# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(dplyr)
# For reporducible work
set.seed(2234)
# Create a data frame
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
# Rescale each column
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$b, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 1 0.161 0.741 0.222
## 2 0.953 0.188 0 0.474
## 3 0.199 0.380 0.285 0.499
## 4 0.764 0.737 0.988 0.522
## 5 0.759 0.364 0.537 0.243
## 6 0.780 1 0.922 0
## 7 0.408 0.425 0.500 0.618
## 8 0 0 0.724 0.227
## 9 0.661 0.537 0.800 0.378
## 10 0.0876 0.411 1 1
rescale <- function(x) {
# body
x <- (df$a - min(x, na.rm = TRUE)) /
(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
# return values
return(x)
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c)
df$d <- rescale(df$d)
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 1 1 1 1
## 2 0.953 0.953 0.953 0.953
## 3 0.199 0.199 0.199 0.199
## 4 0.764 0.764 0.764 0.764
## 5 0.759 0.759 0.759 0.759
## 6 0.780 0.780 0.780 0.780
## 7 0.408 0.408 0.408 0.408
## 8 0 0 0 0
## 9 0.661 0.661 0.661 0.661
## 10 0.0876 0.0876 0.0876 0.0876
detect_sign <- function(x) {
if(x > 0) {
message("Value is Positive")
print(x)
} else if(x == 0 ) {
warning("value is not positive, but it can be accepted")
print(x)
} else {
stop("Value is negative, the function must stop")
print(x)
}
}
3 %>% detect_sign()
## [1] 3
0 %>% detect_sign()
## [1] 0
# -1 %>% detect_sign()
?mean
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE)
## [1] 14.09091
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ...)
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6
two types of functions