library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dat <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv", header = TRUE)

dat
##      Temp Sex Beats
## 1    96.3   1    70
## 2    96.7   1    71
## 3    96.9   1    74
## 4    97.0   1    80
## 5    97.1   1    73
## 6    97.1   1    75
## 7    97.1   1    82
## 8    97.2   1    64
## 9    97.3   1    69
## 10   97.4   1    70
## 11   97.4   1    68
## 12   97.4   1    72
## 13   97.4   1    78
## 14   97.5   1    70
## 15   97.5   1    75
## 16   97.6   1    74
## 17   97.6   1    69
## 18   97.6   1    73
## 19   97.7   1    77
## 20   97.8   1    58
## 21   97.8   1    73
## 22   97.8   1    65
## 23   97.8   1    74
## 24   97.9   1    76
## 25   97.9   1    72
## 26   98.0   1    78
## 27   98.0   1    71
## 28   98.0   1    74
## 29   98.0   1    67
## 30   98.0   1    64
## 31   98.0   1    78
## 32   98.1   1    73
## 33   98.1   1    67
## 34   98.2   1    66
## 35   98.2   1    64
## 36   98.2   1    71
## 37   98.2   1    72
## 38   98.3   1    86
## 39   98.3   1    72
## 40   98.4   1    68
## 41   98.4   1    70
## 42   98.4   1    82
## 43   98.4   1    84
## 44   98.5   1    68
## 45   98.5   1    71
## 46   98.6   1    77
## 47   98.6   1    78
## 48   98.6   1    83
## 49   98.6   1    66
## 50   98.6   1    70
## 51   98.6   1    82
## 52   98.7   1    73
## 53   98.7   1    78
## 54   98.8   1    78
## 55   98.8   1    81
## 56   98.8   1    78
## 57   98.9   1    80
## 58   99.0   1    75
## 59   99.0   1    79
## 60   99.0   1    81
## 61   99.1   1    71
## 62   99.2   1    83
## 63   99.3   1    63
## 64   99.4   1    70
## 65   99.5   1    75
## 66   96.4   2    69
## 67   96.7   2    62
## 68   96.8   2    75
## 69   97.2   2    66
## 70   97.2   2    68
## 71   97.4   2    57
## 72   97.6   2    61
## 73   97.7   2    84
## 74   97.7   2    61
## 75   97.8   2    77
## 76   97.8   2    62
## 77   97.8   2    71
## 78   97.9   2    68
## 79   97.9   2    69
## 80   97.9   2    79
## 81   98.0   2    76
## 82   98.0   2    87
## 83   98.0   2    78
## 84   98.0   2    73
## 85   98.0   2    89
## 86   98.1   2    81
## 87   98.2   2    73
## 88   98.2   2    64
## 89   98.2   2    65
## 90   98.2   2    73
## 91   98.2   2    69
## 92   98.2   2    57
## 93   98.3   2    79
## 94   98.3   2    78
## 95   98.3   2    80
## 96   98.4   2    79
## 97   98.4   2    81
## 98   98.4   2    73
## 99   98.4   2    74
## 100  98.4   2    84
## 101  98.5   2    83
## 102  98.6   2    82
## 103  98.6   2    85
## 104  98.6   2    86
## 105  98.6   2    77
## 106  98.7   2    72
## 107  98.7   2    79
## 108  98.7   2    59
## 109  98.7   2    64
## 110  98.7   2    65
## 111  98.7   2    82
## 112  98.8   2    64
## 113  98.8   2    70
## 114  98.8   2    83
## 115  98.8   2    89
## 116  98.8   2    69
## 117  98.8   2    73
## 118  98.8   2    84
## 119  98.9   2    76
## 120  99.0   2    79
## 121  99.0   2    81
## 122  99.1   2    80
## 123  99.1   2    74
## 124  99.2   2    77
## 125  99.2   2    66
## 126  99.3   2    68
## 127  99.4   2    77
## 128  99.9   2    79
## 129 100.0   2    78
## 130 100.8   2    77
dat_male <- dat %>% filter(Sex==1)

dat_male
##    Temp Sex Beats
## 1  96.3   1    70
## 2  96.7   1    71
## 3  96.9   1    74
## 4  97.0   1    80
## 5  97.1   1    73
## 6  97.1   1    75
## 7  97.1   1    82
## 8  97.2   1    64
## 9  97.3   1    69
## 10 97.4   1    70
## 11 97.4   1    68
## 12 97.4   1    72
## 13 97.4   1    78
## 14 97.5   1    70
## 15 97.5   1    75
## 16 97.6   1    74
## 17 97.6   1    69
## 18 97.6   1    73
## 19 97.7   1    77
## 20 97.8   1    58
## 21 97.8   1    73
## 22 97.8   1    65
## 23 97.8   1    74
## 24 97.9   1    76
## 25 97.9   1    72
## 26 98.0   1    78
## 27 98.0   1    71
## 28 98.0   1    74
## 29 98.0   1    67
## 30 98.0   1    64
## 31 98.0   1    78
## 32 98.1   1    73
## 33 98.1   1    67
## 34 98.2   1    66
## 35 98.2   1    64
## 36 98.2   1    71
## 37 98.2   1    72
## 38 98.3   1    86
## 39 98.3   1    72
## 40 98.4   1    68
## 41 98.4   1    70
## 42 98.4   1    82
## 43 98.4   1    84
## 44 98.5   1    68
## 45 98.5   1    71
## 46 98.6   1    77
## 47 98.6   1    78
## 48 98.6   1    83
## 49 98.6   1    66
## 50 98.6   1    70
## 51 98.6   1    82
## 52 98.7   1    73
## 53 98.7   1    78
## 54 98.8   1    78
## 55 98.8   1    81
## 56 98.8   1    78
## 57 98.9   1    80
## 58 99.0   1    75
## 59 99.0   1    79
## 60 99.0   1    81
## 61 99.1   1    71
## 62 99.2   1    83
## 63 99.3   1    63
## 64 99.4   1    70
## 65 99.5   1    75
dat_female <- dat %>% filter(Sex==2)

