Não fiz
data <- data.frame(
Quality = c("Good", "Very Good", "Excellent"),
`10_19` = c(53.8, 43.6, 2.6),
`20_29` = c(33.9, 54.2, 11.9),
`30_39` = c(2.6, 60.5, 36.8),
`40_49` = c(0.0, 21.4, 78.6)
)
mat <- as.matrix(data[, -1])
rownames(mat) <- data$Quality
colors <- c("lightblue", "lightgreen", "lightcoral")
par(mar = c(5, 4, 4, 8))
bp <- barplot(
mat,
beside = FALSE,
col = colors,
names.arg = c("$10–19", "$20–29", "$30–39", "$40–49"),
main = "Qualidade da refeição por faixa de preço",
xlab = "Faixa de preço", ylab = "Percentual",
legend.text = FALSE
)
legend(
x = max(bp) + 0.8,
y = 100,
legend = rownames(mat),
fill = colors,
bty = "n",
cex = 0.8,
xpd = TRUE
)
data("airquality")
may <- subset(airquality, Month == 5)
celcius_temp <- (may$Temp - 32) / 1.8
hist(celcius_temp, probability=TRUE, main="Histograma das temperaturas em Maio em Celcius",
xlab="Temperatura (Celcius)", ylab="Densidade", col="lightblue")
lines(density(celcius_temp, na.rm=TRUE), lwd=2)
sales <-
read.table("https://training-course-material.com/images/8/8f/Sales.txt",header=TRUE)
sales_sum <- aggregate(SALES ~ COUNTRY, data = sales, sum)
country <- sales_sum$COUNTRY
values <- sales_sum$SALES
p <- round(100 * values / sum(values), 1)
l <- paste(country, p, "%")
pie_colors <- rainbow(length(country))
pie(values, labels=l, main="Percentual de vendas por país", col=pie_colors)
legend("topright", legend=country, fill=pie_colors, cex=0.8)
data("InsectSprays")
boxplot(count ~ spray, data=InsectSprays, outline=FALSE,
col="yellow", main="Contagem de insetos por inseticida",
xlab="Inseticida", ylab="Contagem")
treat_file <- function(path) {
data <- read.csv(path, stringsAsFactors = FALSE)
data$currentTime <- as.POSIXct(data$currentTime, format="%Y-%m-%d %H:%M:%S", tz="UTC")
data <- data[order(data$currentTime), ]
data$hours_from_start <- as.numeric(difftime(data$currentTime, data$currentTime[1], units="hours"))
data$usedMemoryMB <- muda_to_mb(data$usedMemory)
data
}
muda_to_mb <- function(n) {
n <- str_trim(n)
num <- as.numeric(str_extract(n, "[0-9]+\\.?[0-9]*"))
v <- toupper(str_extract(n, "MB|GB|TB"))
ifelse(v == "MB", num,
ifelse(v == "GB", num * 1024,
ifelse(v == "TB", num * 1000000, NA)))
}
files <- c("monitoringCloudData_NONE.csv", "monitoringCloudData_0.1.csv",
"monitoringCloudData_0.5.csv", "monitoringCloudData_1.csv")
lista_arquivos <- lapply(files, treat_file)
titles <- c("Memory Analysis (None workload)", "Memory Analysis (Workload 0.1)",
"Memory Analysis (Workload 0.5)", "Memory Analysis (Workload 1.0)")
par(mfrow = c(2, 2), mar = c(4, 4, 3, 2))
for(i in seq_along(lista_arquivos)) {
d <- lista_arquivos[[i]]
plot(d$hours_from_start, d$usedMemoryMB, type="l",
main=titles[i],
xlab="Time hour", ylab="UsedMemory (MB)")
}
netflix_data <- read.csv("netflix_titles.csv", stringsAsFactors = FALSE)
top10 <- netflix_data %>%
filter(!is.na(country) & country != "" & !grepl(",", country)) %>%
count(country, name="total") %>%
arrange(desc(total)) %>%
head(10)
img <- plot_ly(top10, labels=~country, values=~total, type='pie', textinfo='label+percent')
img <- img %>% layout(title="Top 10 países cm mais conteúdos (apenas 1 país origem)")
img
table_with_headers <- top10 %>% rename(País = country, `Total de conteúdos` = total)
tabela <- plot_ly(
type = 'table',
header = list(
values = c("<b>País</b>", "<b>Total de conteúdos</b>"),
align = c('center', 'center'),
fill = list(color = c('grey','grey')),
font = list(color = 'white', size = 12)
),
cells = list(
values = rbind(table_with_headers$País, table_with_headers$`Total de conteúdos`),
align = c('center', 'center')
)
)
tabela
net_by_decade <- netflix_data %>%
filter(!is.na(release_year)) %>%
mutate(decade = floor(release_year/10)*10) %>%
group_by(decade, type) %>%
summarise(total = n(), .groups="drop")
dec_order <- sort(unique(net_by_decade$decade))
net_by_decade$decade <- factor(net_by_decade$decade, levels=dec_order)
pw <- net_by_decade %>% pivot_wider(names_from=type, values_from=total, values_fill=0)
image <- plot_ly(pw, x=~decade)
if("TV Show" %in% names(pw)) image <- image %>% add_lines(y=~`TV Show`, name="TV Series", line=list(color="blue"))
if("Movie" %in% names(pw)) image <- image %>% add_lines(y=~Movie, name="Movies", line=list(color="yellow"))
image <- image %>% layout(xaxis=list(title="Década"), yaxis=list(title="Quantidade"))
image
Não fiz