library(tidyverse)
library(tidyr)
#setwd("C:/Users/leahm/OneDrive/Desktop/Data 110")
setwd("C:/Users/rsaidi/Dropbox/Rachel/MontColl/Datasets/Datasets")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)Healthy Cities GIS Assignment
Load the libraries and set the working directory
The GeoLocation variable has (lat, long) format
Split GeoLocation (lat, long) into two columns: lat and long
latlong <- cities500|>
mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
Filter the dataset
Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.
latlong_clean <- latlong |>
filter(StateDesc != "United States") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017) |>
filter(StateAbbr == "CT") |>
filter(Category == "Unhealthy Behaviors")
head(latlong_clean)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CT Connecticut Bridgeport Census Tract BRFSS Unhealthy B…
2 2017 CT Connecticut Danbury City BRFSS Unhealthy B…
3 2017 CT Connecticut Norwalk Census Tract BRFSS Unhealthy B…
4 2017 CT Connecticut Bridgeport Census Tract BRFSS Unhealthy B…
5 2017 CT Connecticut Hartford Census Tract BRFSS Unhealthy B…
6 2017 CT Connecticut Waterbury Census Tract BRFSS Unhealthy B…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
What variables are included? (can any of them be removed?)
names(latlong_clean) [1] "Year" "StateAbbr"
[3] "StateDesc" "CityName"
[5] "GeographicLevel" "DataSource"
[7] "Category" "UniqueID"
[9] "Measure" "Data_Value_Unit"
[11] "DataValueTypeID" "Data_Value_Type"
[13] "Data_Value" "Low_Confidence_Limit"
[15] "High_Confidence_Limit" "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote" "PopulationCount"
[19] "lat" "long"
[21] "CategoryID" "MeasureId"
[23] "CityFIPS" "TractFIPS"
[25] "Short_Question_Text"
Remove the variables that will not be used in the assignment
latlong_clean2 <- latlong_clean |>
select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CT Connecticut Bridgep… Census Tract Unhealt… 0908000… Obesit…
2 2017 CT Connecticut Danbury City Unhealt… 918430 Obesit…
3 2017 CT Connecticut Norwalk Census Tract Unhealt… 0955990… Obesit…
4 2017 CT Connecticut Bridgep… Census Tract Unhealt… 0908000… Curren…
5 2017 CT Connecticut Hartford Census Tract Unhealt… 0937000… Obesit…
6 2017 CT Connecticut Waterbu… Census Tract Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
The new dataset “latlong_clean2” is a manageable dataset now.
For your assignment, work with a cleaned dataset where you perform your own cleaning and filtering.
1. Once you run the above code and filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations through some inclusion/exclusion criteria.
Filter chunk here (you may need multiple chunks)
# Check what values are available before filtering
unique(latlong_clean2$Category)[1] "Unhealthy Behaviors"
unique(latlong_clean2$Measure)[1] "Obesity among adults aged >=18 Years"
[2] "Current smoking among adults aged >=18 Years"
[3] "Binge drinking among adults aged >=18 Years"
[4] "No leisure-time physical activity among adults aged >=18 Years"
unique(latlong_clean2$StateAbbr)[1] "CT"
my_subset <- latlong_clean2 |>
filter(StateAbbr == "CT",
Category == "Unhealthy Behaviors")
nrow(my_subset)[1] 912
head(my_subset)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CT Connecticut Bridgep… Census Tract Unhealt… 0908000… Obesit…
2 2017 CT Connecticut Danbury City Unhealt… 918430 Obesit…
3 2017 CT Connecticut Norwalk Census Tract Unhealt… 0955990… Obesit…
4 2017 CT Connecticut Bridgep… Census Tract Unhealt… 0908000… Curren…
5 2017 CT Connecticut Hartford Census Tract Unhealt… 0937000… Obesit…
6 2017 CT Connecticut Waterbu… Census Tract Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
unique(my_subset$Measure)[1] "Obesity among adults aged >=18 Years"
[2] "Current smoking among adults aged >=18 Years"
[3] "Binge drinking among adults aged >=18 Years"
[4] "No leisure-time physical activity among adults aged >=18 Years"
2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.
First plot chunk here
# non map plot
my_subset |>
group_by(CityName) |>
summarise(mean_value = mean(Data_Value, na.rm = TRUE)) |>
ggplot(aes(x = reorder(CityName, -mean_value), y = mean_value, fill = CityName)) +
geom_col(show.legend = FALSE) +
coord_flip() +
labs(
title = "Average Rate of Unhealthy Behaviors Across Connecticut Cities (2017)",
x = "City",
y = "Percentage of Adults With this Behavior (%)"
) +
theme_minimal()3. Now create a map of your subsetted dataset.
First map chunk here
# leaflet()
#| message: false
#| warning: false
library(leaflet)Warning: package 'leaflet' was built under R version 4.5.1
# Create a leaflet map
leaflet(data = my_subset) |>
addTiles() |>
addCircleMarkers(
~long, ~lat,
radius = ~Data_Value / 2,
color = "red",
stroke = FALSE,
fillOpacity = 0.6,
popup = ~paste0(
"", CityName, "",
"Average Rate: ", round(Data_Value, 1), "%"
)
) |>
setView(lng = -72.7, lat = 41.6, zoom = 8) 4. Refine your map to include a mouse-click tooltip
Refined map chunk here
library(leaflet)
# Refined leaflet map with tooltip
leaflet(data = my_subset) |>
addTiles() |>
addCircleMarkers(
~long, ~lat,
radius = ~Data_Value / 2,
color = "red",
stroke = FALSE,
fillOpacity = 0.6,
popup = ~paste0(
"", CityName, "",
"Average Rate: ", round(Data_Value, 1), "%"
),
label = ~paste0(CityName, ": ", round(Data_Value, 1), "%"),
labelOptions = labelOptions(
direction = "auto",
textsize = "14px",
opacity = 0.8,
offset = c(0, -5)
)
) |>
setView(lng = -72.7, lat = 41.6, zoom = 8) 5. Write a paragraph
In a paragraph, describe the plots you created and the insights they show.
The two plots provide complementary ways of examining unhealthy behaviors in Connecticut cities. The bar chart makes it easy to see which cities have higher or lower rates of the selected behavior, allowing for straightforward comparisons across the state. For example, it highlights which cities have the highest prevalence and which have lower rates, giving a sense of the overall distribution. The map adds a geographic perspective, showing each city in its actual location and using the size of the circle markers to reflect the prevalence. Hovering over a city displays a tooltip with the exact percentage, and clicking on a marker provides more detailed information. Together, these visualizations not only show the differences in behavior rates between cities but also reveal the geographic patterns, helping to understand where certain unhealthy behaviors are more common and potentially guiding public health efforts.
refrence : textbook and https://rstudio.github.io/leaflet/articles/markers.html