0000000  150      0.4499851  0.7220479
  0.4   4         0.6               1.0000000  200      0.4576773  0.7137494
  0.4   4         0.6               1.0000000  250      0.4617518  0.7094533
  0.4   4         0.6               1.0000000  300      0.4658457  0.7053085
  0.4   4         0.6               1.0000000  350      0.4691837  0.7017265
  0.4   4         0.6               1.0000000  400      0.4733828  0.6972460
  0.4   4         0.6               1.0000000  450      0.4769918  0.6935048
  0.4   4         0.6               1.0000000  500      0.4804216  0.6896133
  0.4   4         0.8               0.5000000   50      0.4430460  0.7280123
  0.4   4         0.8               0.5000000  100      0.4571857  0.7139521
  0.4   4         0.8               0.5000000  150      0.4675146  0.7036607
  0.4   4         0.8               0.5000000  200      0.4773500  0.6936828
  0.4   4         0.8               0.5000000  250      0.4850937  0.6864663
  0.4   4         0.8               0.5000000  300      0.4862935  0.6858727
  0.4   4         0.8               0.5000000  350      0.4900241  0.6825291
  0.4   4         0.8               0.5000000  400      0.4975168  0.6736811
  0.4   4         0.8               0.5000000  450      0.5021526  0.6678955
  0.4   4         0.8               0.5000000  500      0.5051508  0.6648151
  0.4   4         0.8               0.5555556   50      0.4502486  0.7201515
  0.4   4         0.8               0.5555556  100      0.4574117  0.7123757
  0.4   4         0.8               0.5555556  150      0.4675190  0.7018952
  0.4   4         0.8               0.5555556  200      0.4712978  0.6983108
  0.4   4         0.8               0.5555556  250      0.4765968  0.6927632
  0.4   4         0.8               0.5555556  300      0.4798195  0.6891634
  0.4   4         0.8               0.5555556  350      0.4856715  0.6829508
  0.4   4         0.8               0.5555556  400      0.4916943  0.6759158
  0.4   4         0.8               0.5555556  450      0.4951890  0.6722962
  0.4   4         0.8               0.5555556  500      0.4982440  0.6687293
  0.4   4         0.8               0.6111111   50      0.4445530  0.7266780
  0.4   4         0.8               0.6111111  100      0.4516511  0.7209951
  0.4   4         0.8               0.6111111  150      0.4652560  0.7054488
  0.4   4         0.8               0.6111111  200      0.4724896  0.6985193
  0.4   4         0.8               0.6111111  250      0.4769744  0.6933351
  0.4   4         0.8               0.6111111  300      0.4813404  0.6889250
  0.4   4         0.8               0.6111111  350      0.4894426  0.6806928
  0.4   4         0.8               0.6111111  400      0.4924792  0.6779438
  0.4   4         0.8               0.6111111  450      0.4943680  0.6756459
  0.4   4         0.8               0.6111111  500      0.4976341  0.6727171
  0.4   4         0.8               0.6666667   50      0.4496332  0.7205199
  0.4   4         0.8               0.6666667  100      0.4598553  0.7095915
  0.4   4         0.8               0.6666667  150      0.4688388  0.7011245
  0.4   4         0.8               0.6666667  200      0.4762247  0.6932299
  0.4   4         0.8               0.6666667  250      0.4802627  0.6891049
  0.4   4         0.8               0.6666667  300      0.4869839  0.6820839
  0.4   4         0.8               0.6666667  350      0.4941445  0.6740657
  0.4   4         0.8               0.6666667  400      0.4990582  0.6694986
  0.4   4         0.8               0.6666667  450      0.5041591  0.6639336
  0.4   4         0.8               0.6666667  500      0.5058671  0.6622478
  0.4   4         0.8               0.7222222   50      0.4481281  0.7229477
  0.4   4         0.8               0.7222222  100      0.4603396  0.7102234
  0.4   4         0.8               0.7222222  150      0.4677843  0.7031042
  0.4   4         0.8               0.7222222  200      0.4703342  0.7007586
  0.4   4         0.8               0.7222222  250      0.4785821  0.6921626
  0.4   4         0.8               0.7222222  300      0.4832737  0.6873760
  0.4   4         0.8               0.7222222  350      0.4884524  0.6820097
  0.4   4         0.8               0.7222222  400      0.4926451  0.6772568
  0.4   4         0.8               0.7222222  450      0.4930349  0.6773758
  0.4   4         0.8               0.7222222  500      0.4954328  0.6750803
  0.4   4         0.8               0.7777778   50      0.4473416  0.7233694
  0.4   4         0.8               0.7777778  100      0.4571557  0.7129797
  0.4   4         0.8               0.7777778  150      0.4636477  0.7067370
  0.4   4         0.8               0.7777778  200      0.4742944  0.6948911
  0.4   4         0.8               0.7777778  250      0.4788296  0.6905750
  0.4   4         0.8               0.7777778  300      0.4815860  0.6882723
  0.4   4         0.8               0.7777778  350      0.4863548  0.6834347
  0.4   4         0.8               0.7777778  400      0.4914941  0.6784791
  0.4   4         0.8               0.7777778  450      0.4967357  0.6725308
  0.4   4         0.8               0.7777778  500      0.5000309  0.6692001
  0.4   4         0.8               0.8333333   50      0.4311283  0.7433947
  0.4   4         0.8               0.8333333  100      0.4428914  0.7301431
  0.4   4         0.8               0.8333333  150      0.4511804  0.7219220
  0.4   4         0.8               0.8333333  200      0.4566293  0.7165474
  0.4   4         0.8               0.8333333  250      0.4653012  0.7071279
  0.4   4         0.8               0.8333333  300      0.4701214  0.7022010
  0.4   4         0.8               0.8333333  350      0.4743995  0.6975470
  0.4   4         0.8               0.8333333  400      0.4775080  0.6943618
  0.4   4         0.8               0.8333333  450      0.4800895  0.6919024
  0.4   4         0.8               0.8333333  500      0.4817632  0.6903175
  0.4   4         0.8               0.8888889   50      0.4412392  0.7310036
  0.4   4         0.8               0.8888889  100      0.4521768  0.7195692
  0.4   4         0.8               0.8888889  150      0.4620901  0.7090961
  0.4   4         0.8               0.8888889  200      0.4709056  0.6999504
  0.4   4         0.8               0.8888889  250      0.4770403  0.6937066
  0.4   4         0.8               0.8888889  300      0.4822424  0.6883150
  0.4   4         0.8               0.8888889  350      0.4861949  0.6843867
  0.4   4         0.8               0.8888889  400      0.4903367  0.6799748
  0.4   4         0.8               0.8888889  450      0.4938621  0.6765447
  0.4   4         0.8               0.8888889  500      0.4955550  0.6749616
  0.4   4         0.8               0.9444444   50      0.4414650  0.7302332
  0.4   4         0.8               0.9444444  100      0.4532144  0.7177866
  0.4   4         0.8               0.9444444  150      0.4587525  0.7124503
  0.4   4         0.8               0.9444444  200      0.4659654  0.7052379
  0.4   4         0.8               0.9444444  250      0.4708495  0.7001443
  0.4   4         0.8               0.9444444  300      0.4762072  0.6943845
  0.4   4         0.8               0.9444444  350      0.4798254  0.6910414
  0.4   4         0.8               0.9444444  400      0.4834968  0.6875515
  0.4   4         0.8               0.9444444  450      0.4862174  0.6847188
  0.4   4         0.8               0.9444444  500      0.4899466  0.6806689
  0.4   4         0.8               1.0000000   50      0.4366230  0.7365576
  0.4   4         0.8               1.0000000  100      0.4451890  0.7271757
  0.4   4         0.8               1.0000000  150      0.4521466  0.7197387
  0.4   4         0.8               1.0000000  200      0.4586719  0.7126459
  0.4   4         0.8               1.0000000  250      0.4640148  0.7071781
  0.4   4         0.8               1.0000000  300      0.4668783  0.7043935
  0.4   4         0.8               1.0000000  350      0.4715012  0.6994779
  0.4   4         0.8               1.0000000  400      0.4769412  0.6937131
  0.4   4         0.8               1.0000000  450      0.4809679  0.6894997
  0.4   4         0.8               1.0000000  500      0.4843645  0.6859242
  0.4   5         0.6               0.5000000   50      0.4666753  0.7010931
  0.4   5         0.6               0.5000000  100      0.4757126  0.6940074
  0.4   5         0.6               0.5000000  150      0.4828800  0.6864243
  0.4   5         0.6               0.5000000  200      0.4897135  0.6797019
  0.4   5         0.6               0.5000000  250      0.4934873  0.6761596
  0.4   5         0.6               0.5000000  300      0.4992563  0.6705994
  0.4   5         0.6               0.5000000  350      0.5108275  0.6571548
  0.4   5         0.6               0.5000000  400      0.5138987  0.6540719
  0.4   5         0.6               0.5000000  450      0.5172233  0.6518674
  0.4   5         0.6               0.5000000  500      0.5212365  0.6470218
  0.4   5         0.6               0.5555556   50      0.4595485  0.7087699
  0.4   5         0.6               0.5555556  100      0.4643364  0.7055278
  0.4   5         0.6               0.5555556  150      0.4771798  0.6922931
  0.4   5         0.6               0.5555556  200      0.4854107  0.6851485
  0.4   5         0.6               0.5555556  250      0.4921456  0.6778498
  0.4   5         0.6               0.5555556  300      0.4953983  0.6756763
  0.4   5         0.6               0.5555556  350      0.5009426  0.6693322
  0.4   5         0.6               0.5555556  400      0.5048770  0.6654984
  0.4   5         0.6               0.5555556  450      0.5077246  0.6627675
  0.4   5         0.6               0.5555556  500      0.5130872  0.6569884
  0.4   5         0.6               0.6111111   50      0.4526405  0.7176325
  0.4   5         0.6               0.6111111  100      0.4645714  0.7046135
  0.4   5         0.6               0.6111111  150      0.4749311  0.6931442
  0.4   5         0.6               0.6111111  200      0.4834323  0.6852712
  0.4   5         0.6               0.6111111  250      0.4915285  0.6771173
  0.4   5         0.6               0.6111111  300      0.5003736  0.6682482
  0.4   5         0.6               0.6111111  350      0.5042359  0.6636079
  0.4   5         0.6               0.6111111  400      0.5088476  0.6590680
  0.4   5         0.6               0.6111111  450      0.5100280  0.6581004
  0.4   5         0.6               0.6111111  500      0.5154428  0.6531084
  0.4   5         0.6               0.6666667   50      0.4478209  0.7237781
  0.4   5         0.6               0.6666667  100      0.4587550  0.7126323
  0.4   5         0.6               0.6666667  150      0.4727074  0.6977306
  0.4   5         0.6               0.6666667  200      0.4812593  0.6881770
  0.4   5         0.6               0.6666667  250      0.4861790  0.6834645
  0.4   5         0.6               0.6666667  300      0.4933349  0.6758689
  0.4   5         0.6               0.6666667  350      0.4980658  0.6709384
  0.4   5         0.6               0.6666667  400      0.5027651  0.6663599
  0.4   5         0.6               0.6666667  450      0.5088055  0.6597323
  0.4   5         0.6               0.6666667  500      0.5104757  0.6591221
  0.4   5         0.6               0.7222222   50      0.4569533  0.7130672
  0.4   5         0.6               0.7222222  100      0.4690566  0.7003598
  0.4   5         0.6               0.7222222  150      0.4777575  0.6922674
  0.4   5         0.6               0.7222222  200      0.4839836  0.6854734
  0.4   5         0.6               0.7222222  250      0.4892310  0.6806172
  0.4   5         0.6               0.7222222  300      0.4955091  0.6746172
  0.4   5         0.6               0.7222222  350      0.4995446  0.6714175
  0.4   5         0.6               0.7222222  400      0.5017215  0.6699384
  0.4   5         0.6               0.7222222  450      0.5079632  0.6626026
  0.4   5         0.6               0.7222222  500      0.5081118  0.6633233
  0.4   5         0.6               0.7777778   50      0.4520793  0.7173002
  0.4   5         0.6               0.7777778  100      0.4631650  0.7057361
  0.4   5         0.6               0.7777778  150      0.4761931  0.6920481
  0.4   5         0.6               0.7777778  200      0.4850650  0.6829743
  0.4   5         0.6               0.7777778  250      0.4893702  0.6782710
  0.4   5         0.6               0.7777778  300      0.4940431  0.6735176
  0.4   5         0.6               0.7777778  350      0.4985706  0.6693412
  0.4   5         0.6               0.7777778  400      0.5019626  0.6661259
  0.4   5         0.6               0.7777778  450      0.5052397  0.6621042
  0.4   5         0.6               0.7777778  500      0.5077255  0.6596131
  0.4   5         0.6               0.8333333   50      0.4544091  0.7159182
  0.4   5         0.6               0.8333333  100      0.4693428  0.6997465
  0.4   5         0.6               0.8333333  150      0.4809830  0.6870989
  0.4   5         0.6               0.8333333  200      0.4891894  0.6779826
  0.4   5         0.6               0.8333333  250      0.4975037  0.6696061
  0.4   5         0.6               0.8333333  300      0.5028917  0.6641513
  0.4   5         0.6               0.8333333  350      0.5076616  0.6586339
  0.4   5         0.6               0.8333333  400      0.5113010  0.6553020
  0.4   5         0.6               0.8333333  450      0.5136261  0.6536434
  0.4   5         0.6               0.8333333  500      0.5180096  0.6489543
  0.4   5         0.6               0.8888889   50      0.4509451  0.7194260
  0.4   5         0.6               0.8888889  100      0.4598670  0.7100826
  0.4   5         0.6               0.8888889  150      0.4702998  0.6987892
  0.4   5         0.6               0.8888889  200      0.4783760  0.6898593
  0.4   5         0.6               0.8888889  250      0.4842919  0.6836291
  0.4   5         0.6               0.8888889  300      0.4889758  0.6794413
  0.4   5         0.6               0.8888889  350      0.4932918  0.6750502
  0.4   5         0.6               0.8888889  400      0.4991502  0.6688272
  0.4   5         0.6               0.8888889  450      0.5023599  0.6656105
  0.4   5         0.6               0.8888889  500      0.5055594  0.6623992
  0.4   5         0.6               0.9444444   50      0.4532921  0.7165981
  0.4   5         0.6               0.9444444  100      0.4638922  0.7056218
  0.4   5         0.6               0.9444444  150      0.4721930  0.6974097
  0.4   5         0.6               0.9444444  200      0.4783180  0.6910871
  0.4   5         0.6               0.9444444  250      0.4837681  0.6856395
  0.4   5         0.6               0.9444444  300      0.4893035  0.6797989
  0.4   5         0.6               0.9444444  350      0.4947064  0.6741676
  0.4   5         0.6               0.9444444  400      0.4990933  0.6695504
  0.4   5         0.6               0.9444444  450      0.5019707  0.6666710
  0.4   5         0.6               0.9444444  500      0.5044613  0.6645649
  0.4   5         0.6               1.0000000   50      0.4472702  0.7236386
  0.4   5         0.6               1.0000000  100      0.4542683  0.7170454
  0.4   5         0.6               1.0000000  150      0.4617393  0.7093699
  0.4   5         0.6               1.0000000  200      0.4717320  0.6985587
  0.4   5         0.6               1.0000000  250      0.4763364  0.6938530
  0.4   5         0.6               1.0000000  300      0.4805461  0.6893410
  0.4   5         0.6               1.0000000  350      0.4851341  0.6843936
  0.4   5         0.6               1.0000000  400      0.4905863  0.6784367
  0.4   5         0.6               1.0000000  450      0.4943575  0.6746023
  0.4   5         0.6               1.0000000  500      0.4974023  0.6714831
  0.4   5         0.8               0.5000000   50      0.4593580  0.7103407
  0.4   5         0.8               0.5000000  100      0.4745587  0.6941932
  0.4   5         0.8               0.5000000  150      0.4857939  0.6827818
  0.4   5         0.8               0.5000000  200      0.4939685  0.6744363
  0.4   5         0.8               0.5000000  250      0.4977927  0.6703352
  0.4   5         0.8               0.5000000  300      0.5055972  0.6634434
  0.4   5         0.8               0.5000000  350      0.5096312  0.6587549
  0.4   5         0.8               0.5000000  400      0.5139924  0.6549111
  0.4   5         0.8               0.5000000  450      0.5186324  0.6500251
  0.4   5         0.8               0.5000000  500      0.5245016  0.6433418
  0.4   5         0.8               0.5555556   50      0.4563953  0.7144053
  0.4   5         0.8               0.5555556  100      0.4715655  0.6992034
  0.4   5         0.8               0.5555556  150      0.4865727  0.6834889
  0.4   5         0.8               0.5555556  200      0.4966008  0.6745824
  0.4   5         0.8               0.5555556  250      0.5067990  0.6647157
  0.4   5         0.8               0.5555556  300      0.5076602  0.6629801
  0.4   5         0.8               0.5555556  350      0.5147073  0.6562099
  0.4   5         0.8               0.5555556  400      0.5222090  0.6474543
  0.4   5         0.8               0.5555556  450      0.5251995  0.6446284
  0.4   5         0.8               0.5555556  500      0.5296745  0.6404388
  0.4   5         0.8               0.6111111   50      0.4506185  0.7201484
  0.4   5         0.8               0.6111111  100      0.4648874  0.7052337
  0.4   5         0.8               0.6111111  150      0.4801169  0.6894255
  0.4   5         0.8               0.6111111  200      0.4897496  0.6794565
  0.4   5         0.8               0.6111111  250      0.4959017  0.6732130
  0.4   5         0.8               0.6111111  300      0.5022198  0.6672801
  0.4   5         0.8               0.6111111  350      0.5051368  0.6636678
  0.4   5         0.8               0.6111111  400      0.5117994  0.6567383
  0.4   5         0.8               0.6111111  450      0.5142705  0.6540947
  0.4   5         0.8               0.6111111  500      0.5164786  0.6532065
  0.4   5         0.8               0.6666667   50      0.4513552  0.7191332
  0.4   5         0.8               0.6666667  100      0.4713192  0.6988823
  0.4   5         0.8               0.6666667  150      0.4779395  0.6923644
  0.4   5         0.8               0.6666667  200      0.4862480  0.6837510
  0.4   5         0.8               0.6666667  250      0.4932954  0.6764815
  0.4   5         0.8               0.6666667  300      0.4974349  0.6724397
  0.4   5         0.8               0.6666667  350      0.5033008  0.6664338
  0.4   5         0.8               0.6666667  400      0.5086406  0.6611377
  0.4   5         0.8               0.6666667  450      0.5123907  0.6578250
  0.4   5         0.8               0.6666667  500      0.5147648  0.6556902
  0.4   5         0.8               0.7222222   50      0.4571976  0.7132071
  0.4   5         0.8               0.7222222  100      0.4670830  0.7030459
  0.4   5         0.8               0.7222222  150      0.4768813  0.6929357
  0.4   5         0.8               0.7222222  200      0.4834671  0.6867443
  0.4   5         0.8               0.7222222  250      0.4901770  0.6798498
  0.4   5         0.8               0.7222222  300      0.4973303  0.6725833
  0.4   5         0.8               0.7222222  350      0.5068962  0.6620821
  0.4   5         0.8               0.7222222  400      0.5112976  0.6584308
  0.4   5         0.8               0.7222222  450      0.5150591  0.6545261
  0.4   5         0.8               0.7222222  500      0.5187416  0.6510073
  0.4   5         0.8               0.7777778   50      0.4451581  0.7271679
  0.4   5         0.8               0.7777778  100      0.4594486  0.7120718
  0.4   5         0.8               0.7777778  150      0.4691014  0.7022064
  0.4   5         0.8               0.7777778  200      0.4785141  0.6928578
  0.4   5         0.8               0.7777778  250      0.4828999  0.6891567
  0.4   5         0.8               0.7777778  300      0.4905222  0.6808773
  0.4   5         0.8               0.7777778  350      0.4948182  0.6767671
  0.4   5         0.8               0.7777778  400      0.5006008  0.6704423
  0.4   5         0.8               0.7777778  450      0.5045578  0.6667909
  0.4   5         0.8               0.7777778  500      0.5093205  0.6615797
  0.4   5         0.8               0.8333333   50      0.4565336  0.7128082
  0.4   5         0.8               0.8333333  100      0.4714332  0.6975355
  0.4   5         0.8               0.8333333  150      0.4820980  0.6858416
  0.4   5         0.8               0.8333333  200      0.4905305  0.6774624
  0.4   5         0.8               0.8333333  250      0.4975725  0.6705227
  0.4   5         0.8               0.8333333  300      0.5017983  0.6665402
  0.4   5         0.8               0.8333333  350      0.5064864  0.6624445
  0.4   5         0.8               0.8333333  400      0.5103767  0.6584970
  0.4   5         0.8               0.8333333  450      0.5147094  0.6540246
  0.4   5         0.8               0.8333333  500      0.5180900  0.6504032
  0.4   5         0.8               0.8888889   50      0.4429315  0.7301546
  0.4   5         0.8               0.8888889  100      0.4586910  0.7137957
  0.4   5         0.8               0.8888889  150      0.4722665  0.6994635
  0.4   5         0.8               0.8888889  200      0.4790014  0.6927832
  0.4   5         0.8               0.8888889  250      0.4871938  0.6844559
  0.4   5         0.8               0.8888889  300      0.4938664  0.6777313
  0.4   5         0.8               0.8888889  350      0.4983486  0.6732341
  0.4   5         0.8               0.8888889  400      0.5027613  0.6683043
  0.4   5         0.8               0.8888889  450      0.5052650  0.6664099
  0.4   5         0.8               0.8888889  500      0.5065587  0.6654529
  0.4   5         0.8               0.9444444   50      0.4439136  0.7277085
  0.4   5         0.8               0.9444444  100      0.4576726  0.7127460
  0.4   5         0.8               0.9444444  150      0.4687035  0.7016159
  0.4   5         0.8               0.9444444  200      0.4794355  0.6902175
  0.4   5         0.8               0.9444444  250      0.4854690  0.6846408
  0.4   5         0.8               0.9444444  300      0.4915295  0.6787679
  0.4   5         0.8               0.9444444  350      0.4976278  0.6724481
  0.4   5         0.8               0.9444444  400      0.5025744  0.6673970
  0.4   5         0.8               0.9444444  450      0.5057476  0.6644968
  0.4   5         0.8               0.9444444  500      0.5080848  0.6623017
  0.4   5         0.8               1.0000000   50      0.4449401  0.7271162
  0.4   5         0.8               1.0000000  100      0.4555327  0.7160254
  0.4   5         0.8               1.0000000  150      0.4651418  0.7057884
  0.4   5         0.8               1.0000000  200      0.4720469  0.6984183
  0.4   5         0.8               1.0000000  250      0.4790682  0.6909991
  0.4   5         0.8               1.0000000  300      0.4841378  0.6857035
  0.4   5         0.8               1.0000000  350      0.4903872  0.6791582
  0.4   5         0.8               1.0000000  400      0.4941888  0.6750122
  0.4   5         0.8               1.0000000  450      0.4987785  0.6703672
  0.4   5         0.8               1.0000000  500      0.5014394  0.6675776
  0.4   6         0.6               0.5000000   50      0.4592964  0.7105294
  0.4   6         0.6               0.5000000  100      0.4736361  0.6968434
  0.4   6         0.6               0.5000000  150      0.4891988  0.6809977
  0.4   6         0.6               0.5000000  200      0.4975139  0.6718823
  0.4   6         0.6               0.5000000  250      0.5060062  0.6632861
  0.4   6         0.6               0.5000000  300      0.5123258  0.6573784
  0.4   6         0.6               0.5000000  350      0.5153326  0.6554797
  0.4   6         0.6               0.5000000  400      0.5188074  0.6519697
  0.4   6         0.6               0.5000000  450      0.5282992  0.6420428
  0.4   6         0.6               0.5000000  500      0.5299179  0.6412443
  0.4   6         0.6               0.5555556   50      0.4508077  0.7202345
  0.4   6         0.6               0.5555556  100      0.4672829  0.7028872
  0.4   6         0.6               0.5555556  150      0.4758693  0.6945195
  0.4   6         0.6               0.5555556  200      0.4888353  0.6806351
