# Load packages
# Core
library(tidyverse)
library(tidyquant)
Functions
When should you write a function?
# Create Data Frame
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
# Rescale each column
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$b, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.363 0.300 0 0.185
## 2 0.730 1 0.512 0.295
## 3 0.563 0.566 0.0889 0.0950
## 4 0.0860 0.296 0.717 0.402
## 5 0 0.831 0.428 0.120
## 6 0.263 0 0.282 0.0645
## 7 0.288 0.0308 1 0.487
## 8 0.438 0.252 0.333 0.399
## 9 0.0952 0.699 0.724 1
## 10 1 0.768 0.516 0
rescale <- function(x) {
# body
x <- (x - min(x, na.rm = TRUE)) /
(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
# return values
return(x)
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c) #
df$d <- rescale(df$d)
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.363 0.300 0 0.185
## 2 0.730 1 0.512 0.295
## 3 0.563 0.566 0.0889 0.0950
## 4 0.0860 0.296 0.717 0.402
## 5 0 0.831 0.428 0.120
## 6 0.263 0 0.282 0.0645
## 7 0.288 0.0308 1 0.487
## 8 0.438 0.252 0.333 0.399
## 9 0.0952 0.699 0.724 1
## 10 1 0.768 0.516 0
Conditional execution
Functions are for Humans and Computers
Conditional Execution
detect_sign <- function(x) {
if(x > 0) {
message("Value is positive")
print(x)
} else if(x == 0) {
warning("Value is not positive, but it can be accepted")
print(x)
} else {
stop("Value is negative, the function must stop")
print(x)
}
}
3 %>% detect_sign()
## [1] 3
0 %>% detect_sign()
## [1] 0
# -1 %>% detect_sign()
Function arguments
?mean
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE)
## [1] 14.09091
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ...)
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6