Measure portfolio risk using kurtosis. It describes the fatness of the tails in probability distributions. In other words, it measures whether a distribution has more or less returns in its tails than the normal distribution. It matters to investors because a distribution with excess kurtosis (kurtosis > 3) means our portfolio might be at risk of a rare but huge downside event. Kurtosis less than 3 means the portfolio is less risky because it has fewer returns in the tails.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
## [1] 0.25 0.25 0.20 0.20 0.10
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.239
## # A tibble: 37 × 3
## date returns sharpeRatio
## <date> <dbl> <dbl>
## 1 2014-12-31 -0.0131 0.230
## 2 2015-01-30 -0.00933 0.178
## 3 2015-02-27 0.0377 0.240
## 4 2015-03-31 -0.00527 0.210
## 5 2015-04-30 0.0202 0.214
## 6 2015-05-29 -0.00840 0.222
## 7 2015-06-30 -0.0177 0.238
## 8 2015-07-31 -0.0134 0.162
## 9 2015-08-31 -0.0551 0.0950
## 10 2015-09-30 -0.0253 -0.0279
## # ℹ 27 more rows