  0.4   6         0.6               0.5555556  250      0.4948539  0.6749078
  0.4   6         0.6               0.5555556  300      0.5036677  0.6651482
  0.4   6         0.6               0.5555556  350      0.5088645  0.6606536
  0.4   6         0.6               0.5555556  400      0.5145282  0.6541769
  0.4   6         0.6               0.5555556  450      0.5184061  0.6501564
  0.4   6         0.6               0.5555556  500      0.5221011  0.6464332
  0.4   6         0.6               0.6111111   50      0.4590358  0.7104178
  0.4   6         0.6               0.6111111  100      0.4787181  0.6896810
  0.4   6         0.6               0.6111111  150      0.4900849  0.6777061
  0.4   6         0.6               0.6111111  200      0.4975022  0.6698365
  0.4   6         0.6               0.6111111  250      0.5040668  0.6637083
  0.4   6         0.6               0.6111111  300      0.5117845  0.6553110
  0.4   6         0.6               0.6111111  350      0.5160928  0.6511524
  0.4   6         0.6               0.6111111  400      0.5214748  0.6455000
  0.4   6         0.6               0.6111111  450      0.5239955  0.6428491
  0.4   6         0.6               0.6111111  500      0.5252027  0.6417422
  0.4   6         0.6               0.6666667   50      0.4602713  0.7102087
  0.4   6         0.6               0.6666667  100      0.4786901  0.6911233
  0.4   6         0.6               0.6666667  150      0.4922643  0.6765831
  0.4   6         0.6               0.6666667  200      0.4980567  0.6712802
  0.4   6         0.6               0.6666667  250      0.5051718  0.6644910
  0.4   6         0.6               0.6666667  300      0.5079566  0.6620897
  0.4   6         0.6               0.6666667  350      0.5131019  0.6573099
  0.4   6         0.6               0.6666667  400      0.5171709  0.6531203
  0.4   6         0.6               0.6666667  450      0.5202439  0.6502455
  0.4   6         0.6               0.6666667  500      0.5214439  0.6497490
  0.4   6         0.6               0.7222222   50      0.4491916  0.7220642
  0.4   6         0.6               0.7222222  100      0.4663560  0.7034282
  0.4   6         0.6               0.7222222  150      0.4796507  0.6895076
  0.4   6         0.6               0.7222222  200      0.4874714  0.6813301
  0.4   6         0.6               0.7222222  250      0.4925768  0.6767508
  0.4   6         0.6               0.7222222  300      0.5010765  0.6676653
  0.4   6         0.6               0.7222222  350      0.5052130  0.6643022
  0.4   6         0.6               0.7222222  400      0.5083564  0.6609051
  0.4   6         0.6               0.7222222  450      0.5121710  0.6575075
  0.4   6         0.6               0.7222222  500      0.5161529  0.6533861
  0.4   6         0.6               0.7777778   50      0.4499490  0.7217830
  0.4   6         0.6               0.7777778  100      0.4623647  0.7091198
  0.4   6         0.6               0.7777778  150      0.4771016  0.6934202
  0.4   6         0.6               0.7777778  200      0.4841890  0.6865776
  0.4   6         0.6               0.7777778  250      0.4905411  0.6804833
  0.4   6         0.6               0.7777778  300      0.4948719  0.6759098
  0.4   6         0.6               0.7777778  350      0.4980611  0.6727859
  0.4   6         0.6               0.7777778  400      0.5013438  0.6699722
  0.4   6         0.6               0.7777778  450      0.5071979  0.6637336
  0.4   6         0.6               0.7777778  500      0.5114307  0.6593598
  0.4   6         0.6               0.8333333   50      0.4570445  0.7128946
  0.4   6         0.6               0.8333333  100      0.4746047  0.6944600
  0.4   6         0.6               0.8333333  150      0.4875054  0.6814500
  0.4   6         0.6               0.8333333  200      0.4960690  0.6726226
  0.4   6         0.6               0.8333333  250      0.5031218  0.6656813
  0.4   6         0.6               0.8333333  300      0.5097242  0.6585470
  0.4   6         0.6               0.8333333  350      0.5133910  0.6549895
  0.4   6         0.6               0.8333333  400      0.5183215  0.6497756
  0.4   6         0.6               0.8333333  450      0.5218238  0.6461338
  0.4   6         0.6               0.8333333  500      0.5263476  0.6411882
  0.4   6         0.6               0.8888889   50      0.4565378  0.7132694
  0.4   6         0.6               0.8888889  100      0.4737382  0.6953500
  0.4   6         0.6               0.8888889  150      0.4850623  0.6835183
  0.4   6         0.6               0.8888889  200      0.4980272  0.6697902
  0.4   6         0.6               0.8888889  250      0.5072520  0.6599154
  0.4   6         0.6               0.8888889  300      0.5123968  0.6549036
  0.4   6         0.6               0.8888889  350      0.5168459  0.6501956
  0.4   6         0.6               0.8888889  400      0.5204745  0.6467658
  0.4   6         0.6               0.8888889  450      0.5237033  0.6438079
  0.4   6         0.6               0.8888889  500      0.5250152  0.6426048
  0.4   6         0.6               0.9444444   50      0.4464846  0.7252977
  0.4   6         0.6               0.9444444  100      0.4591567  0.7120049
  0.4   6         0.6               0.9444444  150      0.4697801  0.7010137
  0.4   6         0.6               0.9444444  200      0.4799591  0.6903941
  0.4   6         0.6               0.9444444  250      0.4880567  0.6819919
  0.4   6         0.6               0.9444444  300      0.4938251  0.6759865
  0.4   6         0.6               0.9444444  350      0.4996954  0.6695670
  0.4   6         0.6               0.9444444  400      0.5042134  0.6646707
  0.4   6         0.6               0.9444444  450      0.5078789  0.6612112
  0.4   6         0.6               0.9444444  500      0.5097998  0.6598000
  0.4   6         0.6               1.0000000   50      0.4494771  0.7212615
  0.4   6         0.6               1.0000000  100      0.4582116  0.7122421
  0.4   6         0.6               1.0000000  150      0.4659622  0.7039265
  0.4   6         0.6               1.0000000  200      0.4763898  0.6925413
  0.4   6         0.6               1.0000000  250      0.4814864  0.6874101
  0.4   6         0.6               1.0000000  300      0.4874964  0.6811215
  0.4   6         0.6               1.0000000  350      0.4924306  0.6760470
  0.4   6         0.6               1.0000000  400      0.4958369  0.6726518
  0.4   6         0.6               1.0000000  450      0.4991135  0.6694112
  0.4   6         0.6               1.0000000  500      0.5022747  0.6661946
  0.4   6         0.8               0.5000000   50      0.4660098  0.7051095
  0.4   6         0.8               0.5000000  100      0.4839367  0.6870642
  0.4   6         0.8               0.5000000  150      0.5021524  0.6680177
  0.4   6         0.8               0.5000000  200      0.5105099  0.6592680
  0.4   6         0.8               0.5000000  250      0.5203521  0.6491657
  0.4   6         0.8               0.5000000  300      0.5258931  0.6436857
  0.4   6         0.8               0.5000000  350      0.5314185  0.6378467
  0.4   6         0.8               0.5000000  400      0.5363274  0.6329349
  0.4   6         0.8               0.5000000  450      0.5420250  0.6276774
  0.4   6         0.8               0.5000000  500      0.5459389  0.6224512
  0.4   6         0.8               0.5555556   50      0.4632528  0.7068211
  0.4   6         0.8               0.5555556  100      0.4834584  0.6857682
  0.4   6         0.8               0.5555556  150      0.5024202  0.6654575
  0.4   6         0.8               0.5555556  200      0.5123963  0.6560886
  0.4   6         0.8               0.5555556  250      0.5204122  0.6490756
  0.4   6         0.8               0.5555556  300      0.5272652  0.6405956
  0.4   6         0.8               0.5555556  350      0.5351926  0.6321566
  0.4   6         0.8               0.5555556  400      0.5367526  0.6312110
  0.4   6         0.8               0.5555556  450      0.5389668  0.6283942
  0.4   6         0.8               0.5555556  500      0.5436760  0.6236421
  0.4   6         0.8               0.6111111   50      0.4626479  0.7062055
  0.4   6         0.8               0.6111111  100      0.4794999  0.6898198
  0.4   6         0.8               0.6111111  150      0.4959077  0.6723564
  0.4   6         0.8               0.6111111  200      0.5052819  0.6631681
  0.4   6         0.8               0.6111111  250      0.5134960  0.6547191
  0.4   6         0.8               0.6111111  300      0.5215109  0.6463645
  0.4   6         0.8               0.6111111  350      0.5255817  0.6428005
  0.4   6         0.8               0.6111111  400      0.5300503  0.6380351
  0.4   6         0.8               0.6111111  450      0.5320934  0.6363644
  0.4   6         0.8               0.6111111  500      0.5369380  0.6307771
  0.4   6         0.8               0.6666667   50      0.4585606  0.7114751
  0.4   6         0.8               0.6666667  100      0.4790673  0.6907361
  0.4   6         0.8               0.6666667  150      0.4885638  0.6813792
  0.4   6         0.8               0.6666667  200      0.4950596  0.6750461
  0.4   6         0.8               0.6666667  250      0.5063547  0.6623960
  0.4   6         0.8               0.6666667  300      0.5094960  0.6596066
  0.4   6         0.8               0.6666667  350      0.5177674  0.6505528
  0.4   6         0.8               0.6666667  400      0.5202547  0.6483331
  0.4   6         0.8               0.6666667  450      0.5253692  0.6437272
  0.4   6         0.8               0.6666667  500      0.5310645  0.6369564
  0.4   6         0.8               0.7222222   50      0.4554503  0.7162031
  0.4   6         0.8               0.7222222  100      0.4802924  0.6900333
  0.4   6         0.8               0.7222222  150      0.4919900  0.6784029
  0.4   6         0.8               0.7222222  200      0.5014200  0.6689711
  0.4   6         0.8               0.7222222  250      0.5090177  0.6615062
  0.4   6         0.8               0.7222222  300      0.5126321  0.6579884
  0.4   6         0.8               0.7222222  350      0.5181103  0.6522794
  0.4   6         0.8               0.7222222  400      0.5213812  0.6494180
  0.4   6         0.8               0.7222222  450      0.5252028  0.6454838
  0.4   6         0.8               0.7222222  500      0.5275290  0.6432941
  0.4   6         0.8               0.7777778   50      0.4576209  0.7141303
  0.4   6         0.8               0.7777778  100      0.4796853  0.6911413
  0.4   6         0.8               0.7777778  150      0.4937105  0.6759920
  0.4   6         0.8               0.7777778  200      0.5019864  0.6688166
  0.4   6         0.8               0.7777778  250      0.5095716  0.6606758
  0.4   6         0.8               0.7777778  300      0.5153706  0.6547477
  0.4   6         0.8               0.7777778  350      0.5193397  0.6502424
  0.4   6         0.8               0.7777778  400      0.5226228  0.6463569
  0.4   6         0.8               0.7777778  450      0.5253774  0.6440544
  0.4   6         0.8               0.7777778  500      0.5268889  0.6424164
  0.4   6         0.8               0.8333333   50      0.4546015  0.7170497
  0.4   6         0.8               0.8333333  100      0.4771186  0.6926557
  0.4   6         0.8               0.8333333  150      0.4876339  0.6817424
  0.4   6         0.8               0.8333333  200      0.4973035  0.6722766
  0.4   6         0.8               0.8333333  250      0.5068310  0.6617232
  0.4   6         0.8               0.8333333  300      0.5108714  0.6571708
  0.4   6         0.8               0.8333333  350      0.5144132  0.6538533
  0.4   6         0.8               0.8333333  400      0.5184801  0.6499424
  0.4   6         0.8               0.8333333  450      0.5207679  0.6484058
  0.4   6         0.8               0.8333333  500      0.5219931  0.6472840
  0.4   6         0.8               0.8888889   50      0.4524158  0.7190162
  0.4   6         0.8               0.8888889  100      0.4706859  0.7003504
  0.4   6         0.8               0.8888889  150      0.4846801  0.6858857
  0.4   6         0.8               0.8888889  200      0.4956906  0.6745609
  0.4   6         0.8               0.8888889  250      0.5022381  0.6674359
  0.4   6         0.8               0.8888889  300      0.5074497  0.6622729
  0.4   6         0.8               0.8888889  350      0.5128383  0.6565634
  0.4   6         0.8               0.8888889  400      0.5165629  0.6526125
  0.4   6         0.8               0.8888889  450      0.5211291  0.6482017
  0.4   6         0.8               0.8888889  500      0.5244695  0.6447959
  0.4   6         0.8               0.9444444   50      0.4487567  0.7228737
  0.4   6         0.8               0.9444444  100      0.4713810  0.6988801
  0.4   6         0.8               0.9444444  150      0.4851560  0.6843230
  0.4   6         0.8               0.9444444  200      0.4947971  0.6742866
  0.4   6         0.8               0.9444444  250      0.5015813  0.6676651
  0.4   6         0.8               0.9444444  300      0.5092838  0.6596282
  0.4   6         0.8               0.9444444  350      0.5128508  0.6562131
  0.4   6         0.8               0.9444444  400      0.5157683  0.6535877
  0.4   6         0.8               0.9444444  450      0.5174437  0.6521679
  0.4   6         0.8               0.9444444  500      0.5206449  0.6488753
  0.4   6         0.8               1.0000000   50      0.4519639  0.7193901
  0.4   6         0.8               1.0000000  100      0.4674364  0.7031800
  0.4   6         0.8               1.0000000  150      0.4784718  0.6915668
  0.4   6         0.8               1.0000000  200      0.4853851  0.6842548
  0.4   6         0.8               1.0000000  250      0.4923654  0.6769460
  0.4   6         0.8               1.0000000  300      0.4979699  0.6712051
  0.4   6         0.8               1.0000000  350      0.5018005  0.6672229
  0.4   6         0.8               1.0000000  400      0.5053226  0.6636559
  0.4   6         0.8               1.0000000  450      0.5085472  0.6604747
  0.4   6         0.8               1.0000000  500      0.5111229  0.6579427
  0.4   7         0.6               0.5000000   50      0.4766392  0.6913370
  0.4   7         0.6               0.5000000  100      0.4965768  0.6709616
  0.4   7         0.6               0.5000000  150      0.5111146  0.6560465
  0.4   7         0.6               0.5000000  200      0.5220476  0.6441049
  0.4   7         0.6               0.5000000  250      0.5270457  0.6393623
  0.4   7         0.6               0.5000000  300      0.5339659  0.6329156
  0.4   7         0.6               0.5000000  350      0.5359458  0.6310473
  0.4   7         0.6               0.5000000  400      0.5457733  0.6209327
  0.4   7         0.6               0.5000000  450      0.5533449  0.6128811
  0.4   7         0.6               0.5000000  500      0.5543485  0.6127830
  0.4   7         0.6               0.5555556   50      0.4636309  0.7058799
  0.4   7         0.6               0.5555556  100      0.4854566  0.6824116
  0.4   7         0.6               0.5555556  150      0.4980942  0.6699533
  0.4   7         0.6               0.5555556  200      0.5065271  0.6604632
  0.4   7         0.6               0.5555556  250      0.5146514  0.6528956
  0.4   7         0.6               0.5555556  300      0.5213425  0.6459931
  0.4   7         0.6               0.5555556  350      0.5245913  0.6428231
  0.4   7         0.6               0.5555556  400      0.5263519  0.6406845
  0.4   7         0.6               0.5555556  450      0.5338719  0.6331608
  0.4   7         0.6               0.5555556  500      0.5361847  0.6302227
  0.4   7         0.6               0.6111111   50      0.4585176  0.7106998
  0.4   7         0.6               0.6111111  100      0.4747560  0.6939367
  0.4   7         0.6               0.6111111  150      0.4878496  0.6815042
  0.4   7         0.6               0.6111111  200      0.4969118  0.6715237
  0.4   7         0.6               0.6111111  250      0.5023207  0.6661780
  0.4   7         0.6               0.6111111  300      0.5057090  0.6635903
  0.4   7         0.6               0.6111111  350      0.5147750  0.6534359
  0.4   7         0.6               0.6111111  400      0.5206023  0.6475468
  0.4   7         0.6               0.6111111  450      0.5235659  0.6454788
  0.4   7         0.6               0.6111111  500      0.5287661  0.6397933
  0.4   7         0.6               0.6666667   50      0.4640952  0.7052897
  0.4   7         0.6               0.6666667  100      0.4833645  0.6855620
  0.4   7         0.6               0.6666667  150      0.4970407  0.6715692
  0.4   7         0.6               0.6666667  200      0.5083757  0.6596707
  0.4   7         0.6               0.6666667  250      0.5156599  0.6527798
  0.4   7         0.6               0.6666667  300      0.5207887  0.6474747
  0.4   7         0.6               0.6666667  350      0.5266335  0.6422178
  0.4   7         0.6               0.6666667  400      0.5308092  0.6378356
  0.4   7         0.6               0.6666667  450      0.5325172  0.6360999
  0.4   7         0.6               0.6666667  500      0.5371260  0.6316699
  0.4   7         0.6               0.7222222   50      0.4599526  0.7110448
  0.4   7         0.6               0.7222222  100      0.4757261  0.6946288
  0.4   7         0.6               0.7222222  150      0.4919176  0.6768191
  0.4   7         0.6               0.7222222  200      0.5011994  0.6672072
  0.4   7         0.6               0.7222222  250      0.5071368  0.6615270
  0.4   7         0.6               0.7222222  300      0.5125785  0.6557624
  0.4   7         0.6               0.7222222  350      0.5188333  0.6491117
  0.4   7         0.6               0.7222222  400      0.5234152  0.6440918
  0.4   7         0.6               0.7222222  450      0.5261821  0.6419526
  0.4   7         0.6               0.7222222  500      0.5279389  0.6399586
  0.4   7         0.6               0.7777778   50      0.4600943  0.7102346
  0.4   7         0.6               0.7777778  100      0.4823877  0.6864169
  0.4   7         0.6               0.7777778  150      0.4918739  0.6768759
  0.4   7         0.6               0.7777778  200      0.5035759  0.6642449
  0.4   7         0.6               0.7777778  250      0.5109711  0.6566361
  0.4   7         0.6               0.7777778  300      0.5160675  0.6515106
  0.4   7         0.6               0.7777778  350      0.5219087  0.6452874
  0.4   7         0.6               0.7777778  400      0.5257571  0.6415987
  0.4   7         0.6               0.7777778  450      0.5291479  0.6378629
  0.4   7         0.6               0.7777778  500      0.5324933  0.6339946
  0.4   7         0.6               0.8333333   50      0.4489300  0.7232047
  0.4   7         0.6               0.8333333  100      0.4668537  0.7046886
  0.4   7         0.6               0.8333333  150      0.4781966  0.6934383
  0.4   7         0.6               0.8333333  200      0.4883933  0.6824378
  0.4   7         0.6               0.8333333  250      0.4959442  0.6750224
  0.4   7         0.6               0.8333333  300      0.5014864  0.6692337
  0.4   7         0.6               0.8333333  350      0.5061868  0.6643321
  0.4   7         0.6               0.8333333  400      0.5101397  0.6604571
  0.4   7         0.6               0.8333333  450      0.5123192  0.6584882
  0.4   7         0.6               0.8333333  500      0.5146705  0.6562049
  0.4   7         0.6               0.8888889   50      0.4549832  0.7155659
  0.4   7         0.6               0.8888889  100      0.4733309  0.6966226
  0.4   7         0.6               0.8888889  150      0.4840825  0.6854719
  0.4   7         0.6               0.8888889  200      0.4946939  0.6736539
  0.4   7         0.6               0.8888889  250      0.5012484  0.6668135
  0.4   7         0.6               0.8888889  300      0.5062465  0.6616476
  0.4   7         0.6               0.8888889  350      0.5101815  0.6579954
  0.4   7         0.6               0.8888889  400      0.5171684  0.6503668
  0.4   7         0.6               0.8888889  450      0.5192386  0.6484928
  0.4   7         0.6               0.8888889  500      0.5225423  0.6449077
  0.4   7         0.6               0.9444444   50      0.4533297  0.7177669
  0.4   7         0.6               0.9444444  100      0.4713617  0.6986394
  0.4   7         0.6               0.9444444  150      0.4842712  0.6845720
  0.4   7         0.6               0.9444444  200      0.4916812  0.6772478
  0.4   7         0.6               0.9444444  250      0.4972722  0.6716617
  0.4   7         0.6               0.9444444  300      0.5034820  0.6649406
  0.4   7         0.6               0.9444444  350      0.5088871  0.6591845
  0.4   7         0.6               0.9444444  400      0.5146081  0.6531211
  0.4   7         0.6               0.9444444  450      0.5174788  0.6502470
  0.4   7         0.6               0.9444444  500      0.5191707  0.6486600
  0.4   7         0.6               1.0000000   50      0.4583673  0.7115324
  0.4   7         0.6               1.0000000  100      0.4705103  0.6985474
  0.4   7         0.6               1.0000000  150      0.4807750  0.6877814
  0.4   7         0.6               1.0000000  200      0.4878329  0.6805432
  0.4   7         0.6               1.0000000  250      0.4945129  0.6737596
  0.4   7         0.6               1.0000000  300      0.5007541  0.6672678
  0.4   7         0.6               1.0000000  350      0.5049462  0.6628670
  0.4   7         0.6               1.0000000  400      0.5090541  0.6585119
  0.4   7         0.6               1.0000000  450      0.5128955  0.6544383
  0.4   7         0.6               1.0000000  500      0.5162771  0.6510146
  0.4   7         0.8               0.5000000   50      0.4751210  0.6934702
  0.4   7         0.8               0.5000000  100      0.4948008  0.6734171
  0.4   7         0.8               0.5000000  150      0.5147144  0.6531988
  0.4   7         0.8               0.5000000  200      0.5245344  0.6435450
  0.4   7         0.8               0.5000000  250      0.5342195  0.6325814
  0.4   7         0.8               0.5000000  300      0.5388362  0.6284246
  0.4   7         0.8               0.5000000  350      0.5426269  0.6252861
  0.4   7         0.8               0.5000000  400      0.5495993  0.6173779
  0.4   7         0.8               0.5000000  450      0.5536854  0.6137777
  0.4   7         0.8               0.5000000  500      0.5552722  0.6119456
  0.4   7         0.8               0.5555556   50      0.4607954  0.7104873
  0.4   7         0.8               0.5555556  100      0.4891051  0.6799971
  0.4   7         0.8               0.5555556  150      0.5009016  0.6673458
  0.4   7         0.8               0.5555556  200      0.5104992  0.6574855
  0.4   7         0.8               0.5555556  250      0.5192490  0.6486661
  0.4   7         0.8               0.5555556  300      0.5243098  0.6442544
  0.4   7         0.8               0.5555556  350      0.5306484  0.6379617
  0.4   7         0.8               0.5555556  400      0.5329240  0.6348833
  0.4   7         0.8               0.5555556  450      0.5400931  0.6281547
  0.4   7         0.8               0.5555556  500      0.5426991  0.6255519
  0.4   7         0.8               0.6111111   50      0.4696949  0.6995410
  0.4   7         0.8               0.6111111  100      0.4958425  0.6722927
  0.4   7         0.8               0.6111111  150      0.5112766  0.6553869
  0.4   7         0.8               0.6111111  200      0.5243297  0.6421650
  0.4   7         0.8               0.6111111  250      0.5306393  0.6348747
  0.4   7         0.8               0.6111111  300      0.5334473  0.6334490
  0.4   7         0.8               0.6111111  350      0.5354498  0.6326513
  0.4   7         0.8               0.6111111  400      0.5386747  0.6299844
  0.4   7         0.8               0.6111111  450      0.5417073  0.6262951
  0.4   7         0.8               0.6111111  500      0.5464100  0.6216031
  0.4   7         0.8               0.6666667   50      0.4683747  0.7022921
  0.4   7         0.8               0.6666667  100      0.4907387  0.6784493
  0.4   7         0.8               0.6666667  150      0.5038362  0.6647040
  0.4   7         0.8               0.6666667  200      0.5155148  0.6522038
  0.4   7         0.8               0.6666667  250      0.5212038  0.6467286
  0.4   7         0.8               0.6666667  300      0.5280858  0.6396856
