Healthy Cities GIS Assignment

Author

Alex Lopez

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
setwd("/Applications/DATA110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017) |>
  filter(StateAbbr == "CT") |>
  filter(Category == "Unhealthy Behaviors")
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc   CityName   GeographicLevel DataSource Category    
  <dbl> <chr>     <chr>       <chr>      <chr>           <chr>      <chr>       
1  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
2  2017 CT        Connecticut Danbury    City            BRFSS      Unhealthy B…
3  2017 CT        Connecticut Norwalk    Census Tract    BRFSS      Unhealthy B…
4  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
5  2017 CT        Connecticut Hartford   Census Tract    BRFSS      Unhealthy B…
6  2017 CT        Connecticut Waterbury  Census Tract    BRFSS      Unhealthy B…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “latlong_clean2” is a manageable dataset now.

For your assignment, work with a cleaned dataset where you perform your own cleaning and filtering.

1. Once you run the above code and filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations through some inclusion/exclusion criteria.

Filter chunk here (you may need multiple chunks)

latlong_clean3 <- latlong_clean2 |>
  filter(GeographicLevel == "Census Tract") 

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

plot1 <- ggplot(latlong_clean3, aes(x = Data_Value, y = PopulationCount, color = Short_Question_Text)) +
geom_point(alpha = 0.70) +
labs(x = "Prevalance (%)", y = "Population Count", title = "Unhealthy Behavior Prevalence in Connecticut (2017)", caption = "Source: CDC.gov") +
facet_wrap(~Short_Question_Text) +
theme_bw(base_family = "Times") +
  scale_color_manual(name = "Health Issue", values = c("#4d7f7f","#da98a0","#704f53", "#f0c29c"))
plot1

3. Now create a map of your subsetted dataset.

First map chunk here

leaflet(latlong_clean3) |>
  setView(lng = -73.1, lat = 41.4, zoom = 8.5) |>
addTiles() |>
addCircles(
  data = latlong_clean3,
  radius = latlong_clean3$PopulationCount/4,
  color = c("#4d7f7f","#da98a0","#704f53", "#f0c29c")
  )
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

popup <- paste0(
"<b>City Name: </b>", latlong_clean3$CityName, "<br>",
"<b>Unhealthy Behavior: </b>", latlong_clean3$Short_Question_Text, "<br>",
"<b>Prevalence (%): </b>", latlong_clean3$Data_Value, "<br>",
"<strong>Population: </strong>", latlong_clean3$PopulationCount, "<br>"
)

colors <- colorFactor(palette = c("#4d7f7f","#da98a0","#704f53", "#f0c29c"),
  levels = c("Binge Drinking", "Current Smoking", "Obesity", "Physical Inactivity"))
leaflet(latlong_clean3) |>
  setView(lng = -73.1, lat = 41.4, zoom = 8.5) |>
addTiles() |>
addCircles(
  data = latlong_clean3,
  radius = (latlong_clean3$Data_Value)*15,
  weight = 2,
  fillColor = ~colors(Short_Question_Text),
  fillOpacity = 0.9,
  color = "#5f3e20",
  popup = popup
  )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

For my map, I used the Short_Question_Text to categorize the four unhealthy behaviors into specific colors in my graph and map that correspond to a specific color. In the map I gave them a radius of the data_value (%) * 15 to symbolize the prevalence of the unhealthy behavior, but I found that many long/lats were the same which ended up to leaving the circles looking like an archery target. I would argue that this is a good visualization and helps with the pop up tool tip since you can click on a circle inside of a circle that shows a different behavior in color and text. For these inner/outer circles, the population may be the same, it’s just the radius depending on the % that changes.