Week 6: Cost Curves

Cost Curves

Basic Cost Concepts

Basic Cost Concepts (cont.)

Economic Profits and Cost Minimization

\[ TC = wL + vK \] \[ \pi = Pq - wL - vK = P f(K,L) - wL - vK \]

Cost-Minimizing Input Choice

How does a firm produce a given output at the lowest possible cost?

Three equivalent conditions:

  1. \(RTS = w/v\)

  2. Isoquant tangent to the total cost line.

  3. \(\frac{MPL}{w} = \frac{MPK}{v}\)

Example: \(RTS = w/v\)

Then: \[ TC = 10(1) + 10(1) = 20 \] But \(RTS = 2 \neq w/v = 1\).
So the firm can replace 2 units of \(K\) with 1 of \(L\) to reduce cost.

\[ TC' = 11(1) + 8(1) = 19 \]

Thus, whenever \(RTS \neq w/v\), the firm can change the allocation of inputs in a way that achieves lower cost.

Thu \(RTS \neq w/v\), the firm can change the allocation of inputs in a way that achieves lower cost.

Cost Minimization (contd.)

Cost minimization occurs where the isoquant is tangent to an isocost line.

More on: \(\frac{MPL}{w} = \frac{MPK}{v}\)

\[ RTS_{L,K} = \frac{MPL}{MPK} = \frac{w}{v} \quad \Rightarrow \quad \frac{MPL}{w} = \frac{MPK}{v} \]

Short Run vs. Long Run

Total cost: Total Fixed Cost + Total Variable Cost

SR Total Cost Curves

SR Average and Marginal Cost Functions

\[ AFC(Q) = \frac{FC}{Q}, \quad AVC(Q) = \frac{VC(Q)}{Q}, \quad ATC(Q) = AFC(Q) + AVC(Q) \]

\[ AC = \frac{TC}{Q}, \qquad MC = \frac{dTC}{dQ} \]

\[ MC(Q) = \frac{dTC(Q)}{dQ} = \frac{dVC(Q)}{dQ} \]

SR Average and Marginal Costs (contd.)

SR Average and Marginal Costs (contd.)

Numerical Example

Q FC VC TC MC AFC AVC ATC
0 50 0 50
1 50 40 90 40 50 40 90
2 50 70 120 30 25 35 60
3 50 90 140 20 16.7 30 46.7
4 50 100 150 10 12.5 25 37.5
5 50 120 170 20 10 24 34

\[ VC(Q) = w \cdot L(Q) \] \[ MC(Q) = \frac{dVC}{dQ} = w \frac{dL}{dQ} = \frac{w}{MPL} \]

Short Run vs. Long Run: Input Inflexibility

Shifts in Cost Curves

Factors that shift cost curves:

  1. Changes in input prices (e.g. wages).
  1. Technological innovation → shifts curves downward.
  1. Economies of scope → multiproduct interactions.

A Numerical Example: Hamburger Heaven

\[ TC = 5K + 5L, \quad q = 40 \]

Output (q) Workers (L) Grills (K) Total Cost (TC)
40 1 16.0 £85.00
40 2 8.0 50.00
40 3 5.3 41.50
40 4 4.0 40.00
40 5 3.2 41.00
40 6 2.7 43.50
40 7 2.3 46.50
40 8 2.0 50.00
40 9 1.8 54.00
40 10 1.6 58.00

Short-Run Numerical Example

Suppose we now fix the number of grills to 4.

Output (q) L K STC SAC SMC
10 0.25 4 21.25 2.125
20 1.00 4 25.00 1.25 0.50
30 2.25 4 31.25 1.04 0.75
40 4.00 4 40.00 1.00 1.00
50 6.25 4 51.25 1.025 1.25
60 9.00 4 65.00 1.085 1.50
70 12.25 4 81.25 1.160 1.75
80 16.00 4 100.00 1.250 2.00
90 20.25 4 121.25 1.345 2.25
100 25.00 4 145.00 1.450 2.50

SRAC and SRMC curves (for 4 grills)

Short-Run Cost Components

\[ TC(Q) = FC + VC(Q) \]

Behavior of SR Curves:

Long-Run Costs

\[ LRTC(Q): \text{ minimum total cost when all inputs variable} \] \[ LRAC(Q) = \frac{LRTC(Q)}{Q}, \quad LRMC(Q) = \frac{dLRTC(Q)}{dQ} \]

The Firm’s Expansion Path

The expansion path shows cost-minimizing \((K,L)\) combinations for different output levels.

Cost Curves

Relationship between output and total cost depends on returns to scale:

  1. Constant returns: costs rise proportionally with output.
  2. Decreasing returns: costs rise faster.
  3. Increasing returns: costs rise slower.

Cost Minimization and Expansion Path

Minimize \(C = wL + rK\) subject to \(f(K,L)=Q\).
At optimum:

\[ MRTS_{LK} = \frac{MPL}{MPK} = \frac{w}{r} \]

Expansion path traces \((K^*, L^*)\) as \(Q\) increases → defines \(LRTC(Q)\).

Economies and Diseconomies of Scale

LRAC as Lower Envelope of SRATC

Conclusion