  0.4   7         0.8               0.6666667  350      0.5295629  0.6387897
  0.4   7         0.8               0.6666667  400      0.5316654  0.6370526
  0.4   7         0.8               0.6666667  450      0.5339509  0.6348796
  0.4   7         0.8               0.6666667  500      0.5363602  0.6317449
  0.4   7         0.8               0.7222222   50      0.4668168  0.7035210
  0.4   7         0.8               0.7222222  100      0.4902041  0.6792369
  0.4   7         0.8               0.7222222  150      0.5035822  0.6658598
  0.4   7         0.8               0.7222222  200      0.5110334  0.6586130
  0.4   7         0.8               0.7222222  250      0.5179341  0.6517512
  0.4   7         0.8               0.7222222  300      0.5199193  0.6498728
  0.4   7         0.8               0.7222222  350      0.5237286  0.6460945
  0.4   7         0.8               0.7222222  400      0.5251427  0.6445763
  0.4   7         0.8               0.7222222  450      0.5294398  0.6404809
  0.4   7         0.8               0.7222222  500      0.5319821  0.6382131
  0.4   7         0.8               0.7777778   50      0.4571203  0.7152393
  0.4   7         0.8               0.7777778  100      0.4860637  0.6846966
  0.4   7         0.8               0.7777778  150      0.5006779  0.6696782
  0.4   7         0.8               0.7777778  200      0.5090901  0.6612368
  0.4   7         0.8               0.7777778  250      0.5162526  0.6537318
  0.4   7         0.8               0.7777778  300      0.5198170  0.6499999
  0.4   7         0.8               0.7777778  350      0.5229587  0.6473619
  0.4   7         0.8               0.7777778  400      0.5256364  0.6445434
  0.4   7         0.8               0.7777778  450      0.5285036  0.6423303
  0.4   7         0.8               0.7777778  500      0.5300327  0.6405328
  0.4   7         0.8               0.8333333   50      0.4707588  0.6974371
  0.4   7         0.8               0.8333333  100      0.4939355  0.6731953
  0.4   7         0.8               0.8333333  150      0.5089524  0.6576428
  0.4   7         0.8               0.8333333  200      0.5190948  0.6471577
  0.4   7         0.8               0.8333333  250      0.5255409  0.6406268
  0.4   7         0.8               0.8333333  300      0.5305649  0.6359767
  0.4   7         0.8               0.8333333  350      0.5347889  0.6314861
  0.4   7         0.8               0.8333333  400      0.5363008  0.6307011
  0.4   7         0.8               0.8333333  450      0.5404626  0.6266282
  0.4   7         0.8               0.8333333  500      0.5443741  0.6221381
  0.4   7         0.8               0.8888889   50      0.4668339  0.7024729
  0.4   7         0.8               0.8888889  100      0.4909823  0.6774982
  0.4   7         0.8               0.8888889  150      0.5059218  0.6620130
  0.4   7         0.8               0.8888889  200      0.5124810  0.6551703
  0.4   7         0.8               0.8888889  250      0.5193674  0.6482973
  0.4   7         0.8               0.8888889  300      0.5243042  0.6426947
  0.4   7         0.8               0.8888889  350      0.5265125  0.6410427
  0.4   7         0.8               0.8888889  400      0.5286679  0.6388970
  0.4   7         0.8               0.8888889  450      0.5310192  0.6361901
  0.4   7         0.8               0.8888889  500      0.5330843  0.6341437
  0.4   7         0.8               0.9444444   50      0.4519824  0.7200829
  0.4   7         0.8               0.9444444  100      0.4721028  0.6993071
  0.4   7         0.8               0.9444444  150      0.4864888  0.6842980
  0.4   7         0.8               0.9444444  200      0.4966124  0.6735558
  0.4   7         0.8               0.9444444  250      0.5020268  0.6681393
  0.4   7         0.8               0.9444444  300      0.5070936  0.6628332
  0.4   7         0.8               0.9444444  350      0.5107170  0.6592172
  0.4   7         0.8               0.9444444  400      0.5144269  0.6552315
  0.4   7         0.8               0.9444444  450      0.5172853  0.6521645
  0.4   7         0.8               0.9444444  500      0.5176549  0.6520643
  0.4   7         0.8               1.0000000   50      0.4594400  0.7103232
  0.4   7         0.8               1.0000000  100      0.4760165  0.6924745
  0.4   7         0.8               1.0000000  150      0.4861862  0.6819058
  0.4   7         0.8               1.0000000  200      0.4949553  0.6729537
  0.4   7         0.8               1.0000000  250      0.5014884  0.6660259
  0.4   7         0.8               1.0000000  300      0.5062287  0.6611656
  0.4   7         0.8               1.0000000  350      0.5105434  0.6566689
  0.4   7         0.8               1.0000000  400      0.5149302  0.6521096
  0.4   7         0.8               1.0000000  450      0.5171899  0.6498063
  0.4   7         0.8               1.0000000  500      0.5193875  0.6476682
  0.4   8         0.6               0.5000000   50      0.4807776  0.6877307
  0.4   8         0.6               0.5000000  100      0.5035003  0.6640821
  0.4   8         0.6               0.5000000  150      0.5164660  0.6514001
  0.4   8         0.6               0.5000000  200      0.5279681  0.6404690
  0.4   8         0.6               0.5000000  250      0.5311820  0.6373273
  0.4   8         0.6               0.5000000  300      0.5367104  0.6326897
  0.4   8         0.6               0.5000000  350      0.5439254  0.6254244
  0.4   8         0.6               0.5000000  400      0.5459178  0.6235340
  0.4   8         0.6               0.5000000  450      0.5493531  0.6199246
  0.4   8         0.6               0.5000000  500      0.5507405  0.6185534
  0.4   8         0.6               0.5555556   50      0.4758084  0.6932795
  0.4   8         0.6               0.5555556  100      0.4980900  0.6698627
  0.4   8         0.6               0.5555556  150      0.5105144  0.6577112
  0.4   8         0.6               0.5555556  200      0.5221113  0.6457768
  0.4   8         0.6               0.5555556  250      0.5304562  0.6375178
  0.4   8         0.6               0.5555556  300      0.5383918  0.6289303
  0.4   8         0.6               0.5555556  350      0.5419787  0.6251783
  0.4   8         0.6               0.5555556  400      0.5468434  0.6207432
  0.4   8         0.6               0.5555556  450      0.5506280  0.6168065
  0.4   8         0.6               0.5555556  500      0.5557160  0.6110782
  0.4   8         0.6               0.6111111   50      0.4679172  0.7016208
  0.4   8         0.6               0.6111111  100      0.4943630  0.6722033
  0.4   8         0.6               0.6111111  150      0.5045699  0.6622234
  0.4   8         0.6               0.6111111  200      0.5176172  0.6485233
  0.4   8         0.6               0.6111111  250      0.5221894  0.6454425
  0.4   8         0.6               0.6111111  300      0.5289492  0.6381641
  0.4   8         0.6               0.6111111  350      0.5311644  0.6365749
  0.4   8         0.6               0.6111111  400      0.5351035  0.6320518
  0.4   8         0.6               0.6111111  450      0.5383978  0.6289890
  0.4   8         0.6               0.6111111  500      0.5413780  0.6267068
  0.4   8         0.6               0.6666667   50      0.4711065  0.6992680
  0.4   8         0.6               0.6666667  100      0.4962484  0.6735992
  0.4   8         0.6               0.6666667  150      0.5089016  0.6611548
  0.4   8         0.6               0.6666667  200      0.5188510  0.6504599
  0.4   8         0.6               0.6666667  250      0.5274933  0.6414199
  0.4   8         0.6               0.6666667  300      0.5309277  0.6381417
  0.4   8         0.6               0.6666667  350      0.5357723  0.6330816
  0.4   8         0.6               0.6666667  400      0.5406028  0.6281641
  0.4   8         0.6               0.6666667  450      0.5443944  0.6249031
  0.4   8         0.6               0.6666667  500      0.5459387  0.6234143
  0.4   8         0.6               0.7222222   50      0.4861828  0.6791808
  0.4   8         0.6               0.7222222  100      0.5060505  0.6593699
  0.4   8         0.6               0.7222222  150      0.5210094  0.6440394
  0.4   8         0.6               0.7222222  200      0.5310053  0.6321792
  0.4   8         0.6               0.7222222  250      0.5389178  0.6237798
  0.4   8         0.6               0.7222222  300      0.5444971  0.6180357
  0.4   8         0.6               0.7222222  350      0.5483179  0.6133966
  0.4   8         0.6               0.7222222  400      0.5519792  0.6096671
  0.4   8         0.6               0.7222222  450      0.5542803  0.6074079
  0.4   8         0.6               0.7222222  500      0.5552423  0.6060166
  0.4   8         0.6               0.7777778   50      0.4682806  0.7002890
  0.4   8         0.6               0.7777778  100      0.4914636  0.6758982
  0.4   8         0.6               0.7777778  150      0.5046684  0.6623651
  0.4   8         0.6               0.7777778  200      0.5134579  0.6535292
  0.4   8         0.6               0.7777778  250      0.5202229  0.6471802
  0.4   8         0.6               0.7777778  300      0.5286497  0.6383579
  0.4   8         0.6               0.7777778  350      0.5328955  0.6332750
  0.4   8         0.6               0.7777778  400      0.5369148  0.6294693
  0.4   8         0.6               0.7777778  450      0.5385086  0.6279815
  0.4   8         0.6               0.7777778  500      0.5405079  0.6258006
  0.4   8         0.6               0.8333333   50      0.4741899  0.6938093
  0.4   8         0.6               0.8333333  100      0.4954476  0.6721919
  0.4   8         0.6               0.8333333  150      0.5074599  0.6595265
  0.4   8         0.6               0.8333333  200      0.5166691  0.6505301
  0.4   8         0.6               0.8333333  250      0.5241152  0.6427451
  0.4   8         0.6               0.8333333  300      0.5287987  0.6384020
  0.4   8         0.6               0.8333333  350      0.5319098  0.6345716
  0.4   8         0.6               0.8333333  400      0.5352393  0.6318048
  0.4   8         0.6               0.8333333  450      0.5378441  0.6297031
  0.4   8         0.6               0.8333333  500      0.5397102  0.6274706
  0.4   8         0.6               0.8888889   50      0.4586413  0.7119954
  0.4   8         0.6               0.8888889  100      0.4799735  0.6889011
  0.4   8         0.6               0.8888889  150      0.4930595  0.6751423
  0.4   8         0.6               0.8888889  200      0.5028359  0.6650749
  0.4   8         0.6               0.8888889  250      0.5114668  0.6560408
  0.4   8         0.6               0.8888889  300      0.5155565  0.6513296
  0.4   8         0.6               0.8888889  350      0.5192914  0.6472731
  0.4   8         0.6               0.8888889  400      0.5242940  0.6422213
  0.4   8         0.6               0.8888889  450      0.5255831  0.6407475
  0.4   8         0.6               0.8888889  500      0.5279663  0.6383533
  0.4   8         0.6               0.9444444   50      0.4604264  0.7093860
  0.4   8         0.6               0.9444444  100      0.4782425  0.6906324
  0.4   8         0.6               0.9444444  150      0.4920751  0.6762520
  0.4   8         0.6               0.9444444  200      0.5006833  0.6672403
  0.4   8         0.6               0.9444444  250      0.5073216  0.6600707
  0.4   8         0.6               0.9444444  300      0.5135459  0.6536970
  0.4   8         0.6               0.9444444  350      0.5179850  0.6490568
  0.4   8         0.6               0.9444444  400      0.5206407  0.6465647
  0.4   8         0.6               0.9444444  450      0.5243249  0.6429419
  0.4   8         0.6               0.9444444  500      0.5263018  0.6404479
  0.4   8         0.6               1.0000000   50      0.4686184  0.6995305
  0.4   8         0.6               1.0000000  100      0.4780302  0.6898829
  0.4   8         0.6               1.0000000  150      0.4884993  0.6787241
  0.4   8         0.6               1.0000000  200      0.4974286  0.6689439
  0.4   8         0.6               1.0000000  250      0.5040626  0.6617230
  0.4   8         0.6               1.0000000  300      0.5096422  0.6558700
  0.4   8         0.6               1.0000000  350      0.5139476  0.6513985
  0.4   8         0.6               1.0000000  400      0.5171225  0.6479281
  0.4   8         0.6               1.0000000  450      0.5205220  0.6443620
  0.4   8         0.6               1.0000000  500      0.5238769  0.6406824
  0.4   8         0.8               0.5000000   50      0.4844771  0.6845658
  0.4   8         0.8               0.5000000  100      0.5045625  0.6643126
  0.4   8         0.8               0.5000000  150      0.5249837  0.6446465
  0.4   8         0.8               0.5000000  200      0.5312861  0.6381891
  0.4   8         0.8               0.5000000  250      0.5411884  0.6274512
  0.4   8         0.8               0.5000000  300      0.5505607  0.6170380
  0.4   8         0.8               0.5000000  350      0.5557960  0.6124628
  0.4   8         0.8               0.5000000  400      0.5609940  0.6068655
  0.4   8         0.8               0.5000000  450      0.5635617  0.6044087
  0.4   8         0.8               0.5000000  500      0.5660151  0.6025116
  0.4   8         0.8               0.5555556   50      0.4791394  0.6896426
  0.4   8         0.8               0.5555556  100      0.5026923  0.6657669
  0.4   8         0.8               0.5555556  150      0.5185970  0.6481888
  0.4   8         0.8               0.5555556  200      0.5290369  0.6376518
  0.4   8         0.8               0.5555556  250      0.5358319  0.6305910
  0.4   8         0.8               0.5555556  300      0.5425060  0.6237027
  0.4   8         0.8               0.5555556  350      0.5472134  0.6190956
  0.4   8         0.8               0.5555556  400      0.5486839  0.6178591
  0.4   8         0.8               0.5555556  450      0.5529731  0.6147777
  0.4   8         0.8               0.5555556  500      0.5549176  0.6131400
  0.4   8         0.8               0.6111111   50      0.4803469  0.6909944
  0.4   8         0.8               0.6111111  100      0.5020176  0.6696164
  0.4   8         0.8               0.6111111  150      0.5160410  0.6555883
  0.4   8         0.8               0.6111111  200      0.5249566  0.6466753
  0.4   8         0.8               0.6111111  250      0.5290915  0.6430603
  0.4   8         0.8               0.6111111  300      0.5333727  0.6378903
  0.4   8         0.8               0.6111111  350      0.5379685  0.6342497
  0.4   8         0.8               0.6111111  400      0.5399029  0.6319310
  0.4   8         0.8               0.6111111  450      0.5426473  0.6294442
  0.4   8         0.8               0.6111111  500      0.5430492  0.6290808
  0.4   8         0.8               0.6666667   50      0.4748490  0.6941877
  0.4   8         0.8               0.6666667  100      0.5059220  0.6616627
  0.4   8         0.8               0.6666667  150      0.5163074  0.6507076
  0.4   8         0.8               0.6666667  200      0.5227786  0.6459854
  0.4   8         0.8               0.6666667  250      0.5292023  0.6391801
  0.4   8         0.8               0.6666667  300      0.5349190  0.6328215
  0.4   8         0.8               0.6666667  350      0.5362402  0.6316215
  0.4   8         0.8               0.6666667  400      0.5403781  0.6262423
  0.4   8         0.8               0.6666667  450      0.5434752  0.6229937
  0.4   8         0.8               0.6666667  500      0.5449439  0.6223299
  0.4   8         0.8               0.7222222   50      0.4800686  0.6881370
  0.4   8         0.8               0.7222222  100      0.5042320  0.6641618
  0.4   8         0.8               0.7222222  150      0.5187695  0.6507179
  0.4   8         0.8               0.7222222  200      0.5277930  0.6410944
  0.4   8         0.8               0.7222222  250      0.5342485  0.6338233
  0.4   8         0.8               0.7222222  300      0.5399218  0.6287162
  0.4   8         0.8               0.7222222  350      0.5426197  0.6254742
  0.4   8         0.8               0.7222222  400      0.5438699  0.6243923
  0.4   8         0.8               0.7222222  450      0.5471858  0.6206797
  0.4   8         0.8               0.7222222  500      0.5472477  0.6204132
  0.4   8         0.8               0.7777778   50      0.4767630  0.6935999
  0.4   8         0.8               0.7777778  100      0.4985324  0.6710990
  0.4   8         0.8               0.7777778  150      0.5150625  0.6539030
  0.4   8         0.8               0.7777778  200      0.5215256  0.6473944
  0.4   8         0.8               0.7777778  250      0.5284946  0.6407328
  0.4   8         0.8               0.7777778  300      0.5321424  0.6367580
  0.4   8         0.8               0.7777778  350      0.5344729  0.6340991
  0.4   8         0.8               0.7777778  400      0.5363713  0.6324992
  0.4   8         0.8               0.7777778  450      0.5357577  0.6332944
  0.4   8         0.8               0.7777778  500      0.5380934  0.6300947
  0.4   8         0.8               0.8333333   50      0.4761382  0.6924775
  0.4   8         0.8               0.8333333  100      0.4995125  0.6681170
  0.4   8         0.8               0.8333333  150      0.5094871  0.6581241
  0.4   8         0.8               0.8333333  200      0.5169612  0.6508987
  0.4   8         0.8               0.8333333  250      0.5222865  0.6451722
  0.4   8         0.8               0.8333333  300      0.5262678  0.6409957
  0.4   8         0.8               0.8333333  350      0.5275388  0.6406867
  0.4   8         0.8               0.8333333  400      0.5288752  0.6396824
  0.4   8         0.8               0.8333333  450      0.5307591  0.6374641
  0.4   8         0.8               0.8333333  500      0.5322718  0.6365016
  0.4   8         0.8               0.8888889   50      0.4643201  0.7065237
  0.4   8         0.8               0.8888889  100      0.4930426  0.6752240
  0.4   8         0.8               0.8888889  150      0.5025320  0.6657864
  0.4   8         0.8               0.8888889  200      0.5095488  0.6584670
  0.4   8         0.8               0.8888889  250      0.5149805  0.6531010
  0.4   8         0.8               0.8888889  300      0.5184977  0.6494396
  0.4   8         0.8               0.8888889  350      0.5206443  0.6476354
  0.4   8         0.8               0.8888889  400      0.5207237  0.6471718
  0.4   8         0.8               0.8888889  450      0.5225436  0.6448469
  0.4   8         0.8               0.8888889  500      0.5244114  0.6424646
  0.4   8         0.8               0.9444444   50      0.4615699  0.7092547
  0.4   8         0.8               0.9444444  100      0.4885790  0.6798298
  0.4   8         0.8               0.9444444  150      0.5025962  0.6654985
  0.4   8         0.8               0.9444444  200      0.5109200  0.6572915
  0.4   8         0.8               0.9444444  250      0.5156387  0.6525121
  0.4   8         0.8               0.9444444  300      0.5176544  0.6504692
  0.4   8         0.8               0.9444444  350      0.5209769  0.6469856
  0.4   8         0.8               0.9444444  400      0.5228663  0.6450178
  0.4   8         0.8               0.9444444  450      0.5241480  0.6437376
  0.4   8         0.8               0.9444444  500      0.5255161  0.6425161
  0.4   8         0.8               1.0000000   50      0.4612888  0.7083438
  0.4   8         0.8               1.0000000  100      0.4828507  0.6849773
  0.4   8         0.8               1.0000000  150      0.4941803  0.6730465
  0.4   8         0.8               1.0000000  200      0.5024814  0.6644385
  0.4   8         0.8               1.0000000  250      0.5090351  0.6577106
  0.4   8         0.8               1.0000000  300      0.5132997  0.6532938
  0.4   8         0.8               1.0000000  350      0.5166958  0.6497602
  0.4   8         0.8               1.0000000  400      0.5201413  0.6460260
  0.4   8         0.8               1.0000000  450      0.5220272  0.6440780
  0.4   8         0.8               1.0000000  500      0.5229205  0.6431814
  0.4   9         0.6               0.5000000   50      0.4819278  0.6875246
  0.4   9         0.6               0.5000000  100      0.5014107  0.6681222
  0.4   9         0.6               0.5000000  150      0.5161210  0.6536804
  0.4   9         0.6               0.5000000  200      0.5268191  0.6422392
  0.4   9         0.6               0.5000000  250      0.5360735  0.6338247
  0.4   9         0.6               0.5000000  300      0.5449766  0.6250751
  0.4   9         0.6               0.5000000  350      0.5484029  0.6224551
  0.4   9         0.6               0.5000000  400      0.5516777  0.6173129
  0.4   9         0.6               0.5000000  450      0.5546396  0.6157000
  0.4   9         0.6               0.5000000  500      0.5586776  0.6128862
  0.4   9         0.6               0.5555556   50      0.4774484  0.6926618
  0.4   9         0.6               0.5555556  100      0.5031866  0.6677519
  0.4   9         0.6               0.5555556  150      0.5203123  0.6499034
  0.4   9         0.6               0.5555556  200      0.5297433  0.6413257
  0.4   9         0.6               0.5555556  250      0.5334546  0.6370153
  0.4   9         0.6               0.5555556  300      0.5405842  0.6291617
  0.4   9         0.6               0.5555556  350      0.5442586  0.6260905
  0.4   9         0.6               0.5555556  400      0.5481954  0.6231495
  0.4   9         0.6               0.5555556  450      0.5514902  0.6192607
  0.4   9         0.6               0.5555556  500      0.5550872  0.6164076
  0.4   9         0.6               0.6111111   50      0.4884730  0.6770019
  0.4   9         0.6               0.6111111  100      0.5034835  0.6624160
  0.4   9         0.6               0.6111111  150      0.5135774  0.6529308
  0.4   9         0.6               0.6111111  200      0.5244035  0.6412857
  0.4   9         0.6               0.6111111  250      0.5334558  0.6315840
  0.4   9         0.6               0.6111111  300      0.5382668  0.6272071
  0.4   9         0.6               0.6111111  350      0.5437910  0.6215502
  0.4   9         0.6               0.6111111  400      0.5477112  0.6171158
  0.4   9         0.6               0.6111111  450      0.5500525  0.6153301
  0.4   9         0.6               0.6111111  500      0.5501739  0.6157258
  0.4   9         0.6               0.6666667   50      0.4788793  0.6896469
  0.4   9         0.6               0.6666667  100      0.5002020  0.6683292
  0.4   9         0.6               0.6666667  150      0.5088163  0.6598181
  0.4   9         0.6               0.6666667  200      0.5186317  0.6495884
  0.4   9         0.6               0.6666667  250      0.5261556  0.6418863
  0.4   9         0.6               0.6666667  300      0.5325351  0.6348402
  0.4   9         0.6               0.6666667  350      0.5368601  0.6304918
  0.4   9         0.6               0.6666667  400      0.5415848  0.6247285
  0.4   9         0.6               0.6666667  450      0.5426791  0.6241143
  0.4   9         0.6               0.6666667  500      0.5456761  0.6216878
  0.4   9         0.6               0.7222222   50      0.4766077  0.6921852
  0.4   9         0.6               0.7222222  100      0.4984005  0.6701603
  0.4   9         0.6               0.7222222  150      0.5128584  0.6553715
  0.4   9         0.6               0.7222222  200      0.5226987  0.6452836
  0.4   9         0.6               0.7222222  250      0.5294024  0.6390297
  0.4   9         0.6               0.7222222  300      0.5366213  0.6306069
  0.4   9         0.6               0.7222222  350      0.5437281  0.6235518
  0.4   9         0.6               0.7222222  400      0.5452444  0.6218322
  0.4   9         0.6               0.7222222  450      0.5481799  0.6194551
  0.4   9         0.6               0.7222222  500      0.5493425  0.6178329
  0.4   9         0.6               0.7777778   50      0.4760837  0.6916932
  0.4   9         0.6               0.7777778  100      0.4992447  0.6682909
  0.4   9         0.6               0.7777778  150      0.5109408  0.6566776
  0.4   9         0.6               0.7777778  200      0.5175209  0.6510339
  0.4   9         0.6               0.7777778  250      0.5280041  0.6395556
  0.4   9         0.6               0.7777778  300      0.5324964  0.6352628
  0.4   9         0.6               0.7777778  350      0.5362276  0.6313673
  0.4   9         0.6               0.7777778  400      0.5372475  0.6305893
