Pemilihan alat analisis didasarkan pada: - Skala pengukuran data (numerik atau kategorik) - Jenis hubungan antar peubah
| Peubah 1 | Peubah 2 | Alat Analisis |
|---|---|---|
| Numerik | Numerik | Pearson, Spearman |
| Numerik | Kategorik | Korelasi Biserial |
| Kategorik | Numerik | Korelasi Biserial |
| Kategorik | Kategorik | Spearman (ordinal), Chi-Square, Tetrachoric |
Digunakan untuk data numerik dengan skala interval/rasio.
Rumus:
\[ r_{xy} = \frac{S_{xy}}{S_x \cdot S_y} \]
dengan:
\[ S_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1} \]
\[ S_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \]
\[ S_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \]
Statistik Uji:
\[ t = \frac{r \sqrt{n-2}}{\sqrt{1 - r^2}} \]
dengan derajat bebas (db = n - 2 )
Kriteria:
Tolak H0 jika:
\[ |t| > t_{\alpha/2, \, (n-2)} \]
Rumus:
\[ \rho = 1 - \frac{6 \sum D^2}{N(N^2 - 1)} \]
dengan:
- D = selisih peringkat antara dua peubah
- N = jumlah pasangan data
Hubungan antara Jam Belajar per Minggu dan Nilai Ujian Matematika
| Siswa | Jam Belajar (x) | Nilai Ujian (y) |
|---|---|---|
| 1 | 5 | 65 |
| 2 | 8 | 75 |
| 3 | 12 | 85 |
| 4 | 15 | 90 |
| 5 | 18 | 95 |
| 6 | 20 | 98 |
Langkah Perhitungan Manual:
Step 1: Hitung rata-rata x dan y
x̄ = (5 + 8 + 12 + 15 + 18 + 20)/6 = 78/6 = 13
ȳ = (65 + 75 + 85 + 90 + 95 + 98)/6 = 508/6 = 84.67
Step 2: Hitung deviasi dan produk deviasi
| Siswa | x | y | (x-x̄) | (y-ȳ) | (x-x̄)² | (y-ȳ)² | (x-x̄)(y-ȳ) |
|---|---|---|---|---|---|---|---|
| 1 | 5 | 65 | -8 | -19.67 | 64 | 386.78 | 157.36 |
| 2 | 8 | 75 | -5 | -9.67 | 25 | 93.44 | 48.35 |
| 3 | 12 | 85 | -1 | 0.33 | 1 | 0.11 | -0.33 |
| 4 | 15 | 90 | 2 | 5.33 | 4 | 28.44 | 10.66 |
| 5 | 18 | 95 | 5 | 10.33 | 25 | 106.78 | 51.65 |
| 6 | 20 | 98 | 7 | 13.33 | 49 | 177.78 | 93.31 |
| Total | 168 | 793.33 | 361.00 |
Step 3: Hitung kovarians dan standar deviasi
S_xy = Σ(x-x̄)(y-ȳ)/(n-1) = 361.00/5 = 72.20
S_x = √[Σ(x-x̄)²/(n-1)] = √(168/5) = √33.6 = 5.80
S_y = √[Σ(y-ȳ)²/(n-1)] = √(793.33/5) = √158.67 = 12.60
Step 4: Hitung koefisien korelasi Pearson
r = S_xy/(S_x × S_y) = 72.20/(5.80 × 12.60) = 72.20/73.08 = 0.988
Interpretasi: Korelasi sangat kuat positif (0.988) antara jam belajar dan nilai ujian.
Peringkat Kepopuleran Artis dan Jumlah Followers Media Sosial (dalam ribu)
| Artis | Peringkat Kepopuleran (x) | Jumlah Followers (y) |
|---|---|---|
| A | 1 | 150 |
| B | 2 | 180 |
| C | 3 | 120 |
| D | 4 | 200 |
| E | 5 | 170 |
| F | 6 | 220 |
Langkah Perhitungan Manual:
Step 1: Beri peringkat pada kedua variabel
| Artis | x (peringkat) | y (followers) | Rank_x | Rank_y | D = Rank_x - Rank_y | D² |
|---|---|---|---|---|---|---|
| A | 1 | 150 | 1 | 3 | -2 | 4 |
| B | 2 | 180 | 2 | 2 | 0 | 0 |
| C | 3 | 120 | 3 | 6 | -3 | 9 |
| D | 4 | 200 | 4 | 1 | 3 | 9 |
| E | 5 | 170 | 5 | 4 | 1 | 1 |
| F | 6 | 220 | 6 | 5 | 1 | 1 |
| Total | 24 |
Step 2: Hitung koefisien korelasi Spearman
ρ = 1 - [6 × ΣD²] / [n(n² - 1)]
ρ = 1 - [6 × 24] / [6(36 - 1)]
ρ = 1 - 144 / [6 × 35]
ρ = 1 - 144 / 210
ρ = 1 - 0.686
ρ = 0.314
Interpretasi: Korelasi lemah positif (0.314) antara peringkat kepopuleran dan jumlah followers.
# Data untuk Korelasi Pearson
jam_belajar <- c(5, 8, 12, 15, 18, 20)
nilai_ujian <- c(65, 75, 85, 90, 95, 98)
# Korelasi Pearson
pearson_result <- cor(jam_belajar, nilai_ujian, method = "pearson")
cat("Korelasi Pearson:", pearson_result, "\n")## Korelasi Pearson: 0.988837
# Test signifikansi Pearson
pearson_test <- cor.test(jam_belajar, nilai_ujian, method = "pearson")
print(pearson_test)##
## Pearson's product-moment correlation
##
## data: jam_belajar and nilai_ujian
## t = 13.273, df = 4, p-value = 0.0001862
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8976069 0.9988330
## sample estimates:
## cor
## 0.988837
# Data untuk Korelasi Spearman
peringkat_artis <- c(1, 2, 3, 4, 5, 6)
followers <- c(150, 180, 120, 200, 170, 220)
# Korelasi Spearman
spearman_result <- cor(peringkat_artis, followers, method = "spearman")
cat("Korelasi Spearman:", spearman_result, "\n")## Korelasi Spearman: 0.6
# Test signifikansi Spearman
spearman_test <- cor.test(peringkat_artis, followers, method = "spearman")
print(spearman_test)##
## Spearman's rank correlation rho
##
## data: peringkat_artis and followers
## S = 14, p-value = 0.2417
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.6
# Visualisasi Scatter Plot
par(mfrow = c(1, 2))
# Plot untuk Pearson
plot(jam_belajar, nilai_ujian, main = "Korelasi Pearson\nJam Belajar vs Nilai Ujian",
xlab = "Jam Belajar", ylab = "Nilai Ujian", pch = 19, col = "blue")
abline(lm(nilai_ujian ~ jam_belajar), col = "red")
# Plot untuk Spearman
plot(peringkat_artis, followers, main = "Korelasi Spearman\nPeringkat vs Followers",
xlab = "Peringkat Kepopuleran", ylab = "Followers (ribu)", pch = 19, col = "green")
abline(lm(followers ~ peringkat_artis), col = "red")Korelasi Pearson menunjukkan hubungan yang sangat kuat antara jam belajar dan nilai ujian
Korelasi Spearman menunjukkan hubungan yang lemah antara peringkat kepopuleran dan jumlah followers