Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
symbols <- c("NVDA", "AAPL", "AMD", "GOOG", "INTC")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMD 0.25
## 3 GOOG 0.2
## 4 INTC 0.2
## 5 NVDA 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
head(portfolio_returns_tbl)
## # A tibble: 6 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.00164
## 2 2013-02-28 -0.00108
## 3 2013-03-28 0.0152
## 4 2013-04-30 0.0583
## 5 2013-05-31 0.114
## 6 2013-06-28 -0.0279
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns, performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.337
window <- 24
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
scale_y_continuous(breaks = seq(from = 0, to = 5, by = 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, " Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 3,
size = 5, color = "red",
label = "Downside risk skyrocketed toward the end of 2017")