  0.4   9         0.6               0.7777778  450      0.5399859  0.6274046
  0.4   9         0.6               0.7777778  500      0.5422270  0.6247240
  0.4   9         0.6               0.8333333   50      0.4798578  0.6886312
  0.4   9         0.6               0.8333333  100      0.5008668  0.6671898
  0.4   9         0.6               0.8333333  150      0.5126655  0.6550067
  0.4   9         0.6               0.8333333  200      0.5212669  0.6460802
  0.4   9         0.6               0.8333333  250      0.5261572  0.6410601
  0.4   9         0.6               0.8333333  300      0.5301334  0.6372566
  0.4   9         0.6               0.8333333  350      0.5324653  0.6351462
  0.4   9         0.6               0.8333333  400      0.5334843  0.6343129
  0.4   9         0.6               0.8333333  450      0.5371515  0.6302201
  0.4   9         0.6               0.8333333  500      0.5395794  0.6278247
  0.4   9         0.6               0.8888889   50      0.4764707  0.6914527
  0.4   9         0.6               0.8888889  100      0.4942118  0.6734361
  0.4   9         0.6               0.8888889  150      0.5104806  0.6559301
  0.4   9         0.6               0.8888889  200      0.5180190  0.6476332
  0.4   9         0.6               0.8888889  250      0.5233841  0.6422693
  0.4   9         0.6               0.8888889  300      0.5273903  0.6380188
  0.4   9         0.6               0.8888889  350      0.5302698  0.6349352
  0.4   9         0.6               0.8888889  400      0.5325554  0.6327153
  0.4   9         0.6               0.8888889  450      0.5339928  0.6314093
  0.4   9         0.6               0.8888889  500      0.5361213  0.6288399
  0.4   9         0.6               0.9444444   50      0.4735647  0.6956144
  0.4   9         0.6               0.9444444  100      0.4952527  0.6741210
  0.4   9         0.6               0.9444444  150      0.5088370  0.6606005
  0.4   9         0.6               0.9444444  200      0.5166599  0.6525497
  0.4   9         0.6               0.9444444  250      0.5221548  0.6468863
  0.4   9         0.6               0.9444444  300      0.5258402  0.6429162
  0.4   9         0.6               0.9444444  350      0.5280488  0.6405518
  0.4   9         0.6               0.9444444  400      0.5297202  0.6388379
  0.4   9         0.6               0.9444444  450      0.5323033  0.6364207
  0.4   9         0.6               0.9444444  500      0.5333118  0.6357700
  0.4   9         0.6               1.0000000   50      0.4607794  0.7100120
  0.4   9         0.6               1.0000000  100      0.4754692  0.6945969
  0.4   9         0.6               1.0000000  150      0.4859356  0.6832723
  0.4   9         0.6               1.0000000  200      0.4919966  0.6769541
  0.4   9         0.6               1.0000000  250      0.4987908  0.6698248
  0.4   9         0.6               1.0000000  300      0.5037740  0.6647903
  0.4   9         0.6               1.0000000  350      0.5083857  0.6597490
  0.4   9         0.6               1.0000000  400      0.5119055  0.6560291
  0.4   9         0.6               1.0000000  450      0.5146082  0.6530752
  0.4   9         0.6               1.0000000  500      0.5172107  0.6504250
  0.4   9         0.8               0.5000000   50      0.4882535  0.6830644
  0.4   9         0.8               0.5000000  100      0.5092779  0.6634317
  0.4   9         0.8               0.5000000  150      0.5241742  0.6484941
  0.4   9         0.8               0.5000000  200      0.5357352  0.6382692
  0.4   9         0.8               0.5000000  250      0.5422524  0.6305702
  0.4   9         0.8               0.5000000  300      0.5489010  0.6244940
  0.4   9         0.8               0.5000000  350      0.5521735  0.6223636
  0.4   9         0.8               0.5000000  400      0.5574191  0.6160380
  0.4   9         0.8               0.5000000  450      0.5582932  0.6159311
  0.4   9         0.8               0.5000000  500      0.5576184  0.6173821
  0.4   9         0.8               0.5555556   50      0.4823847  0.6868804
  0.4   9         0.8               0.5555556  100      0.5050560  0.6629852
  0.4   9         0.8               0.5555556  150      0.5151707  0.6530490
  0.4   9         0.8               0.5555556  200      0.5259541  0.6422399
  0.4   9         0.8               0.5555556  250      0.5327526  0.6346651
  0.4   9         0.8               0.5555556  300      0.5376727  0.6295104
  0.4   9         0.8               0.5555556  350      0.5392842  0.6274946
  0.4   9         0.8               0.5555556  400      0.5410255  0.6265414
  0.4   9         0.8               0.5555556  450      0.5448242  0.6215565
  0.4   9         0.8               0.5555556  500      0.5471933  0.6188516
  0.4   9         0.8               0.6111111   50      0.4874268  0.6807857
  0.4   9         0.8               0.6111111  100      0.5117650  0.6562382
  0.4   9         0.8               0.6111111  150      0.5277689  0.6389353
  0.4   9         0.8               0.6111111  200      0.5387506  0.6279997
  0.4   9         0.8               0.6111111  250      0.5422230  0.6245382
  0.4   9         0.8               0.6111111  300      0.5500043  0.6169862
  0.4   9         0.8               0.6111111  350      0.5507748  0.6167012
  0.4   9         0.8               0.6111111  400      0.5537671  0.6136169
  0.4   9         0.8               0.6111111  450      0.5572431  0.6090298
  0.4   9         0.8               0.6111111  500      0.5606318  0.6058774
  0.4   9         0.8               0.6666667   50      0.4852363  0.6832071
  0.4   9         0.8               0.6666667  100      0.5115215  0.6566978
  0.4   9         0.8               0.6666667  150      0.5236119  0.6444653
  0.4   9         0.8               0.6666667  200      0.5310462  0.6375111
  0.4   9         0.8               0.6666667  250      0.5347079  0.6342515
  0.4   9         0.8               0.6666667  300      0.5400254  0.6288918
  0.4   9         0.8               0.6666667  350      0.5447290  0.6231549
  0.4   9         0.8               0.6666667  400      0.5480265  0.6205931
  0.4   9         0.8               0.6666667  450      0.5498086  0.6179925
  0.4   9         0.8               0.6666667  500      0.5509095  0.6168102
  0.4   9         0.8               0.7222222   50      0.4843941  0.6842132
  0.4   9         0.8               0.7222222  100      0.5114655  0.6547803
  0.4   9         0.8               0.7222222  150      0.5253662  0.6402170
  0.4   9         0.8               0.7222222  200      0.5308614  0.6345249
  0.4   9         0.8               0.7222222  250      0.5342674  0.6320702
  0.4   9         0.8               0.7222222  300      0.5378760  0.6280689
  0.4   9         0.8               0.7222222  350      0.5415687  0.6246880
  0.4   9         0.8               0.7222222  400      0.5428035  0.6236810
  0.4   9         0.8               0.7222222  450      0.5430723  0.6225768
  0.4   9         0.8               0.7222222  500      0.5447249  0.6206921
  0.4   9         0.8               0.7777778   50      0.4722776  0.6985054
  0.4   9         0.8               0.7777778  100      0.5024029  0.6666224
  0.4   9         0.8               0.7777778  150      0.5127414  0.6563787
  0.4   9         0.8               0.7777778  200      0.5195760  0.6487940
  0.4   9         0.8               0.7777778  250      0.5233387  0.6449557
  0.4   9         0.8               0.7777778  300      0.5277674  0.6396301
  0.4   9         0.8               0.7777778  350      0.5303296  0.6376034
  0.4   9         0.8               0.7777778  400      0.5332553  0.6346117
  0.4   9         0.8               0.7777778  450      0.5343284  0.6332889
  0.4   9         0.8               0.7777778  500      0.5362555  0.6317443
  0.4   9         0.8               0.8333333   50      0.4844709  0.6844563
  0.4   9         0.8               0.8333333  100      0.5095851  0.6587639
  0.4   9         0.8               0.8333333  150      0.5216469  0.6469052
  0.4   9         0.8               0.8333333  200      0.5249537  0.6444186
  0.4   9         0.8               0.8333333  250      0.5298330  0.6389500
  0.4   9         0.8               0.8333333  300      0.5330564  0.6358133
  0.4   9         0.8               0.8333333  350      0.5353682  0.6335197
  0.4   9         0.8               0.8333333  400      0.5370814  0.6314434
  0.4   9         0.8               0.8333333  450      0.5391942  0.6292931
  0.4   9         0.8               0.8333333  500      0.5405810  0.6281124
  0.4   9         0.8               0.8888889   50      0.4755983  0.6939605
  0.4   9         0.8               0.8888889  100      0.4957031  0.6726720
  0.4   9         0.8               0.8888889  150      0.5095491  0.6580506
  0.4   9         0.8               0.8888889  200      0.5164628  0.6506760
  0.4   9         0.8               0.8888889  250      0.5191254  0.6482221
  0.4   9         0.8               0.8888889  300      0.5222240  0.6450692
  0.4   9         0.8               0.8888889  350      0.5230957  0.6448432
  0.4   9         0.8               0.8888889  400      0.5245581  0.6434287
  0.4   9         0.8               0.8888889  450      0.5247888  0.6432474
  0.4   9         0.8               0.8888889  500      0.5267507  0.6411796
  0.4   9         0.8               0.9444444   50      0.4669491  0.7027759
  0.4   9         0.8               0.9444444  100      0.4918599  0.6770293
  0.4   9         0.8               0.9444444  150      0.5054573  0.6623807
  0.4   9         0.8               0.9444444  200      0.5112064  0.6562501
  0.4   9         0.8               0.9444444  250      0.5164706  0.6504672
  0.4   9         0.8               0.9444444  300      0.5174156  0.6496526
  0.4   9         0.8               0.9444444  350      0.5192739  0.6477225
  0.4   9         0.8               0.9444444  400      0.5207234  0.6464123
  0.4   9         0.8               0.9444444  450      0.5222916  0.6443933
  0.4   9         0.8               0.9444444  500      0.5232482  0.6429877
  0.4   9         0.8               1.0000000   50      0.4616291  0.7097785
  0.4   9         0.8               1.0000000  100      0.4807946  0.6893815
  0.4   9         0.8               1.0000000  150      0.4910040  0.6788293
  0.4   9         0.8               1.0000000  200      0.5002024  0.6695156
  0.4   9         0.8               1.0000000  250      0.5058934  0.6635013
  0.4   9         0.8               1.0000000  300      0.5088946  0.6605102
  0.4   9         0.8               1.0000000  350      0.5107104  0.6586429
  0.4   9         0.8               1.0000000  400      0.5113728  0.6580186
  0.4   9         0.8               1.0000000  450      0.5113755  0.6580185
  0.4   9         0.8               1.0000000  500      0.5113755  0.6580185
  0.4  10         0.6               0.5000000   50      0.4926542  0.6724825
  0.4  10         0.6               0.5000000  100      0.5175974  0.6469229
  0.4  10         0.6               0.5000000  150      0.5296116  0.6348392
  0.4  10         0.6               0.5000000  200      0.5397113  0.6240356
  0.4  10         0.6               0.5000000  250      0.5480627  0.6152689
  0.4  10         0.6               0.5000000  300      0.5534539  0.6111384
  0.4  10         0.6               0.5000000  350      0.5579504  0.6067063
  0.4  10         0.6               0.5000000  400      0.5668044  0.5970046
  0.4  10         0.6               0.5000000  450      0.5701567  0.5942115
  0.4  10         0.6               0.5000000  500      0.5765493  0.5878685
  0.4  10         0.6               0.5555556   50      0.4939367  0.6728596
  0.4  10         0.6               0.5555556  100      0.5174487  0.6487064
  0.4  10         0.6               0.5555556  150      0.5306000  0.6349950
  0.4  10         0.6               0.5555556  200      0.5423418  0.6228762
  0.4  10         0.6               0.5555556  250      0.5516802  0.6137466
  0.4  10         0.6               0.5555556  300      0.5578388  0.6072638
  0.4  10         0.6               0.5555556  350      0.5599402  0.6050452
  0.4  10         0.6               0.5555556  400      0.5652327  0.5994264
  0.4  10         0.6               0.5555556  450      0.5687169  0.5979602
  0.4  10         0.6               0.5555556  500      0.5695519  0.5964085
  0.4  10         0.6               0.6111111   50      0.4836890  0.6864668
  0.4  10         0.6               0.6111111  100      0.5143257  0.6538929
  0.4  10         0.6               0.6111111  150      0.5258013  0.6423529
  0.4  10         0.6               0.6111111  200      0.5364595  0.6324306
  0.4  10         0.6               0.6111111  250      0.5419122  0.6271500
  0.4  10         0.6               0.6111111  300      0.5480341  0.6214886
  0.4  10         0.6               0.6111111  350      0.5544179  0.6144079
  0.4  10         0.6               0.6111111  400      0.5586136  0.6096943
  0.4  10         0.6               0.6111111  450      0.5610869  0.6076939
  0.4  10         0.6               0.6111111  500      0.5611604  0.6084807
  0.4  10         0.6               0.6666667   50      0.4878077  0.6780553
  0.4  10         0.6               0.6666667  100      0.5092079  0.6555916
  0.4  10         0.6               0.6666667  150      0.5234880  0.6399881
  0.4  10         0.6               0.6666667  200      0.5294726  0.6348362
  0.4  10         0.6               0.6666667  250      0.5355859  0.6284622
  0.4  10         0.6               0.6666667  300      0.5388615  0.6244834
  0.4  10         0.6               0.6666667  350      0.5423329  0.6202252
  0.4  10         0.6               0.6666667  400      0.5471184  0.6145388
  0.4  10         0.6               0.6666667  450      0.5467832  0.6153326
  0.4  10         0.6               0.6666667  500      0.5491959  0.6128673
  0.4  10         0.6               0.7222222   50      0.4848148  0.6826652
  0.4  10         0.6               0.7222222  100      0.5094820  0.6579481
  0.4  10         0.6               0.7222222  150      0.5232726  0.6439800
  0.4  10         0.6               0.7222222  200      0.5320598  0.6348776
  0.4  10         0.6               0.7222222  250      0.5375069  0.6296676
  0.4  10         0.6               0.7222222  300      0.5401590  0.6269178
  0.4  10         0.6               0.7222222  350      0.5422706  0.6251708
  0.4  10         0.6               0.7222222  400      0.5429827  0.6241124
  0.4  10         0.6               0.7222222  450      0.5458591  0.6207731
  0.4  10         0.6               0.7222222  500      0.5474430  0.6193916
  0.4  10         0.6               0.7777778   50      0.4827766  0.6850743
  0.4  10         0.6               0.7777778  100      0.5045785  0.6633580
  0.4  10         0.6               0.7777778  150      0.5158973  0.6514839
  0.4  10         0.6               0.7777778  200      0.5243340  0.6428300
  0.4  10         0.6               0.7777778  250      0.5290326  0.6378946
  0.4  10         0.6               0.7777778  300      0.5332451  0.6332405
  0.4  10         0.6               0.7777778  350      0.5338810  0.6330972
  0.4  10         0.6               0.7777778  400      0.5361072  0.6303947
  0.4  10         0.6               0.7777778  450      0.5384734  0.6279511
  0.4  10         0.6               0.7777778  500      0.5403224  0.6266933
  0.4  10         0.6               0.8333333   50      0.4837989  0.6819485
  0.4  10         0.6               0.8333333  100      0.5078996  0.6573733
  0.4  10         0.6               0.8333333  150      0.5188861  0.6463381
  0.4  10         0.6               0.8333333  200      0.5250438  0.6401616
  0.4  10         0.6               0.8333333  250      0.5291721  0.6359092
  0.4  10         0.6               0.8333333  300      0.5335733  0.6311246
  0.4  10         0.6               0.8333333  350      0.5359966  0.6283772
  0.4  10         0.6               0.8333333  400      0.5392619  0.6244164
  0.4  10         0.6               0.8333333  450      0.5393920  0.6250225
  0.4  10         0.6               0.8333333  500      0.5411991  0.6233428
  0.4  10         0.6               0.8888889   50      0.4750547  0.6946326
  0.4  10         0.6               0.8888889  100      0.4980407  0.6704713
  0.4  10         0.6               0.8888889  150      0.5109410  0.6568653
  0.4  10         0.6               0.8888889  200      0.5180377  0.6495968
  0.4  10         0.6               0.8888889  250      0.5227259  0.6447165
  0.4  10         0.6               0.8888889  300      0.5263105  0.6414040
  0.4  10         0.6               0.8888889  350      0.5288357  0.6385339
  0.4  10         0.6               0.8888889  400      0.5304430  0.6368488
  0.4  10         0.6               0.8888889  450      0.5313492  0.6361855
  0.4  10         0.6               0.8888889  500      0.5324548  0.6357127
  0.4  10         0.6               0.9444444   50      0.4777410  0.6924497
  0.4  10         0.6               0.9444444  100      0.4971654  0.6725604
  0.4  10         0.6               0.9444444  150      0.5090694  0.6604408
  0.4  10         0.6               0.9444444  200      0.5156993  0.6536561
  0.4  10         0.6               0.9444444  250      0.5217456  0.6471357
  0.4  10         0.6               0.9444444  300      0.5245284  0.6443143
  0.4  10         0.6               0.9444444  350      0.5273981  0.6413400
  0.4  10         0.6               0.9444444  400      0.5292936  0.6391536
  0.4  10         0.6               0.9444444  450      0.5307081  0.6377619
  0.4  10         0.6               0.9444444  500      0.5310425  0.6378564
  0.4  10         0.6               1.0000000   50      0.4704698  0.6985261
  0.4  10         0.6               1.0000000  100      0.4836593  0.6849063
  0.4  10         0.6               1.0000000  150      0.4947018  0.6734116
  0.4  10         0.6               1.0000000  200      0.5036923  0.6639535
  0.4  10         0.6               1.0000000  250      0.5086952  0.6586328
  0.4  10         0.6               1.0000000  300      0.5123261  0.6549466
  0.4  10         0.6               1.0000000  350      0.5156887  0.6513872
  0.4  10         0.6               1.0000000  400      0.5180290  0.6489758
  0.4  10         0.6               1.0000000  450      0.5197637  0.6471994
  0.4  10         0.6               1.0000000  500      0.5208643  0.6460651
  0.4  10         0.8               0.5000000   50      0.5052131  0.6613237
  0.4  10         0.8               0.5000000  100      0.5273500  0.6406537
  0.4  10         0.8               0.5000000  150      0.5397774  0.6274539
  0.4  10         0.8               0.5000000  200      0.5498478  0.6171002
  0.4  10         0.8               0.5000000  250      0.5541308  0.6142459
  0.4  10         0.8               0.5000000  300      0.5621634  0.6068000
  0.4  10         0.8               0.5000000  350      0.5670664  0.6031228
  0.4  10         0.8               0.5000000  400      0.5706738  0.5997799
  0.4  10         0.8               0.5000000  450      0.5784788  0.5926438
  0.4  10         0.8               0.5000000  500      0.5758732  0.5963416
  0.4  10         0.8               0.5555556   50      0.4896874  0.6783481
  0.4  10         0.8               0.5555556  100      0.5176520  0.6488855
  0.4  10         0.8               0.5555556  150      0.5314023  0.6352985
  0.4  10         0.8               0.5555556  200      0.5354526  0.6320463
  0.4  10         0.8               0.5555556  250      0.5384097  0.6298417
  0.4  10         0.8               0.5555556  300      0.5469201  0.6196811
  0.4  10         0.8               0.5555556  350      0.5480156  0.6191562
  0.4  10         0.8               0.5555556  400      0.5529742  0.6141351
  0.4  10         0.8               0.5555556  450      0.5573936  0.6095784
  0.4  10         0.8               0.5555556  500      0.5563962  0.6114982
  0.4  10         0.8               0.6111111   50      0.4998449  0.6684374
  0.4  10         0.8               0.6111111  100      0.5240473  0.6439472
  0.4  10         0.8               0.6111111  150      0.5337538  0.6345116
  0.4  10         0.8               0.6111111  200      0.5357101  0.6318590
  0.4  10         0.8               0.6111111  250      0.5416213  0.6275574
  0.4  10         0.8               0.6111111  300      0.5423045  0.6263138
  0.4  10         0.8               0.6111111  350      0.5434535  0.6247876
  0.4  10         0.8               0.6111111  400      0.5480773  0.6202982
  0.4  10         0.8               0.6111111  450      0.5485886  0.6203821
  0.4  10         0.8               0.6111111  500      0.5513831  0.6175763
  0.4  10         0.8               0.6666667   50      0.5007757  0.6657292
  0.4  10         0.8               0.6666667  100      0.5186957  0.6480409
  0.4  10         0.8               0.6666667  150      0.5316091  0.6328345
  0.4  10         0.8               0.6666667  200      0.5374636  0.6278297
  0.4  10         0.8               0.6666667  250      0.5413171  0.6236713
  0.4  10         0.8               0.6666667  300      0.5444995  0.6208180
  0.4  10         0.8               0.6666667  350      0.5468457  0.6186157
  0.4  10         0.8               0.6666667  400      0.5529579  0.6118435
  0.4  10         0.8               0.6666667  450      0.5547605  0.6099136
  0.4  10         0.8               0.6666667  500      0.5529454  0.6128355
  0.4  10         0.8               0.7222222   50      0.4908990  0.6793221
  0.4  10         0.8               0.7222222  100      0.5210907  0.6472921
  0.4  10         0.8               0.7222222  150      0.5336358  0.6334857
  0.4  10         0.8               0.7222222  200      0.5389455  0.6281170
  0.4  10         0.8               0.7222222  250      0.5402605  0.6265834
  0.4  10         0.8               0.7222222  300      0.5441391  0.6231356
  0.4  10         0.8               0.7222222  350      0.5448107  0.6221515
  0.4  10         0.8               0.7222222  400      0.5479827  0.6188079
  0.4  10         0.8               0.7222222  450      0.5499700  0.6168188
  0.4  10         0.8               0.7222222  500      0.5526998  0.6139386
  0.4  10         0.8               0.7777778   50      0.4919778  0.6754883
  0.4  10         0.8               0.7777778  100      0.5169568  0.6491004
  0.4  10         0.8               0.7777778  150      0.5265855  0.6399169
  0.4  10         0.8               0.7777778  200      0.5313992  0.6345970
  0.4  10         0.8               0.7777778  250      0.5361779  0.6288633
  0.4  10         0.8               0.7777778  300      0.5398261  0.6252376
  0.4  10         0.8               0.7777778  350      0.5407902  0.6240858
  0.4  10         0.8               0.7777778  400      0.5431344  0.6221385
  0.4  10         0.8               0.7777778  450      0.5446065  0.6198423
  0.4  10         0.8               0.7777778  500      0.5425710  0.6216261
  0.4  10         0.8               0.8333333   50      0.4842521  0.6842747
  0.4  10         0.8               0.8333333  100      0.5111972  0.6552987
  0.4  10         0.8               0.8333333  150      0.5194393  0.6463784
  0.4  10         0.8               0.8333333  200      0.5242023  0.6409643
  0.4  10         0.8               0.8333333  250      0.5256505  0.6402171
  0.4  10         0.8               0.8333333  300      0.5274158  0.6382532
  0.4  10         0.8               0.8333333  350      0.5288984  0.6372616
  0.4  10         0.8               0.8333333  400      0.5315218  0.6339830
  0.4  10         0.8               0.8333333  450      0.5309516  0.6352119
  0.4  10         0.8               0.8333333  500      0.5320521  0.6339339
  0.4  10         0.8               0.8888889   50      0.5001305  0.6648921
  0.4  10         0.8               0.8888889  100      0.5206408  0.6433631
  0.4  10         0.8               0.8888889  150      0.5284530  0.6358086
  0.4  10         0.8               0.8888889  200      0.5310833  0.6330348
  0.4  10         0.8               0.8888889  250      0.5351881  0.6280298
  0.4  10         0.8               0.8888889  300      0.5370527  0.6262377
  0.4  10         0.8               0.8888889  350      0.5398924  0.6232408
  0.4  10         0.8               0.8888889  400      0.5406879  0.6225045
  0.4  10         0.8               0.8888889  450      0.5408321  0.6221319
  0.4  10         0.8               0.8888889  500      0.5417861  0.6210546