dat_female
##     Temp Sex Beats
## 1   96.4   2    69
## 2   96.7   2    62
## 3   96.8   2    75
## 4   97.2   2    66
## 5   97.2   2    68
## 6   97.4   2    57
## 7   97.6   2    61
## 8   97.7   2    84
## 9   97.7   2    61
## 10  97.8   2    77
## 11  97.8   2    62
## 12  97.8   2    71
## 13  97.9   2    68
## 14  97.9   2    69
## 15  97.9   2    79
## 16  98.0   2    76
## 17  98.0   2    87
## 18  98.0   2    78
## 19  98.0   2    73
## 20  98.0   2    89
## 21  98.1   2    81
## 22  98.2   2    73
## 23  98.2   2    64
## 24  98.2   2    65
## 25  98.2   2    73
## 26  98.2   2    69
## 27  98.2   2    57
## 28  98.3   2    79
## 29  98.3   2    78
## 30  98.3   2    80
## 31  98.4   2    79
## 32  98.4   2    81
## 33  98.4   2    73
## 34  98.4   2    74
## 35  98.4   2    84
## 36  98.5   2    83
## 37  98.6   2    82
## 38  98.6   2    85
## 39  98.6   2    86
## 40  98.6   2    77
## 41  98.7   2    72
## 42  98.7   2    79
## 43  98.7   2    59
## 44  98.7   2    64
## 45  98.7   2    65
## 46  98.7   2    82
## 47  98.8   2    64
## 48  98.8   2    70
## 49  98.8   2    83
## 50  98.8   2    89
## 51  98.8   2    69
## 52  98.8   2    73
## 53  98.8   2    84
## 54  98.9   2    76
## 55  99.0   2    79
## 56  99.0   2    81
## 57  99.1   2    80
## 58  99.1   2    74
## 59  99.2   2    77
## 60  99.2   2    66
## 61  99.3   2    68
## 62  99.4   2    77
## 63  99.9   2    79
## 64 100.0   2    78
## 65 100.8   2    77

Summary data of Males Temperature & resting heart rate (Min, max, mean, median and quartile value)

summary(dat_male$Temp)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    96.3    97.6    98.1    98.1    98.6    99.5
summary(dat_male$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   58.00   70.00   73.00   73.37   78.00   86.00
Male_heartrate_sd <- sd(dat_male$Beats)
Male_Temp_sd <- sd(dat_male$Temp)
Male_heartrate_sd
## [1] 5.875184
Male_Temp_sd
## [1] 0.6987558

From above we can see the Min, max, mean, median and quartile value and SD of male heart rate and Temperaure where and SD of male heartrate is (5.875184) and temperate is ( 0.6987558) , where we can se SD value of male heart is little less than female which we can also see in later box plot explanation

Summary data of Females Temperature & resting heart rate (Min, max, mean, median and quartile value)

summary(dat_female$Temp)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   96.40   98.00   98.40   98.39   98.80  100.80
summary(dat_female$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   57.00   68.00   76.00   74.15   80.00   89.00
Female_heartrate_sd <- sd(dat_female$Beats)
Female_heartrate_sd
## [1] 8.105227
Female_Temp_sd <- sd(dat_female$Temp)
Female_Temp_sd
## [1] 0.7434878

From above we can see the Min, max, mean, median and quartile value and SD of female heart rate (8.105227) and SD of female Temp (0.7434878), where we can se SD value of female heart is more.

#Histogram and Normal probability plot of Male’s Heartrate and Temperature data

hist(dat_male$Beats, main = "Histogram of Male heartrate data",col = "blue", xlab="respective heartrate", ylab="Number of male")

qqnorm(dat_male$Beats, main="Male heartrate Normal Q-Q Plot", xlab = "Theoretical heatrate data", ylab="sample hearrate male")

hist(dat_male$Temp, main = "Histogram of Male Temp data",col = "blue", xlab="respective Temp", ylab="Number of male")

qqnorm(dat_male$Temp, main="Male Temp Normal Q-Q Plot", xlab = "Theoretical Temp data", ylab="sample Temp male")

#Histogram and Normal probability plot of Male’s Heart-rate and Temperature data

hist(dat_female$Beats, main = "Histogram of Female heartrate data",col = "pink", xlab="respective heartrate", ylab="Number of Female")

qqnorm(dat_female$Beats, main="Female heartrate Normal Q-Q Plot", xlab = "Theoretical heatrate data", ylab="sample hearrate Female")

hist(dat_female$Temp, main = "Histogram of Female Temp data",col = "pink", xlab="respective Temp", ylab="Number of Female")

qqnorm(dat_female$Temp, main="Female Temp Normal Q-Q Plot", xlab = "Theoretical Temp data", ylab="sample Temp Female")

boxplot(dat_male$Beats, dat_female$Beats ,names = c("Male", "Female"), col= c("blue","pink"),main= c("Resting heart rate comparison") ,xlab = "Gender", ylab= "Resting Heart rate")

From above boxplot we can see that the males heartrate is comparitievly less spreaded from around 60-85 with the most of the values falls within 70-77 with midean around 72. On the other hand females heartrate is comparitievly more spreaded from around 50-98 with the most of the values falls within 69-80 with midean around 77.