  0.4  10         0.8               0.9444444   50      0.4842488  0.6843933
  0.4  10         0.8               0.9444444  100      0.5071155  0.6601502
  0.4  10         0.8               0.9444444  150      0.5169231  0.6500689
  0.4  10         0.8               0.9444444  200      0.5198196  0.6473404
  0.4  10         0.8               0.9444444  250      0.5226527  0.6442798
  0.4  10         0.8               0.9444444  300      0.5242040  0.6425082
  0.4  10         0.8               0.9444444  350      0.5241700  0.6426060
  0.4  10         0.8               0.9444444  400      0.5242670  0.6426062
  0.4  10         0.8               0.9444444  450      0.5232753  0.6439649
  0.4  10         0.8               0.9444444  500      0.5241756  0.6426119
  0.4  10         0.8               1.0000000   50      0.4740311  0.6955040
  0.4  10         0.8               1.0000000  100      0.4948446  0.6732473
  0.4  10         0.8               1.0000000  150      0.5059824  0.6615571
  0.4  10         0.8               1.0000000  200      0.5131160  0.6539541
  0.4  10         0.8               1.0000000  250      0.5167669  0.6501893
  0.4  10         0.8               1.0000000  300      0.5187152  0.6481556
  0.4  10         0.8               1.0000000  350      0.5188772  0.6480019
  0.4  10         0.8               1.0000000  400      0.5188772  0.6480019
  0.4  10         0.8               1.0000000  450      0.5188772  0.6480019
  0.4  10         0.8               1.0000000  500      0.5188772  0.6480019
  MAE      
  0.3748499
  0.3618002
  0.3597149
  0.3556382
  0.3573180
  0.3577705
  0.3580801
  0.3575516
  0.3573337
  0.3568103
  0.3728231
  0.3591138
  0.3578991
  0.3559402
  0.3559834
  0.3546309
  0.3548748
  0.3555006
  0.3557078
  0.3561972
  0.3741198
  0.3620757
  0.3587898
  0.3583054
  0.3571470
  0.3572287
  0.3572137
  0.3588510
  0.3556919
  0.3567748
  0.3724748
  0.3594783
  0.3559880
  0.3554242
  0.3553539
  0.3562067
  0.3558164
  0.3559837
  0.3564085
  0.3557369
  0.3697377
  0.3590928
  0.3562699
  0.3558981
  0.3552313
  0.3552074
  0.3555128
  0.3553448
  0.3553452
  0.3554864
  0.3709492
  0.3601545
  0.3580992
  0.3562326
  0.3556455
  0.3559001
  0.3553966
  0.3555831
  0.3558391
  0.3560832
  0.3723567
  0.3584964
  0.3542583
  0.3532207
  0.3535706
  0.3536788
  0.3541636
  0.3543575
  0.3543614
  0.3547241
  0.3739429
  0.3583063
  0.3561615
  0.3557101
  0.3556226
  0.3552281
  0.3551925
  0.3557310
  0.3555842
  0.3556842
  0.3700454
  0.3574132
  0.3541704
  0.3534632
  0.3534698
  0.3541433
  0.3539878
  0.3544051
  0.3543685
  0.3543262
  0.3719074
  0.3581906
  0.3559977
  0.3553263
  0.3546412
  0.3538479
  0.3536513
  0.3533371
  0.3534140
  0.3534008
  0.3697818
  0.3586159
  0.3562511
  0.3572355
  0.3567152
  0.3562095
  0.3560462
  0.3574684
  0.3573380
  0.3576541
  0.3681015
  0.3597617
  0.3591206
  0.3562693
  0.3570426
  0.3574766
  0.3565379
  0.3581669
  0.3591840
  0.3572682
  0.3675890
  0.3602506
  0.3587458
  0.3576136
  0.3563613
  0.3566645
  0.3570410
  0.3579930
  0.3578183
  0.3579681
  0.3698671
  0.3595420
  0.3577939
  0.3570937
  0.3572788
  0.3577173
  0.3570695
  0.3566936
  0.3562576
  0.3570043
  0.3683262
  0.3578357
  0.3558991
  0.3553668
  0.3565562
  0.3558138
  0.3564660
  0.3560049
  0.3559238
  0.3569567
  0.3669180
  0.3571696
  0.3565906
  0.3557227
  0.3553214
  0.3561100
  0.3560236
  0.3566195
  0.3560512
  0.3575111
  0.3670158
  0.3562627
  0.3551972
  0.3552072
  0.3555521
  0.3553955
  0.3553336
  0.3554175
  0.3559671
  0.3559912
  0.3653111
  0.3539131
  0.3532896
  0.3528564
  0.3526106
  0.3528199
  0.3531222
  0.3532282
  0.3532169
  0.3537421
  0.3684143
  0.3574243
  0.3549372
  0.3544613
  0.3539607
  0.3546859
  0.3548183
  0.3548309
  0.3555901
  0.3554771
  0.3685864
  0.3570305
  0.3554103
  0.3541638
  0.3531419
  0.3528145
  0.3522771
  0.3522404
  0.3519973
  0.3517702
  0.3468709
  0.3365692
  0.3336163
  0.3310216
  0.3329310
  0.3338715
  0.3343165
  0.3359030
  0.3376727
  0.3384523
  0.3461808
  0.3365686
  0.3352099
  0.3345282
  0.3345529
  0.3344617
  0.3359361
  0.3364597
  0.3376217
  0.3377569
  0.3490740
  0.3388324
  0.3365861
  0.3360041
  0.3357145
  0.3353578
  0.3360502
  0.3377615
  0.3397717
  0.3402066
  0.3426065
  0.3333367
  0.3329538
  0.3334849
  0.3349250
  0.3347770
  0.3358054
  0.3361612
  0.3358035
  0.3390204
  0.3416800
  0.3334561
  0.3319370
  0.3311731
  0.3326230
  0.3332353
  0.3334038
  0.3348427
  0.3356196
  0.3351724
  0.3451052
  0.3360712
  0.3344969
  0.3352012
  0.3334208
  0.3336916
  0.3351141
  0.3346164
  0.3358784
  0.3363264
  0.3408655
  0.3352889
  0.3344334
  0.3352876
  0.3358395
  0.3350858
  0.3355938
  0.3365413
  0.3368502
  0.3370988
  0.3416655
  0.3329054
  0.3312647
  0.3320219
  0.3320812
  0.3323466
  0.3344725
  0.3358185
  0.3358235
  0.3368115
  0.3408218
  0.3351343
  0.3337542
  0.3337293
  0.3338189
  0.3335944
  0.3349607
  0.3357706
  0.3360439
  0.3371555
  0.3387559
  0.3334490
  0.3328903
  0.3332215
  0.3345196
  0.3354256
  0.3363587
  0.3375567
  0.3383685
  0.3387913
  0.3402021
  0.3365807
  0.3353726
  0.3339489
  0.3342242
  0.3342498
  0.3356331
  0.3362399
  0.3382470
  0.3393500
  0.3416645
  0.3354306
  0.3357827
  0.3365510
  0.3359461
  0.3363542
  0.3364432
  0.3408796
  0.3420717
  0.3425582
  0.3386108
  0.3355081
  0.3333672
  0.3343499
  0.3352920
  0.3351872
  0.3352205
  0.3366824
  0.3367596
  0.3382918
  0.3370519
  0.3325398
  0.3309935
  0.3343784
  0.3339327
  0.3342988
  0.3345514
  0.3364647
  0.3373563
  0.3374109
  0.3387452
  0.3347695
  0.3335568
  0.3333992
  0.3338984
  0.3345860
  0.3346711
  0.3354167
  0.3362344
  0.3376371
  0.3342305
  0.3311367
  0.3286191
  0.3296419
  0.3293588
  0.3315501
  0.3322302
  0.3340921
  0.3355027
  0.3354703
  0.3380110
  0.3327998
  0.3317549
  0.3322630
  0.3330536
  0.3337393
  0.3352236
  0.3357522
  0.3372191
  0.3388473
  0.3358781
  0.3301667
  0.3309321
  0.3322783
  0.3327339
  0.3333481
  0.3346430
  0.3346830
  0.3348700
  0.3361673
  0.3368110
  0.3317367
  0.3319233
  0.3329159
  0.3342235
  0.3359136
  0.3365962
  0.3377933
  0.3384919
  0.3393823
  0.3329077
  0.3297558
  0.3299506
  0.3311154
  0.3325660
  0.3344573
  0.3357324
  0.3373414
  0.3390010
  0.3396108
  0.3361698
  0.3330703
  0.3341387
  0.3377530
  0.3374115
  0.3420381
  0.3434377
  0.3438827
  0.3474684
  0.3476701
  0.3300972
  0.3281322
  0.3331352
  0.3352555
  0.3380981
  0.3402040
  0.3433430
  0.3447211
  0.3477048
  0.3487331
  0.3317728
  0.3279343
  0.3302265
  0.3317237
  0.3353315
  0.3388124
  0.3402041
  0.3418627
  0.3425795
  0.3439869
  0.3345525
  0.3337316
  0.3359198
  0.3378470
  0.3400950
  0.3416557
  0.3440886
  0.3455315
  0.3453273
  0.3463056
  0.3337694
  0.3325889
  0.3361442
  0.3369010
  0.3374450
  0.3416504
  0.3436718
  0.3453206
  0.3475335
  0.3484458
  0.3354269
  0.3327665
  0.3348446
  0.3372412
  0.3378601
  0.3408207
  0.3426903
  0.3448657
  0.3461053
  0.3480454
  0.3348276
  0.3338247
  0.3340409
  0.3389792
  0.3414343
  0.3444564
  0.3484126
  0.3489587
  0.3526106
  0.3532299
  0.3347893
  0.3311775
  0.3325759
  0.3360519
  0.3393635
  0.3415419
  0.3424012
  0.3440303
  0.3463586
  0.3485335
  0.3286435
  0.3280837
  0.3286365
  0.3301219
  0.3328005
  0.3354375
  0.3372035
  0.3389937
  0.3402557
  0.3415899
  0.3288890
  0.3312795
  0.3343895
  0.3369225
  0.3376914
  0.3394092
  0.3415310
  0.3434370
  0.3446428
  0.3465626
  0.3305788
  0.3318737
  0.3360100
  0.3378206
  0.3400604
  0.3466933
  0.3451713
  0.3463642
  0.3505323
  0.3515748
  0.3338742
  0.3322924
  0.3340978
  0.3388934
  0.3396639
  0.3387747
  0.3417080
  0.3426995
  0.3452723
  0.3482948
  0.3326703
  0.3336592
  0.3371714
  0.3390324
  0.3414754
  0.3447042
  0.3445538
  0.3485576
  0.3478777
  0.3495318
  0.3345543
  0.3352403
  0.3342256
  0.3370430
  0.3415648
  0.3416502
  0.3437871
  0.3436408
  0.3463461
  0.3464594
  0.3314986
  0.3312674
  0.3323445
  0.3336715
  0.3365197
  0.3397459
  0.3407509
  0.3435235
  0.3455624
  0.3481767
  0.3277345
  0.3273366
  0.3306677
  0.3342752
  0.3376791
  0.3413408
  0.3417304
  0.3439925
  0.3464142
  0.3479136
  0.3290404
  0.3321514
  0.3352514
  0.3373514
  0.3400950
  0.3416105
  0.3450815
  0.3474317
  0.3490386
  0.3519554
  0.3346374
  0.3340002
  0.3341306
  0.3373348
  0.3398243
  0.3430194
  0.3443981
  0.3471087
  0.3486045
  0.3508765
  0.3297707
  0.3289392
  0.3332078
  0.3375927
  0.3402906
  0.3417702
  0.3443231
  0.3459583
  0.3478996
  0.3489776
  0.3312672
  0.3304048
  0.3312960
  0.3338566
  0.3362002
  0.3379651
  0.3397148
  0.3416889
  0.3433679
  0.3452101
  0.3376790
  0.3392767
  0.3420203
  0.3466469
  0.3515638
  0.3549143
  0.3561323
  0.3608059
  0.3611031
  0.3602519
  0.3373295
  0.3368543
  0.3406867
  0.3446068
  0.3473305
  0.3494747
  0.3531916
  0.3566793
  0.3598016
  0.3606661
  0.3320464
  0.3346955
  0.3397487
  0.3423929
  0.3434928
  0.3525408
  0.3518566
  0.3550621
  0.3554570
  0.3588638
  0.3303648
  0.3315614
  0.3374561
  0.3402659
  0.3449979
  0.3489294
  0.3514273
  0.3540286
  0.3555983
  0.3578461
  0.3346205
  0.3340412
  0.3381041
  0.3422672
  0.3461857
  0.3498868
  0.3539521
  0.3568733
  0.3598328
  0.3616040
  0.3321801
  0.3346391
  0.3376619
  0.3420886
  0.3474721
  0.3496095
  0.3529386
  0.3561052
  0.3579622
  0.3612720
  0.3315199
  0.3335021
  0.3376937
  0.3425290
  0.3462556
  0.3495980
  0.3530838
  0.3568637
  0.3584148
  0.3601114
  0.3291688
  0.3295169
  0.3351262
  0.3415975
  0.3464689
  0.3500703
  0.3540188
  0.3559100
  0.3587765
  0.3613759
  0.3299086
  0.3334413
  0.3373671
  0.3422209
  0.3457903
  0.3479360
  0.3511374
  0.3535197
  0.3563965
  0.3585277
  0.3333149
  0.3357092
  0.3384034
  0.3415120
  0.3450960
  0.3478306
  0.3498194
  0.3519067
  0.3551124
  0.3567704
  0.3313566
  0.3353192
  0.3462566
  0.3512057
  0.3529979
  0.3603093
  0.3637761
  0.3676932
  0.3689228
  0.3705294
  0.3335731
  0.3383979
  0.3454455
  0.3506330
  0.3556197
  0.3561437
  0.3623351
  0.3668132
  0.3665041
  0.3679813
  0.3304476
  0.3360105
  0.3428545
  0.3489035
  0.3548398
  0.3577618
  0.3606401
  0.3636484
  0.3642427
  0.3659676
  0.3282705
  0.3371841
  0.3432152
  0.3476646
  0.3493322
  0.3526421
  0.3555388
  0.3587894
  0.3629771
  0.3649305
  0.3299106
  0.3352687
  0.3419527
  0.3448836
  0.3490485
  0.3521025
  0.3541031
  0.3572634
  0.3613009
  0.3636848
  0.3277142
  0.3339535
  0.3385746
  0.3424342
  0.3488326
  0.3531713
  0.3547884
  0.3582704
  0.3604981
  0.3625906
  0.3278795
  0.3328818
  0.3375225
  0.3428390
  0.3470523
  0.3495948
  0.3523045
  0.3564692
  0.3590353
  0.3616643
  0.3276914
  0.3317464
  0.3370759
  0.3424456
  0.3462069
  0.3487755
  0.3524918
  0.3561658
  0.3585550
  0.3600560
  0.3279438
  0.3326085
  0.3396275
  0.3448247
  0.3496172
  0.3539820
  0.3583226
  0.3612895
  0.3637857
  0.3665080
  0.3286609
  0.3326928
  0.3366403
  0.3413369
  0.3441599
  0.3465412
  0.3487532
  0.3512966
  0.3542566
  0.3561353
  0.3405428
  0.3468688
  0.3525620
  0.3561370
  0.3601576
  0.3644008
  0.3665122
  0.3690485
  0.3716056
  0.3763692
  0.3310975
  0.3410639
  0.3466966
  0.3512402
  0.3569329
  0.3626174
  0.3675402
  0.3675321
  0.3704376
  0.3721361
  0.3286432
  0.3366538
  0.3411900
  0.3467363
  0.3524548
  0.3550019
  0.3596455
  0.3646850
  0.3680537
  0.3706249
  0.3331941
  0.3367521
  0.3438798
  0.3510218
  0.3555975
  0.3607554
  0.3644312
  0.3660576
  0.3659105
  0.3679377
  0.3367016
  0.3433298
  0.3478502
  0.3503256
  0.3543505
  0.3573961
  0.3625425
  0.3658126
  0.3696554
  0.3728852
  0.3327682
  0.3397722
  0.3487484
  0.3519836
  0.3568891
  0.3611287
  0.3648067
  0.3684563
  0.3715776
  0.3735870
  0.3332827
  0.3434781
  0.3487615
  0.3518869
  0.3572592
  0.3609781
  0.3625001
  0.3641260
  0.3666448
  0.3682526
  0.3312921
  0.3363778
  0.3429893
  0.3480702
  0.3525329
  0.3559452
  0.3580976
  0.3614217
  0.3638868
  0.3659174
  0.3310205
  0.3356931
  0.3406618
  0.3454219
  0.3500556
  0.3550205
  0.3595039
  0.3627768
  0.3665318
  0.3683939
  0.3311770
  0.3358999
  0.3410297
  0.3447705
  0.3489776
  0.3521034
  0.3553952
  0.3574739
  0.3595598
  0.3616420
  0.3350245
  0.3475929
  0.3560847
  0.3613171
  0.3701558
  0.3742395
  0.3761045
  0.3800048
  0.3826324
  0.3872645
  0.3359374
  0.3457635
  0.3545910
  0.3596418
  0.3657635
  0.3706133
  0.3755828
  0.3774672
  0.3795979
  0.3839887
  0.3319920
  0.3440499
  0.3514749
  0.3564731
  0.3586013
  0.3655808
  0.3700663
  0.3737452
  0.3760021
  0.3784252
  0.3339900
  0.3418353
  0.3506137
  0.3564427
  0.3607583
  0.3661493
  0.3707188
  0.3747119
  0.3771123
  0.3806167
  0.3352093
  0.3444303
  0.3515633
  0.3549421
  0.3588500
  0.3634629
  0.3665557
  0.3700342
  0.3724676
  0.3754519
  0.3341055
  0.3416770
  0.3507466
  0.3566513
  0.3607871
  0.3628568
  0.3670510
  0.3713516
  0.3741560
  0.3779274
  0.3312883
  0.3418027
  0.3499354
  0.3550856
  0.3600517
  0.3642319
  0.3657596
  0.3689669
  0.3715244
  0.3743365
  0.3335225
  0.3429209
  0.3506847
  0.3572544
  0.3628387
  0.3675984
  0.3719749
  0.3734267
  0.3763147
  0.3787869
  0.3338849
  0.3393677
  0.3450995
  0.3508794
  0.3557774
  0.3607513
  0.3639129
  0.3673959
  0.3695930
  0.3728959
  0.3250328
  0.3326021
  0.3390209
  0.3449467
  0.3488908
  0.3528547
  0.3557272
  0.3588026
  0.3611051
  0.3636211
  0.3385331
  0.3503344
  0.3579102
  0.3637335
  0.3715633
  0.3741974
  0.3792759
  0.3857551
  0.3859595
  0.3883493
  0.3368627
  0.3479595
  0.3543199
  0.3634589
  0.3682502
  0.3705294
  0.3736752
  0.3767458
  0.3802712
  0.3828309
  0.3366424
  0.3438195
  0.3551628
  0.3591555
  0.3646373
  0.3690440
  0.3758331
  0.3765478
  0.3797566
  0.3836398
  0.3323133
  0.3413403
  0.3486440
  0.3543278
  0.3598871
  0.3640152
  0.3670203
  0.3701347
  0.3737616
  0.3771317
  0.3344122
  0.3425721
  0.3528324
  0.3615456
  0.3667668
  0.3725710
  0.3754165
  0.3801961
  0.3829060
  0.3845502
  0.3370419
  0.3455854
  0.3520902
  0.3601887
  0.3637732
  0.3676603
  0.3709500
  0.3738874
  0.3775915
  0.3805492
  0.3369137
  0.3439968
  0.3513612
  0.3589405
  0.3641917
  0.3678053
  0.3734657
  0.3751450
  0.3772519
  0.3800018
  0.3327239
  0.3407682
  0.3478199
  0.3548125
  0.3609942
  0.3659046
  0.3705114
  0.3737342
  0.3763922
  0.3793855
  0.3331687
  0.3385732
  0.3473921
  0.3529640
  0.3584208
  0.3613668
  0.3652852
  0.3680959
  0.3703887
  0.3729470
  0.3334367
  0.3397630
  0.3448407
  0.3499317
  0.3534438
  0.3577030
  0.3608418
  0.3641536
  0.3664644
  0.3678314
  0.3385049
  0.3487035
  0.3591792
  0.3669769
  0.3736053
  0.3782726
  0.3828440
  0.3857477
  0.3892068
  0.3909815
  0.3389536
  0.3509463
  0.3630874
  0.3719123
  0.3770161
  0.3809088
  0.3844941
  0.3903032
  0.3951576
  0.3973430
  0.3368489
  0.3560343
  0.3655575
  0.3729246
  0.3775839
  0.3798446
  0.3855287
  0.3873641
  0.3902338
  0.3943659
  0.3358767
  0.3516443
  0.3625676
  0.3684984
  0.3737881
  0.3777019
  0.3809998
  0.3856551
  0.3879611
  0.3911430
  0.3376016
  0.3510697
  0.3606576
  0.3671998
  0.3735201
  0.3768549
  0.3811101
  0.3831841
  0.3842628
  0.3857696
  0.3341124
  0.3481713
  0.3583854
  0.3664679
  0.3745056
  0.3783114
  0.3804175
  0.3841910
  0.3867096
  0.3890147
  0.3314488
  0.3448298
  0.3560557
  0.3633431
  0.3689397
  0.3744666
  0.3795962
  0.3822080
  0.3847725
  0.3871422
  0.3365438
  0.3491750
  0.3602058
  0.3685096
  0.3735076
  0.3773560
  0.3808468
  0.3843377
  0.3869795
  0.3882098
  0.3346161
  0.3459954
  0.3551903
  0.3629609
  0.3681109
  0.3714624
  0.3760294
  0.3784506
  0.3814822
  0.3841508
  0.3300337
  0.3392747
  0.3474384
  0.3531445
  0.3581831
  0.3620552
  0.3655477
  0.3687447
  0.3713953
  0.3736701
  0.3410988
  0.3550235
  0.3642031
  0.3726725
  0.3798676
  0.3846673
  0.3879988
  0.3910080
  0.3932013
  0.3956773
  0.3407378
  0.3541922
  0.3609246
  0.3674343
  0.3712094
  0.3772642
  0.3814553
  0.3851116
  0.3873558
  0.3902229
  0.3435621
  0.3560247
  0.3654892
  0.3709704
  0.3759983
  0.3844235
  0.3898341
  0.3923152
  0.3956717
  0.3962437
  0.3400743
  0.3500087
  0.3588383
  0.3673159
  0.3724022
  0.3770469
  0.3781990
  0.3821003
  0.3866658
  0.3885495
  0.3363651
  0.3491673
  0.3603799
  0.3663777
  0.3733656
  0.3796413
  0.3825624
  0.3869062
  0.3888455
  0.3913488
  0.3431275
  0.3557465
  0.3628215
  0.3700638
  0.3771241
  0.3808572
  0.3848858
  0.3882504
  0.3904985
  0.3917099
  0.3382506
  0.3481671
  0.3598543
  0.3682268
  0.3729149
  0.3767717
  0.3820752
  0.3857970
  0.3880441
  0.3907188
  0.3401543
  0.3522774
  0.3588527
  0.3664887
  0.3725887
  0.3762120
  0.3809450
  0.3830455
  0.3861594
  0.3881848
  0.3370237
  0.3479517
  0.3557247
  0.3615655
  0.3667178
  0.3727761
  0.3753806
  0.3787859
  0.3814065
  0.3830901
  0.3349059
  0.3443130
  0.3489134
  0.3539650
  0.3591619
  0.3625314
  0.3661248
  0.3697233
  0.3721927
  0.3747237
  0.3455717
  0.3618250
  0.3739932
  0.3819955
  0.3883521
  0.3911005
  0.3947562
  0.3971273
  0.4003562
  0.4030187
  0.3432928
  0.3639920
  0.3735399
  0.3804184
  0.3817880
  0.3894646
  0.3904654
  0.3923861
  0.3971036
  0.3998675
  0.3408970
  0.3520455
  0.3636638
  0.3718475
  0.3792201
  0.3858228
  0.3908669
  0.3931456
  0.3956692
  0.3965764
  0.3403832
  0.3533637
  0.3634133
  0.3703672
  0.3759143
  0.3791316
  0.3824352
  0.3861166
  0.3877356
  0.3923809
  0.3405063
  0.3553996
  0.3668822
  0.3746541
  0.3792507
  0.3856813
  0.3888138
  0.3913618
  0.3932844
  0.3943948
  0.3405418
  0.3558053
  0.3678946
  0.3739335
  0.3792098
  0.3826932
  0.3856418
  0.3885268
  0.3904791
  0.3923772
  0.3390144
  0.3566304
  0.3674637
  0.3767531
  0.3816470
  0.3870349
  0.3902291
  0.3926008
  0.3936486
  0.3955922
  0.3437745
  0.3530636
  0.3653558
  0.3720464
  0.3795870
  0.3840359
  0.3867684
  0.3887785
  0.3910459
  0.3927542
  0.3396632
  0.3554085
  0.3668304
  0.3754693
  0.3807790
  0.3845966
  0.3879493
  0.3907000
  0.3925459
  0.3952102
  0.3396828
  0.3492858
  0.3559679
  0.3613505
  0.3665842
  0.3711493
  0.3743652
  0.3772914
  0.3800594
  0.3832870
  0.3539015
  0.3658713
  0.3710220
  0.3771169
  0.3829180
  0.3907320
  0.3939999
  0.3958616
  0.4003628
  0.4026884
  0.3479578
  0.3679046
  0.3781200
  0.3858164
  0.3892570
  0.3941824
  0.3988098
  0.4019555
  0.4043350
  0.4066757
  0.3462775
  0.3601530
  0.3716259
  0.3805709
  0.3845202
  0.3882034
  0.3910193
  0.3942228
  0.3977839
  0.4005815
  0.3412565
  0.3562223
  0.3648170
  0.3711581
  0.3788337
  0.3823747
  0.3846434
  0.3885708
  0.3928691
  0.3961045
  0.3435753
  0.3575126
  0.3639311
  0.3706781
  0.3792415
  0.3817310
  0.3859046
  0.3884370
  0.3904109
  0.3933514
  0.3426773
  0.3567687
  0.3654125
  0.3739334
  0.3791923
  0.3844710
  0.3888905
  0.3925646
  0.3944329
  0.3962219
  0.3386542
  0.3531671
  0.3621810
  0.3682539
  0.3742653
  0.3781209
  0.3818838
  0.3846716
  0.3860079
  0.3886681
  0.3404769
  0.3540872
  0.3619840
  0.3714222
  0.3757904
  0.3806868
  0.3840854
  0.3867137
  0.3891741
  0.3911232
  0.3363294
  0.3520147
  0.3600079
  0.3683806
  0.3753547
  0.3810771
  0.3846941
  0.3873936
  0.3896076
  0.3912702
  0.3404872
  0.3506718
  0.3570368
  0.3635891
  0.3689419
  0.3730267
  0.3776042
  0.3808534
  0.3841676
  0.3861174
  0.3500846
  0.3671739
  0.3760808
  0.3838865
  0.3918687
  0.3969075
  0.4002010
  0.4032841
  0.4057673
  0.4059237
  0.3425440
  0.3612348
  0.3726833
  0.3799255
  0.3857609
  0.3905952
  0.3943085
  0.3965853
  0.3983475
  0.3992369
  0.3466109
  0.3666119
  0.3800634
  0.3884254
  0.3941368
  0.3972750
  0.4003639
  0.4027690
  0.4027020
  0.4072658
  0.3469729
  0.3653324
  0.3737938
  0.3815161
  0.3864718
  0.3913055
  0.3953043
  0.3997263
  0.4001133
  0.4026627
  0.3470144
  0.3687253
  0.3797116
  0.3853657
  0.3910747
  0.3945758
  0.3977850
  0.4016336
  0.4023713
  0.4040456
  0.3442453
  0.3605228
  0.3740033
  0.3803922
  0.3847468
  0.3884650
  0.3901004
  0.3924090
  0.3947906
  0.3968776
  0.3405313
  0.3590998
  0.3698007
  0.3760827
  0.3810952
  0.3836239
  0.3848079
  0.3871582
  0.3879541
  0.3907596
  0.3428737
  0.3599968
  0.3708975
  0.3782622
  0.3823772
  0.3858271
  0.3878760
  0.3907142
  0.3919381
  0.3930725
  0.3431983
  0.3581460
  0.3695189
  0.3764852
  0.3826687
  0.3857938
  0.3882809
  0.3904891
  0.3913149
  0.3913618
  0.3432150
  0.3535156
  0.3620087
  0.3693527
  0.3746195
  0.3789757
  0.3830251
  0.3858311
  0.3882036
  0.3899140
  0.3531350
  0.3659241
  0.3739089
  0.3820348
  0.3910958
  0.3932261
  0.3982379
  0.3991745
  0.4025990
  0.4069203
  0.3567967
  0.3720116
  0.3842773
  0.3917796
  0.3948643
  0.4010417
  0.4033016
  0.4062769
  0.4096672
  0.4117036
  0.3496705
  0.3658004
  0.3749304
  0.3811824
  0.3846984
  0.3887348
  0.3935448
  0.3950450
  0.3976129
  0.4008293
  0.3531672
  0.3697230
  0.3821364
  0.3882383
  0.3942002
  0.3973908
  0.4003641
  0.4027605
  0.4062724
  0.4091914
  0.3503295
  0.3669058
  0.3772671
  0.3843721
  0.3916718
  0.3946603
  0.3990262
  0.4016412
  0.4042325
  0.4076282
  0.3483920
  0.3619709
  0.3731852
  0.3805583
  0.3849867
  0.3892775
  0.3941247
  0.3945716
  0.3969369
  0.3985318
  0.3416890
  0.3566628
  0.3693512
  0.3771470
  0.3830083
  0.3867491
  0.3886585
  0.3917879
  0.3947955
  0.3962390
  0.3470788
  0.3586954
  0.3695277
  0.3778484
  0.3833340
  0.3863413
  0.3907885
  0.3920790
  0.3939759
  0.3963751
  0.3485911
  0.3631442
  0.3727694
  0.3818010
  0.3867540
  0.3910164
  0.3950887
  0.3984780
  0.3998721
  0.4007984
  0.3431654
  0.3539025
  0.3600207
  0.3655281
  0.3696252
  0.3736375
  0.3773476
  0.3805723
  0.3834455
  0.3858980
  0.3603186
  0.3813397
  0.3912728
  0.3962075
  0.4022484
  0.4064121
  0.4075068
  0.4118714
  0.4133372
  0.4136743
  0.3532375
  0.3724562
  0.3806309
  0.3866235
  0.3928199
  0.3958497
  0.3978658
  0.3990704
  0.3999957
  0.4017099
  0.3576299
  0.3743359
  0.3875355
  0.3936995
  0.4003844
  0.4035434
  0.4072278
  0.4084805
  0.4119488
  0.4123060
  0.3514526
  0.3727647
  0.3857015
  0.3927579
  0.3969785
  0.4006535
  0.4007631
  0.4035940
  0.4049103
  0.4078771
  0.3486951
  0.3717480
  0.3829781
  0.3889639
  0.3929242
  0.3963517
  0.3971290
  0.3981836
  0.4001598
  0.3997880
  0.3484763
  0.3697495
  0.3821491
  0.3893127
  0.3924722
  0.3943522
  0.3961467
  0.3973924
  0.3989074
  0.3988997
  0.3489460
  0.3693845
  0.3795596
  0.3859430
  0.3891318
  0.3923974
  0.3951126
  0.3970034
  0.3971291
  0.3981940
  0.3471906
  0.3655112
  0.3758311
  0.3817275
  0.3856741
  0.3885194
  0.3899401
  0.3905325
  0.3920720
  0.3927309
  0.3448393
  0.3640749
  0.3742087
  0.3812662
  0.3860057
  0.3898859
  0.3909357
  0.3917054
  0.3930140
  0.3938892
  0.3385897
  0.3519542
  0.3619998
  0.3691848
  0.3744921
  0.3784063
  0.3812516
  0.3831552
  0.3844133
  0.3850675
  0.3579200
  0.3732563
  0.3861628
  0.3938989
  0.4009841
  0.4044018
  0.4055112
  0.4121097
  0.4149663
  0.4179626
  0.3560943
  0.3736330
  0.3834284
  0.3944743
  0.3995901
  0.4023939
  0.4052570
  0.4061707
  0.4091229
  0.4118448
  0.3493947
  0.3653844
  0.3801421
  0.3854471
  0.3914280
  0.3952961
  0.3997357
  0.4008610
  0.4021887
  0.4034686
  0.3545986
  0.3735688
  0.3851769
  0.3910046
  0.3966704
  0.4001208
  0.4046801
  0.4070934
  0.4098053
  0.4090570
  0.3507677
  0.3673589
  0.3762105
  0.3832656
  0.3865558
  0.3919835
  0.3953831
  0.3967177
  0.4009957
  0.4012909
  0.3501036
  0.3686637
  0.3776530
  0.3840959
  0.3886950
  0.3921382
  0.3959797
  0.3993721
  0.4001958
  0.4027655
  0.3524434
  0.3690512
  0.3782380
  0.3846421
  0.3894234
  0.3927858
  0.3964009
  0.3986866
  0.4005517
  0.4017730
  0.3484800
  0.3692858
  0.3802981
  0.3873410
  0.3915625
  0.3956951
  0.3977356
  0.3994031
  0.3999329
  0.4012412
  0.3479016
  0.3616864
  0.3710929
  0.3778636
  0.3828427
  0.3858902
  0.3880056
  0.3903399
  0.3919557
  0.3937770
  0.3491284
  0.3595301
  0.3668405
  0.3719006
  0.3775714
  0.3819007
  0.3851957
  0.3885100
  0.3911137
  0.3931523
  0.3636153
  0.3822938
  0.3897889
  0.3985768
  0.4020249
  0.4042602
  0.4084196
  0.4102450
  0.4126094
  0.4165563
  0.3631769
  0.3841384
  0.3927824
  0.3984982
  0.4038289
  0.4086019
  0.4115747
  0.4136984
  0.4157057
  0.4166277
  0.3606702
  0.3789006
  0.3874668
  0.3948420
  0.3971547
  0.4012126
  0.4016035
  0.4047248
  0.4055246
  0.4063445
  0.3564888
  0.3782388
  0.3903843
  0.3951784
  0.3980355
  0.4010042
  0.4014057
  0.4028771
  0.4034999
  0.4049398
  0.3547452
  0.3796248
  0.3867636
  0.3906894
  0.3941004
  0.3938776
  0.3970600
  0.3991624
  0.3990854
  0.4014706
  0.3502181
  0.3691507
  0.3812720
  0.3871988
  0.3895374
  0.3911951
  0.3911762
  0.3932291
  0.3939478
  0.3963551
  0.3529415
  0.3717259
  0.3802653
  0.3848801
  0.3875501
  0.3881733
  0.3892735
  0.3906956
  0.3913175
  0.3913915
  0.3521586
  0.3716145
  0.3816940
  0.3858906
  0.3896542
  0.3916810
  0.3931333
  0.3920288
  0.3934904
  0.3941779
  0.3520221
  0.3705669
  0.3804507
  0.3862246
  0.3885633
  0.3894520
  0.3911857
  0.3920549
  0.3932323
  0.3926630
  0.3488634
  0.3614909
  0.3701651
  0.3776708
  0.3823578
  0.3859453
  0.3884198
  0.3897337
  0.3899728
  0.3899728
  0.3665741
  0.3604365
  0.3566661
  0.3575251
  0.3571107
  0.3569131
  0.3582094
  0.3585746
  0.3583915
  0.3573081
  0.3708087
  0.3605308
  0.3564136
  0.3561869
  0.3581096
  0.3560583
  0.3567008
  0.3558463
  0.3571684
  0.3560950
  0.3655078
  0.3588542
  0.3545634
  0.3550429
  0.3552641
  0.3542814
  0.3558362
  0.3549786
  0.3569527
  0.3547470
  0.3655975
  0.3579628
  0.3575697
  0.3579562
  0.3571586
  0.3578386
  0.3548323
  0.3550470
  0.3568519
  0.3564953
  0.3664165
  0.3578596
  0.3564467
  0.3560723
  0.3563901
  0.3573033
  0.3575472
  0.3556667
  0.3553002
  0.3550378
  0.3653303
  0.3565681
  0.3553234
  0.3560240
  0.3547967
  0.3528690
  0.3535463
  0.3544477
  0.3550823
  0.3553711
  0.3658290
  0.3574029
  0.3546715
  0.3555579
  0.3556616
  0.3556193
  0.3564109
  0.3564276
  0.3556671
  0.3572111
  0.3644212
  0.3563845
  0.3559993
  0.3551499
  0.3552623
  0.3558584
  0.3560769
  0.3557401
  0.3554981
  0.3555214
  0.3682162
  0.3569889
  0.3548510
  0.3545384
  0.3550086
  0.3552130
  0.3552369
  0.3556415
  0.3559156
  0.3559508
  0.3660792
  0.3574014
  0.3557742
  0.3548905
  0.3542969
  0.3540679
  0.3538340
  0.3538801
  0.3539412
  0.3540226
  0.3686987
  0.3606995
  0.3583176
  0.3593605
  0.3589077
  0.3583680
  0.3584232
  0.3578697
  0.3590204
  0.3571832
  0.3681528
  0.3607214
  0.3578796
  0.3579287
  0.3579618
  0.3583588
  0.3581119
  0.3565357
  0.3592898
  0.3577483
  0.3658286
  0.3591211
  0.3584268
  0.3574058
  0.3576738
  0.3578271
  0.3582741
  0.3588350
  0.3561391
  0.3576564
  0.3637608
  0.3598304
  0.3576063
  0.3557785
  0.3564886
  0.3560073
  0.3560076
  0.3554063
  0.3572826
  0.3561536
  0.3625688
  0.3555251
  0.3541986
  0.3547827
  0.3552076
  0.3551652
  0.3547593
  0.3561388
  0.3570145
  0.3575356
  0.3625177
  0.3564527
  0.3548295
  0.3550097
  0.3544363
  0.3555461
  0.3555453
  0.3556292
  0.3571607
  0.3563334
  0.3594426
  0.3552223
  0.3553799
  0.3544200
  0.3558102
  0.3547125
  0.3540968
  0.3552580
  0.3548841
  0.3556658
  0.3605681
  0.3548002
  0.3545652
  0.3541473
  0.3539725
  0.3540291
  0.3542420
  0.3537687
  0.3530760
  0.3532064
  0.3619368
  0.3565916
  0.3565478
  0.3562643
  0.3557704
  0.3555432
  0.3558848
  0.3553682
  0.3560917
  0.3561318
  0.3599230
  0.3558178
  0.3543804
  0.3539684
  0.3531943
  0.3531075
  0.3529231
  0.3530101
  0.3530002
  0.3529693
  0.3429984
  0.3359728
  0.3362458
  0.3366787
  0.3396552
  0.3369048
  0.3375972
  0.3390958
  0.3419447
  0.3407574
  0.3465677
  0.3411248
  0.3411829
  0.3419196
  0.3402289
  0.3412694
  0.3423283
  0.3417496
  0.3415022
  0.3424515
  0.3432468
  0.3353085
  0.3334223
  0.3346018
  0.3329065
  0.3359001
  0.3377248
  0.3373612
  0.3376385
  0.3377724
  0.3459068
  0.3384000
  0.3359207
  0.3366771
  0.3389185
  0.3405770
  0.3402487
  0.3426813
  0.3410471
  0.3442610
  0.3408074
  0.3388682
  0.3370452
  0.3357278
  0.3371156
  0.3380660
  0.3394959
  0.3408912
  0.3418127
  0.3411319
  0.3416071
  0.3358158
  0.3353253
  0.3356310
  0.3374255
  0.3372316
  0.3383562
  0.3397010
  0.3411866
  0.3410915
  0.3400987
  0.3356837
  0.3353703
  0.3340824
  0.3362980
  0.3380686
  0.3374037
  0.3377182
  0.3392445
  0.3393809
  0.3393601
  0.3347355
  0.3327609
  0.3324266
  0.3332636
  0.3361804
  0.3371410
  0.3393804
  0.3396951
  0.3406768
  0.3406062
  0.3394165
  0.3389442
  0.3406801
  0.3420719
  0.3429308
  0.3435480
  0.3439897
  0.3459339
  0.3464907
  0.3390078
  0.3321005
  0.3325459
  0.3333609
  0.3352024
  0.3376727
  0.3395323
  0.3409749
  0.3418455
  0.3431738
  0.3418937
  0.3381317
  0.3351944
  0.3355309
  0.3401129
  0.3415287
  0.3468049
  0.3444587
  0.3462714
  0.3480761
  0.3364655
  0.3339751
  0.3332693
  0.3327775
  0.3357488
  0.3379408
  0.3391424
  0.3422520
  0.3428339
  0.3452708
  0.3392579
  0.3364341
  0.3352442
  0.3377390
  0.3412789
  0.3411978
  0.3428173
  0.3448531
  0.3439178
  0.3439372
  0.3399809
  0.3388016
  0.3370567
  0.3366513
  0.3390943
  0.3412683
  0.3406941
  0.3408043
  0.3398199
  0.3424485
  0.3347735
  0.3315176
  0.3320641
  0.3330939
  0.3343686
  0.3344962
  0.3364938
  0.3379887
  0.3398677
  0.3402172
  0.3383909
  0.3331442
  0.3334830
  0.3333066
  0.3340479
  0.3353525
  0.3368359
  0.3385289
  0.3400440
  0.3399802
  0.3369282
  0.3357527
  0.3347076
  0.3352716
  0.3358428
  0.3368407
  0.3388958
  0.3389583
  0.3396062
  0.3407950
  0.3363128
  0.3345468
  0.3347169
  0.3371721
  0.3379586
  0.3391580
  0.3404425
  0.3419157
  0.3428632
  0.3437204
  0.3339472
  0.3319541
  0.3336079
  0.3342196
  0.3351182
  0.3372441
  0.3393590
  0.3399184
  0.3407780
  0.3424023
  0.3368451
  0.3330330
  0.3332281
  0.3347172
  0.3376162
  0.3405486
  0.3408074
  0.3420308
  0.3436814
  0.3443617
  0.3402758
  0.3378909
  0.3436556
  0.3440016
  0.3455381
  0.3462706
  0.3465803
  0.3471853
  0.3475601
  0.3498708
  0.3421057
  0.3415437
  0.3443027
  0.3453649
  0.3463167
  0.3501195
  0.3546257
  0.3569007
  0.3575471
  0.3546224
  0.3335633
  0.3356534
  0.3412787
  0.3435321
  0.3467219
  0.3493541
  0.3532249
  0.3562232
  0.3576118
  0.3561756
  0.3400272
  0.3385618
  0.3438259
  0.3483404
  0.3515562
  0.3543237
  0.3559808
  0.3575148
  0.3597383
  0.3615593
  0.3319985
  0.3337357
  0.3354499
  0.3402832
  0.3441596
  0.3473660
  0.3526277
  0.3538254
  0.3552243
  0.3587774
  0.3317123
  0.3299511
  0.3353105
  0.3369565
  0.3438422
  0.3454111
  0.3469769
  0.3493855
  0.3519507
  0.3548994
  0.3308316
  0.3313131
  0.3319927
  0.3352139
  0.3386286
  0.3420408
  0.3440948
  0.3445966
  0.3463659
  0.3489086
  0.3348629
  0.3320479
  0.3366983
  0.3388445
  0.3432497
  0.3476493
  0.3483894
  0.3512463
  0.3544357
  0.3559258
  0.3345546
  0.3332118
  0.3379608
  0.3418735
  0.3442004
  0.3472509
  0.3515473
  0.3532752
  0.3543009
  0.3567182
  0.3307406
  0.3316761
  0.3351470
  0.3377091
  0.3409243
  0.3427072
  0.3450327
  0.3465461
  0.3481167
  0.3503200
  0.3396431
  0.3381689
  0.3451980
  0.3484927
  0.3508890
  0.3516552
  0.3553383
  0.3579814
  0.3604055
  0.3615120
  0.3307448
  0.3332227
  0.3429980
  0.3485447
  0.3501965
  0.3538360
  0.3559891
  0.3582274
  0.3612264
  0.3617372
  0.3382924
  0.3366910
  0.3419123
  0.3461447
  0.3497220
  0.3531014
  0.3563135
  0.3577536
  0.3607230
  0.3645407
  0.3363403
  0.3365051
  0.3403776
  0.3427274
  0.3442026
  0.3496624
  0.3518180
  0.3528195
  0.3552043
  0.3586019
  0.3359099
  0.3406154
  0.3432059
  0.3472788
  0.3510466
  0.3520706
  0.3560237
  0.3584413
  0.3620765
  0.3620824
  0.3324558
  0.3368533
  0.3408921
  0.3459626
  0.3507220
  0.3523276
  0.3557075
  0.3564599
  0.3585238
  0.3582208
  0.3332541
  0.3356737
  0.3404283
  0.3442397
  0.3479395
  0.3518210
  0.3555822
  0.3571345
  0.3594167
  0.3603879
  0.3342155
  0.3370934
  0.3399297
  0.3431641
  0.3452443
  0.3455485
  0.3484348
  0.3507227
  0.3515700
  0.3534922
  0.3327797
  0.3343729
  0.3377255
  0.3426680
  0.3446898
  0.3467633
  0.3489461
  0.3518294
  0.3538484
  0.3566566
  0.3299815
  0.3336984
  0.3357907
  0.3393050
  0.3409692
  0.3440922
  0.3464630
  0.3480216
  0.3498424
  0.3515372
  0.3378711
  0.3448785
  0.3472975
  0.3533926
  0.3592084
  0.3633632
  0.3663472
  0.3712261
  0.3722882
  0.3775176
  0.3375671
  0.3440556
  0.3499442
  0.3562223
  0.3601855
  0.3662583
  0.3680804
  0.3716523
  0.3724643
  0.3740555
  0.3324351
  0.3393836
  0.3480216
  0.3555529
  0.3601006
  0.3631893
  0.3680505
  0.3693913
  0.3698969
  0.3713362
  0.3370088
  0.3415088
  0.3484606
  0.3518746
  0.3560441
  0.3593367
  0.3616587
  0.3667997
  0.3689152
  0.3714466
  0.3299976
  0.3409999
  0.3449426
  0.3513282
  0.3559820
  0.3587344
  0.3612531
  0.3643215
  0.3645545
  0.3680484
  0.3368278
  0.3420308
  0.3477684
  0.3516655
  0.3554446
  0.3585293
  0.3614903
  0.3630000
  0.3679921
  0.3698552
  0.3376504
  0.3429903
  0.3478343
  0.3531862
  0.3575150
  0.3598678
  0.3637035
  0.3664328
  0.3674022
  0.3696169
  0.3301318
  0.3331752
  0.3409773
  0.3469330
  0.3498475
  0.3534378
  0.3569394
  0.3607753
  0.3629972
  0.3651241
  0.3304042
  0.3371623
  0.3412172
  0.3448914
  0.3492498
  0.3525286
  0.3556206
  0.3586498
  0.3603521
  0.3637778
  0.3317806
  0.3357324
  0.3392632
  0.3439298
  0.3472610
  0.3502881
  0.3525623
  0.3551721
  0.3574506
  0.3602003
  0.3336743
  0.3461171
  0.3521525
  0.3574772
  0.3645305
  0.3671230
  0.3698919
  0.3769078
  0.3792682
  0.3844638
  0.3387313
  0.3473239
  0.3551038
  0.3596703
  0.3628808
  0.3651894
  0.3705723
  0.3743972
  0.3753349
  0.3766526
  0.3374290
  0.3433800
  0.3500455
  0.3568818
  0.3601771
  0.3635199
  0.3701867
  0.3713458
  0.3740571
  0.3753457
  0.3375209
  0.3470989
  0.3534796
  0.3577712
  0.3619675
  0.3680058
  0.3740573
  0.3778129
  0.3817473
  0.3836865
  0.3358966
  0.3475767
  0.3534135
  0.3559104
  0.3623663
  0.3668408
  0.3708086
  0.3722845
  0.3726779
  0.3741778
  0.3342717
  0.3414219
  0.3469603
  0.3560582
  0.3586739
  0.3615600
  0.3657012
  0.3686596
  0.3714685
  0.3749944
  0.3262960
  0.3375888
  0.3444153
  0.3467125
  0.3537491
  0.3573226
  0.3599906
  0.3624154
  0.3637434
  0.3656679
  0.3298472
  0.3383850
  0.3451021
  0.3499989
  0.3553383
  0.3588621
  0.3621360
  0.3647003
  0.3678128
  0.3686848
  0.3312354
  0.3409288
  0.3448096
  0.3484737
  0.3526235
  0.3562338
  0.3597968
  0.3625861
  0.3650580
  0.3684864
  0.3296252
  0.3359999
  0.3411266
  0.3464525
  0.3505655
  0.3517371
  0.3547812
  0.3589040
  0.3623665
  0.3646509
  0.3453345
  0.3552560
  0.3600653
  0.3672305
  0.3696547
  0.3728512
  0.3814494
  0.3823095
  0.3852384
  0.3878500
  0.3438702
  0.3496856
  0.3590266
  0.3639474
  0.3701388
  0.3710092
  0.3744114
  0.3784191
  0.3798430
  0.3848055
  0.3393370
  0.3483924
  0.3587094
  0.3654637
  0.3707200
  0.3769785
  0.3798905
  0.3830289
  0.3835979
  0.3864526
  0.3369569
  0.3441027
  0.3558923
  0.3625428
  0.3667799
  0.3732999
  0.3757765
  0.3800636
  0.3847382
  0.3851702
  0.3421289
  0.3521582
  0.3588389
  0.3609413
  0.3652070
  0.3686492
  0.3706607
  0.3732951
  0.3779654
  0.3780963
  0.3395592
  0.3483631
  0.3575624
  0.3650545
  0.3679311
  0.3730621
  0.3759279
  0.3782772
  0.3807675
  0.3837294
  0.3351054
  0.3500431
  0.3577727
  0.3634835
  0.3689674
  0.3731502
  0.3752460
  0.3785449
  0.3801194
  0.3832035
  0.3391527
  0.3449403
  0.3515052
  0.3580077
  0.3634980
  0.3672709
  0.3695591
  0.3731701
  0.3751235
  0.3774318
  0.3360596
  0.3446192
  0.3512527
  0.3562189
  0.3600134
  0.3649795
  0.3687895
  0.3711846
  0.3740263
  0.3761315
  0.3347091
  0.3395732
  0.3450020
  0.3521505
  0.3557697
  0.3589573
  0.3624244
  0.3655158
  0.3681555
  0.3706052
  0.3422592
  0.3546160
  0.3621155
  0.3701979
  0.3764875
  0.3825456
  0.3841399
  0.3874973
  0.3902032
  0.3936741
  0.3464046
  0.3573751
  0.3704717
  0.3782760
  0.3845435
  0.3868217
  0.3919922
  0.3966195
  0.3974607
  0.4011663
  0.3412091
  0.3516615
  0.3621197
  0.3683074
  0.3737656
  0.3786497
  0.3803120
  0.3849134
  0.3881692
  0.3895054
  0.3409474
  0.3567224
  0.3623011
  0.3692401
  0.3745880
  0.3781233
  0.3836971
  0.3856095
  0.3887846
  0.3898294
  0.3424457
  0.3522981
  0.3618545
  0.3667022
  0.3705065
  0.3769352
  0.3844464
  0.3877314
  0.3897981
  0.3931227
  0.3342253
  0.3462029
  0.3533698
  0.3616039
  0.3649451
  0.3708807
  0.3759595
  0.3802639
  0.3827678
  0.3865789
  0.3405285
  0.3535725
  0.3623203
  0.3682311
  0.3723195
  0.3762000
  0.3794715
  0.3823451
  0.3849413
  0.3871889
  0.3362334
  0.3469784
  0.3550806
  0.3603655
  0.3673455
  0.3713691
  0.3751744
  0.3788527
  0.3811724
  0.3821784
  0.3321237
  0.3403540
  0.3493582
  0.3572227
  0.3628321
  0.3679200
  0.3722045
  0.3761346
  0.3787377
  0.3803020
  0.3319854
  0.3399689
  0.3470559
  0.3519214
  0.3568163
  0.3611146
  0.3662429
  0.3687190
  0.3719969
  0.3744567
  0.3448335
  0.3589220
  0.3655367
  0.3716017
  0.3800527
  0.3858144
  0.3868171
  0.3905427
  0.3970883
  0.3973117
  0.3429146
  0.3560898
  0.3638489
  0.3711409
  0.3766701
  0.3831331
  0.3856090
  0.3909516
  0.3937712
  0.3968154
  0.3461110
  0.3605350
  0.3687270
  0.3729685
  0.3772544
  0.3835928
  0.3875373
  0.3905432
  0.3922996
  0.3925555
  0.3456560
  0.3588885
  0.3692268
  0.3737765
  0.3809333
  0.3842601
  0.3886498
  0.3915870
  0.3942495
  0.3955556
  0.3402401
  0.3522530
  0.3619732
  0.3679489
  0.3726474
  0.3786323
  0.3811585
  0.3834786
  0.3865766
  0.3898289
  0.3398841
  0.3498078
  0.3594820
  0.3650223
  0.3707930
  0.3739425
  0.3768893
  0.3785967
  0.3825068
  0.3854318
  0.3421224
  0.3559963
  0.3649359
  0.3715559
  0.3774521
  0.3817251
  0.3853869
  0.3877058
  0.3911825
  0.3946394
  0.3419719
  0.3557004
  0.3638501
  0.3729211
  0.3791421
  0.3832480
  0.3863709
  0.3895084
  0.3923974
  0.3934783
  0.3353438
  0.3461160
  0.3538317
  0.3622418
  0.3677229
  0.3718405
  0.3757799
  0.3792714
  0.3817901
  0.3839575
  0.3370173
  0.3439786
  0.3490759
  0.3572391
  0.3605188
  0.3650863
  0.3691321
  0.3724759
  0.3751547
  0.3781400
  0.3527109
  0.3694621
  0.3833774
  0.3878833
  0.3946041
  0.3990855
  0.4029863
  0.4070272
  0.4120931
  0.4123997
  0.3444421
  0.3615102
  0.3751236
  0.3836080
  0.3888568
  0.3954601
  0.4019076
  0.4041828
  0.4054682
  0.4093328
  0.3500839
  0.3636146
  0.3767711
  0.3851009
  0.3893720
  0.3959081
  0.3978082
  0.4021552
  0.4028395
  0.4064261
  0.3435416
  0.3618099
  0.3677234
  0.3732613
  0.3820754
  0.3842126
  0.3903788
  0.3928643
  0.3969413
  0.4012127
  0.3446309
  0.3619211
  0.3712950
  0.3775717
  0.3842417
  0.3860688
  0.3901397
  0.3930314
  0.3960421
  0.3986961
  0.3456666
  0.3616710
  0.3722597
  0.3792043
  0.3839569
  0.3888864
  0.3932620
  0.3954456
  0.3977141
  0.3985881
  0.3419461
  0.3597756
  0.3658431
  0.3733813
  0.3808533
  0.3832560
  0.3858993
  0.3892068
  0.3909178
  0.3928854
  0.3410816
  0.3533470
  0.3636360
  0.3734666
  0.3779209
  0.3809059
  0.3844161
  0.3880498
  0.3920484
  0.3955390
  0.3359654
  0.3536668
  0.3637172
  0.3703067
  0.3759283
  0.3813032
  0.3840130
  0.3871745
  0.3887740
  0.3904054
  0.3378467
  0.3490114
  0.3573783
  0.3624945
  0.3687657
  0.3730110
  0.3766518
  0.3791921
  0.3817518
  0.3838008
  0.3568669
  0.3729057
  0.3842570
  0.3914258
  0.3949592
  0.4007976
  0.4012580
  0.4097756
  0.4135468
  0.4127282
  0.3489008
  0.3670639
  0.3754426
  0.3825330
  0.3888907
  0.3945977
  0.3969201
  0.3989878
  0.4039836
  0.4048584
  0.3503092
  0.3626900
  0.3713771
  0.3783366
  0.3822730
  0.3850073
  0.3912294
  0.3967079
  0.3982922
  0.4041356
  0.3484750
  0.3632709
  0.3747970
  0.3832577
  0.3885135
  0.3921788
  0.3961876
  0.3991981
  0.4003930
  0.4056826
  0.3480991
  0.3592285
  0.3716274
  0.3799185
  0.3847938
  0.3891332
  0.3932679
  0.3970653
  0.3989091
  0.3995809
  0.3441744
  0.3598495
  0.3681934
  0.3764818
  0.3827039
  0.3873513
  0.3915066
  0.3948415
  0.3977635
  0.3999935
  0.3417776
  0.3537549
  0.3626600
  0.3693135
  0.3756759
  0.3800285
  0.3834025
  0.3864894
  0.3880485
  0.3904199
  0.3417402
  0.3565794
  0.3645340
  0.3717476
  0.3767863
  0.3805045
  0.3827602
  0.3885133
  0.3890049
  0.3920092
  0.3408597
  0.3541035
  0.3640903
  0.3697436
  0.3741337
  0.3793521
  0.3841874
  0.3886138
  0.3910154
  0.3929100
  0.3464297
  0.3547053
  0.3606424
  0.3663154
  0.3709915
  0.3756931
  0.3798603
  0.3830520
  0.3859240
  0.3887357
  0.3611819
  0.3746481
  0.3885086
  0.3958635
  0.4050566
  0.4073162
  0.4090661
  0.4143105
  0.4187958
  0.4199470
  0.3508004
  0.3701116
  0.3803912
  0.3866762
  0.3921442
  0.3972326
  0.4037623
  0.4043642
  0.4085783
  0.4111524
  0.3564365
  0.3730813
  0.3851351
  0.3955964
  0.3992562
  0.4034887
  0.4042965
  0.4084756
  0.4111193
  0.4132396
  0.3525586
  0.3709161
  0.3809706
  0.3903793
  0.3944589
  0.3998799
  0.4003779
  0.4027850
  0.4049444
  0.4070413
  0.3492078
  0.3654216
  0.3766828
  0.3832149
  0.3883891
  0.3911258
  0.3932349
  0.3943720
  0.3980622
  0.3999154
  0.3459332
  0.3691660
  0.3795041
  0.3851818
  0.3906647
  0.3928503
  0.3953025
  0.3970787
  0.3984195
  0.3999384
  0.3508940
  0.3689643
  0.3804023
  0.3885211
  0.3937120
  0.3977747
  0.4017246
  0.4033233
  0.4076284
  0.4099642
  0.3509370
  0.3681393
  0.3792933
  0.3854285
  0.3913076
  0.3953839
  0.3971126
  0.3989317
  0.4003682
  0.4016793
  0.3431065
  0.3591634
  0.3696912
  0.3766731
  0.3812897
  0.3854184
  0.3889079
  0.3912318
  0.3933285
  0.3938798
  0.3445314
  0.3580919
  0.3665600
  0.3734538
  0.3784076
  0.3827716
  0.3861992
  0.3898347
  0.3915005
  0.3931127
  0.3609131
  0.3770380
  0.3857651
  0.3933807
  0.3971288
  0.4013101
  0.4084604
  0.4096904
  0.4125960
  0.4137467
  0.3590550
  0.3787158
  0.3859320
  0.3956101
  0.4030886
  0.4089668
  0.4117559
  0.4152275
  0.4176255
  0.4208977
  0.3578965
  0.3756144
  0.3834993
  0.3938509
  0.3990944
  0.4036232
  0.4066801
  0.4087531
  0.4113585
  0.4134226
  0.3542060
  0.3747317
  0.3853596
  0.3926420
  0.3988827
  0.4012280
  0.4045020
  0.4065906
  0.4097952
  0.4120105
  0.3587467
  0.3755907
  0.3864625
  0.3955640
  0.4016557
  0.4051905
  0.4081699
  0.4117810
  0.4133351
  0.4138662
  0.3511185
  0.3701800
  0.3795534
  0.3863126
  0.3909205
  0.3976056
  0.4005267
  0.4028397
  0.4039353
  0.4062392
  0.3567474
  0.3723853
  0.3819828
  0.3887764
  0.3937360
  0.3967784
  0.3993892
  0.4035758
  0.4054982
  0.4067914
  0.3486042
  0.3635671
  0.3738807
  0.3802712
  0.3867489
  0.3899343
  0.3928275
  0.3965063
  0.3975420
  0.3984548
  0.3465443
  0.3606522
  0.3692701
  0.3760526
  0.3816999
  0.3867395
  0.3899309
  0.3916860
  0.3944893
  0.3961477
  0.3495075
  0.3564622
  0.3636087
  0.3713223
  0.3771323
  0.3819130
  0.3849062
  0.3875299
  0.3899228
  0.3923759
  0.3644018
  0.3820766
  0.3974057
  0.4018659
  0.4111334
  0.4170102
  0.4199386
  0.4236355
  0.4266271
  0.4286805
  0.3605697
  0.3772336
  0.3915535
  0.3992755
  0.4051426
  0.4097832
  0.4139976
  0.4169308
  0.4193968
  0.4214487
  0.3567137
  0.3750999
  0.3863323
  0.3949123
  0.3981385
  0.4005922
  0.4043338
  0.4049895
  0.4072580
  0.4071204
  0.3594208
  0.3829904
  0.3904661
  0.3966955
  0.4024014
  0.4072094
  0.4085788
  0.4099925
  0.4134163
  0.4148186
  0.3606570
  0.3795110
  0.3898377
  0.3954981
  0.4001995
  0.4050017
  0.4068933
  0.4081594
  0.4111679
  0.4121759
  0.3578331
  0.3753819
  0.3878215
  0.3925789
  0.3977450
  0.4001665
  0.4010908
  0.4042539
  0.4039099
  0.4058666
  0.3575311
  0.3772043
  0.3847297
  0.3913428
  0.3954213
  0.3983944
  0.4006189
  0.4012391
  0.4024529
  0.4036295
  0.3522710
  0.3744976
  0.3827109
  0.3882923
  0.3922743
  0.3952904
  0.3969215
  0.3965881
  0.3978324
  0.3996104
  0.3467334
  0.3657566
  0.3771919
  0.3849554
  0.3884732
  0.3900962
  0.3932437
  0.3943542
  0.3957415
  0.3966021
  0.3457709
  0.3604271
  0.3692672
  0.3758699
  0.3810778
  0.3848217
  0.3876859
  0.3901956
  0.3916281
  0.3923779
  0.3638471
  0.3791299
  0.3880615
  0.3958252
  0.4033957
  0.4095496
  0.4125454
  0.4146362
  0.4176108
  0.4187239
  0.3573276
  0.3790986
  0.3908704
  0.3995750
  0.4026550
  0.4088987
  0.4124349
  0.4147248
  0.4175785
  0.4201421
  0.3630022
  0.3788144
  0.3863257
  0.3930011
  0.4008013
  0.4058401
  0.4111378
  0.4145467
  0.4159015
  0.4171768
  0.3595296
  0.3738684
  0.3817022
  0.3901282
  0.3954062
  0.4004434
  0.4034054
  0.4075894
  0.4093608
  0.4133023
  0.3602243
  0.3754121
  0.3872500
  0.3953896
  0.4006138
  0.4068003
  0.4126198
  0.4132375
  0.4161259
  0.4168091
  0.3563935
  0.3741307
  0.3853727
  0.3894226
  0.3973118
  0.4001890
  0.4044500
  0.4060910
  0.4079051
  0.4095538
  0.3588427
  0.3774477
  0.3860634
  0.3935336
  0.3975744
  0.4009974
  0.4027383
  0.4043301
  0.4063507
  0.4083274
  0.3574029
  0.3703027
  0.3826053
  0.3887257
  0.3927098
  0.3958702
  0.3976550
  0.3997571
  0.4008034
  0.4022956
  0.3540730
  0.3695881
  0.3797629
  0.3863362
  0.3910034
  0.3946529
  0.3967271
  0.3978241
  0.3998356
  0.4004686
  0.3473904
  0.3582476
  0.3668825
  0.3720129
  0.3770509
  0.3809912
  0.3843333
  0.3868685
  0.3889290
  0.3908111
  0.3668003
  0.3840315
  0.3976185
  0.4069395
  0.4114199
  0.4156642
  0.4196822
  0.4229003
  0.4247619
  0.4238240
  0.3692678
  0.3861036
  0.3936976
  0.4019618
  0.4078333
  0.4116780
  0.4117151
  0.4136369
  0.4172680
  0.4186531
  0.3688065
  0.3867180
  0.3993665
  0.4065120
  0.4109306
  0.4171448
  0.4161747
  0.4194354
  0.4216781
  0.4217384
  0.3640529
  0.3842120
  0.3931429
  0.4000880
  0.4037815
  0.4073751
  0.4105587
  0.4112353
  0.4127809
  0.4138249
  0.3650158
  0.3850768
  0.3964677
  0.4016518
  0.4034333
  0.4051297
  0.4082681
  0.4096330
  0.4110993
  0.4117009
  0.3553109
  0.3785473
  0.3877714
  0.3933736
  0.3966075
  0.3988661
  0.4002537
  0.4031098
  0.4038246
  0.4064426
  0.3655865
  0.3847067
  0.3938914
  0.3967107
  0.4004427
  0.4026828
  0.4039044
  0.4067334
  0.4074359
  0.4079264
  0.3600225
  0.3756437
  0.3858356
  0.3910417
  0.3932967
  0.3957415
  0.3962162
  0.3967416
  0.3972491
  0.3977758
  0.3542934
  0.3729943
  0.3831959
  0.3876786
  0.3915912
  0.3925010
  0.3939293
  0.3952567
  0.3962100
  0.3970865
  0.3495308
  0.3631197
  0.3716735
  0.3789406
  0.3831936
  0.3855352
  0.3869037
  0.3873721
  0.3873724
  0.3873724
  0.3723230
  0.3903691
  0.3996866
  0.4041072
  0.4119520
  0.4163248
  0.4182953
  0.4234773
  0.4280161
  0.4333502
  0.3712620
  0.3895044
  0.3983808
  0.4049085
  0.4126382
  0.4177938
  0.4199397
  0.4256615
  0.4280128
  0.4291240
  0.3621613
  0.3874060
  0.3965661
  0.4071410
  0.4121254
  0.4168433
  0.4206590
  0.4231212
  0.4261714
  0.4268871
  0.3670008
  0.3832677
  0.3941810
  0.3992413
  0.4049359
  0.4089045
  0.4128036
  0.4152124
  0.4148690
  0.4169281
  0.3644816
  0.3839386
  0.3931594
  0.3998157
  0.4034678
  0.4054569
  0.4073095
  0.4093007
  0.4119849
  0.4123886
  0.3599483
  0.3783249
  0.3872111
  0.3932694
  0.3970212
  0.4012835
  0.4037265
  0.4061383
  0.4062825
  0.4073426
  0.3621668
  0.3808547
  0.3896636
  0.3944190
  0.3966134
  0.4001591
  0.4018321
  0.4043918
  0.4043807
  0.4058442
  0.3571515
  0.3758871
  0.3855978
  0.3904132
  0.3944318
  0.3963338
  0.3979220
  0.3993548
  0.4006259
  0.4014821
  0.3576101
  0.3718264
  0.3805084
  0.3851821
  0.3904855
  0.3927439
  0.3958464
  0.3967284
  0.3976487
  0.3986020
  0.3496938
  0.3594435
  0.3690113
  0.3771704
  0.3816552
  0.3844907
  0.3871063
  0.3888466
  0.3901524
  0.3909627
  0.3826953
  0.3981415
  0.4080017
  0.4144900
  0.4154223
  0.4227563
  0.4255022
  0.4274109
  0.4353146
  0.4333397
  0.3741271
  0.3933701
  0.4026296
  0.4042927
  0.4063668
  0.4142962
  0.4153449
  0.4179575
  0.4210745
  0.4205157
  0.3746826
  0.3937051
  0.4009841
  0.4021020
  0.4060012
  0.4052840
  0.4071323
  0.4090899
  0.4117324
  0.4138783
  0.3778589
  0.3931547
  0.4009888
  0.4068289
  0.4089572
  0.4119421
  0.4141359
  0.4187280
  0.4194248
  0.4183816
  0.3670311
  0.3903114
  0.3991389
  0.4038272
  0.4057763
  0.4091625
  0.4103495
  0.4123126
  0.4145969
  0.4162447
  0.3714046
  0.3913670
  0.3976740
  0.4013033
  0.4038052
  0.4067396
  0.4072611
  0.4089032
  0.4092497
  0.4094720
  0.3623980
  0.3855851
  0.3920587
  0.3955349
  0.3964064
  0.3978547
  0.3977815
  0.4005348
  0.4005304
  0.4005931
  0.3713704
  0.3882459
  0.3937024
  0.3958747
  0.4000494
  0.4019689
  0.4031828
  0.4038580
  0.4037815
  0.4049579
  0.3649734
  0.3822752
  0.3907415
  0.3924405
  0.3950320
  0.3953198
  0.3953321
  0.3954496
  0.3946025
  0.3949703
  0.3569984
  0.3714073
  0.3812192
  0.3865188
  0.3892256
  0.3906798
  0.3907673
  0.3907673
  0.3907673
  0.3907673

Tuning parameter 'gamma' was held constant at a value of 0
Tuning
 parameter 'min_child_weight' was held constant at a value of 1
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were nrounds = 50, max_depth = 4, eta
 = 0.4, gamma = 0, colsample_bytree = 0.8, min_child_weight = 1 and subsample
 = 0.8333333.
# Mejores hiperparámetros
print("Mejores hiperparámetros:")
[1] "Mejores hiperparámetros:"
print(modelo_xgb_cv$bestTune)
     nrounds max_depth eta gamma colsample_bytree min_child_weight subsample
2761      50         4 0.4     0              0.8                1 0.8333333
# Importancia de variables
importancia_xgb <- varImp(modelo_xgb_cv, scale = TRUE) %>%
  .$importance %>%
  as_tibble(rownames = "variable") %>%
  arrange(desc(Overall))

print("Importancia de variables:")
[1] "Importancia de variables:"
print(importancia_xgb)
# A tibble: 6 × 2
  variable                  Overall
  <chr>                       <dbl>
1 m2_construidos            100    
2 no_banos                   12.4  
3 tipo_inmuebleDepartamento   6.12 
4 no_recamaras                3.91 
5 region_precioBaja           0.315
6 region_precioMedia          0    
# Visualizar importancia
importancia_xgb %>%
  ggplot(aes(x = reorder(variable, Overall), y = Overall)) +
  geom_col(fill = "steelblue") +
  coord_flip() +
  labs(
    title = "Importancia de Variables según XGBoost",
    x = "Variable",
    y = "Importancia (Overall)"
  )

Nota sobre paralelización: El parámetro nthread controla cuántos cores usa XGBoost internamente. Combinado con allowParallel = TRUE en trainControl, obtenemos paralelización en dos niveles:

  1. Validación cruzada en paralelo (folds diferentes en cores diferentes)
  2. Construcción de árbol en paralelo (dentro de cada fold)

8 Comparación de Modelos

8.1 Métricas de Desempeño

# Extraer métricas de cada modelo
comparacion <- tibble(
  Modelo = c("OLS (log)", "Ridge", "Lasso", "Árbol", "Random Forest", "XGBoost"),
  RMSE = c(
    modelo_log_cv$results$RMSE[1],
    min(modelo_ridge_cv$results$RMSE),
    min(modelo_lasso_cv$results$RMSE),
    min(modelo_arbol_cv$results$RMSE),
    min(modelo_rf_cv$results$RMSE),
    min(modelo_xgb_cv$results$RMSE)
  ),
  R2 = c(
    modelo_log_cv$results$Rsquared[1],
    max(modelo_ridge_cv$results$Rsquared),
    max(modelo_lasso_cv$results$Rsquared),
    max(modelo_arbol_cv$results$Rsquared),
    max(modelo_rf_cv$results$Rsquared),
    max(modelo_xgb_cv$results$Rsquared)
  )
) %>%
  arrange(RMSE)

print("=== Comparación de Desempeño ===")
[1] "=== Comparación de Desempeño ==="
print(comparacion)
# A tibble: 6 × 3
  Modelo         RMSE      R2
  <chr>         <dbl>   <dbl>
1 XGBoost       0.431   0.743
2 Random Forest 0.440   0.732
3 Árbol         0.493   0.662
4 Lasso         0.555 NaN    
5 Ridge         0.558   0.578
6 OLS (log)     0.560   0.577

8.2 Visualización de Comparación

# RMSE
p_rmse <- comparacion %>%
  ggplot(aes(x = reorder(Modelo, -RMSE), y = RMSE, fill = Modelo)) +
  geom_col(alpha = 0.8) +
  geom_text(aes(label = round(RMSE, 3)), vjust = -0.5, size = 3.5) +
  labs(title = "Comparación de RMSE (menor es mejor)",
       x = "Modelo", y = "RMSE") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        legend.position = "none")

# R²
p_r2 <- comparacion %>%
  ggplot(aes(x = reorder(Modelo, R2), y = R2, fill = Modelo)) +
  geom_col(alpha = 0.8) +
  geom_text(aes(label = round(R2, 3)), vjust = -0.5, size = 3.5) +
  labs(title = "Comparación de R² (mayor es mejor)",
       x = "Modelo", y = "R²") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        legend.position = "none")

gridExtra::grid.arrange(p_rmse, p_r2, ncol = 2)

8.3 Predicciones vs Valores Reales

# Generar predicciones para todos los modelos
pred_ols   <- predict(modelo_final, newdata = datos_modelo)
pred_ridge <- predict(modelo_ridge_cv, newdata = datos_modelo)
pred_lasso <- predict(modelo_lasso_cv, newdata = datos_modelo)
pred_arbol <- predict(modelo_arbol_cv, newdata = datos_modelo)
pred_rf    <- predict(modelo_rf_cv, newdata = datos_modelo)
pred_xgb   <- predict(modelo_xgb_cv, newdata = datos_modelo)

# Consolidar en un dataframe
predicciones_consolidadas <- datos_modelo %>%
  mutate(
    precio_real = precio,
    OLS = exp(pred_ols) - 1,
    Ridge = exp(pred_ridge) - 1,
    Lasso = exp(pred_lasso) - 1,
    Árbol = exp(pred_arbol) - 1,
    `Random Forest` = exp(pred_rf) - 1,
    XGBoost = exp(pred_xgb) - 1
  ) %>%
  transmute(
    precio_real_millones = precio_real / 1e6,
    OLS = OLS / 1e6,
    Ridge = Ridge / 1e6,
    Lasso = Lasso / 1e6,
    Árbol = Árbol / 1e6,
    `Random Forest` = `Random Forest` / 1e6,
    XGBoost = XGBoost / 1e6
  ) %>%
  pivot_longer(
    cols = -precio_real_millones,
    names_to = "modelo",
    values_to = "precio_pred_millones"
  )

# Gráfico de predicciones vs reales
predicciones_consolidadas %>%
  filter(precio_pred_millones <= 50) %>%  # Filtrar outliers para visualización
  ggplot(aes(x = precio_real_millones, y = precio_pred_millones)) +
  geom_point(alpha = 0.2, color = "steelblue") +
  geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "red") +
  facet_wrap(~modelo, ncol = 3) +
  coord_equal() +
  labs(
    title = "Valores Observados vs Predichos por Modelo",
    subtitle = "Línea roja = predicción perfecta",
    x = "Precio Observado (millones de pesos)",
    y = "Precio Predicho (millones de pesos)"
  ) +
  theme_minimal()

9 Interpretación y Recomendaciones

9.1 Comparación de Coeficientes (OLS vs Ridge vs Lasso)

# Extraer coeficientes de cada modelo
coef_ols <- tidy(modelo_final) %>%
  mutate(modelo = "OLS") %>%
  dplyr::select(modelo, term, estimate)

coef_ridge <- coef(modelo_ridge_cv$finalModel,
                   s = modelo_ridge_cv$bestTune$lambda) %>%
  as.matrix() %>%
  as_tibble(rownames = "term") %>%
  rename(estimate = s0) %>%
  mutate(modelo = "Ridge")

coef_lasso <- coef(modelo_lasso_cv$finalModel,
                   s = modelo_lasso_cv$bestTune$lambda) %>%
  as.matrix() %>%
  as_tibble(rownames = "term") %>%
  rename(estimate = s0) %>%
  mutate(modelo = "Lasso")

# Consolidar
coef_comparacion <- bind_rows(coef_ols, coef_ridge, coef_lasso) %>%
  filter(term != "(Intercept)")

# Visualizar
coef_comparacion %>%
  ggplot(aes(x = term, y = estimate, color = modelo)) +
  geom_point(size = 3, position = position_dodge(width = 0.6)) +
  geom_hline(yintercept = 0, linetype = "dashed", color = "gray40") +
  coord_flip() +
  labs(
    title = "Comparación de Coeficientes: OLS vs Ridge vs Lasso",
    subtitle = "Variable dependiente: log(precio)",
    x = "Variable explicativa",
    y = "Coeficiente estimado",
    color = "Modelo"
  ) +
  theme_minimal() +
  theme(legend.position = "top")

Interpretación:

  • OLS: Coeficientes más grandes (sin regularización)
  • Ridge: Todos los coeficientes reducidos proporcionalmente
  • Lasso: Algunos coeficientes exactamente en cero (selección)

9.2 Conclusiones y Recomendaciones

9.2.1 Mejor Modelo

Basándonos en RMSE y R², el modelo XGBoost o Random Forest típicamente tendrán el mejor desempeño predictivo.

9.2.2 Trade-offs a Considerar

Comparación Cualitativa de Modelos
Modelo Interpretabilidad Velocidad_Entrenamiento Velocidad_Predicción Rendimiento_Predictivo Manejo_No_Linealidad
OLS ★★★★★ ★★★★★ ★★★★★ ★★☆☆☆ ★☆☆☆☆
Ridge/Lasso ★★★★☆ ★★★★☆ ★★★★★ ★★★☆☆ ★☆☆☆☆
Árbol ★★★☆☆ ★★★★☆ ★★★★☆ ★★★☆☆ ★★★★★
Random Forest ★★☆☆☆ ★★☆☆☆ ★★★☆☆ ★★★★☆ ★★★★★
XGBoost ★☆☆☆☆ ★☆☆☆☆ ★★★☆☆ ★★★★★ ★★★★★

9.2.3 Recomendaciones por Caso de Uso

  1. Si necesitas interpretabilidad: Usa OLS o Lasso
    • Puedes explicar el impacto de cada variable
    • Apropiado para reportes a stakeholders no técnicos
  2. Si tienes multicolinealidad: Usa Ridge
    • Estabiliza coeficientes correlacionados
  3. Si quieres selección automática de variables: Usa Lasso
    • Identifica variables más importantes
    • Reduce dimensionalidad
  4. Si rendimiento predictivo es prioritario: Usa XGBoost o Random Forest
    • Mejor predicción pero menos interpretable
    • Apropiado para producción
  5. Si tienes restricciones computacionales: Usa OLS o Lasso
    • Más rápidos de entrenar y predecir

10 Ejemplo de Predicción

# Crear ejemplos para predicción
nuevos_datos <- tibble(
  no_recamaras = c(2, 3, 4),
  no_banos = c(1, 2, 3),
  m2_construidos = c(80, 120, 200),
  region_precio = c("Baja", "Media", "Alta"),
  tipo_inmueble = c("Departamento", "Casa", "Casa")
)

# Predicciones con intervalo de confianza (OLS)
predicciones_conf <- predict(
  modelo_final,
  newdata = nuevos_datos,
  interval = "confidence",
  level = 0.95
) %>%
  as_tibble() %>%
  mutate(across(everything(), ~(exp(.) - 1) / 1e6)) %>%
  bind_cols(nuevos_datos, .) %>%
  rename(precio_estimado = fit, limite_inferior = lwr, limite_superior = upr)

print("=== Predicciones de Ejemplo (millones de pesos) ===")
[1] "=== Predicciones de Ejemplo (millones de pesos) ==="
print(predicciones_conf)
# A tibble: 3 × 8
  no_recamaras no_banos m2_construidos region_precio tipo_inmueble
         <dbl>    <dbl>          <dbl> <chr>         <chr>        
1            2        1             80 Baja          Departamento 
2            3        2            120 Media         Casa         
3            4        3            200 Alta          Casa         
# ℹ 3 more variables: precio_estimado <dbl>, limite_inferior <dbl>,
#   limite_superior <dbl>

11 Limpieza Final

# Cerrar cluster de paralelización
stopCluster(cl)
registerDoSEQ()  # Volver a modo secuencial

12 Referencias y Recursos

12.1 Libros Recomendados

  1. “An Introduction to Statistical Learning” - James, Witten, Hastie, Tibshirani
  2. “The Elements of Statistical Learning” - Hastie, Tibshirani, Friedman
  3. “Applied Predictive Modeling” - Kuhn, Johnson

12.2 Documentación

12.3 Datasets


Fecha de creación: 2025-11-11
Curso: EC3002C.602 - Módulo 5: Inteligencia Artificial