Healthy Cities GIS Assignment

Author

Crewe Mellott

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
library(knitr)
library(webshot2)
setwd("C:/Users/pickl/OneDrive")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017) |>
  filter(StateAbbr == "CT") |>
  filter(Category == "Unhealthy Behaviors")
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc   CityName   GeographicLevel DataSource Category    
  <dbl> <chr>     <chr>       <chr>      <chr>           <chr>      <chr>       
1  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
2  2017 CT        Connecticut Danbury    City            BRFSS      Unhealthy B…
3  2017 CT        Connecticut Norwalk    Census Tract    BRFSS      Unhealthy B…
4  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
5  2017 CT        Connecticut Hartford   Census Tract    BRFSS      Unhealthy B…
6  2017 CT        Connecticut Waterbury  Census Tract    BRFSS      Unhealthy B…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “latlong_clean2” is a manageable dataset now.

For your assignment, work with a cleaned dataset where you perform your own cleaning and filtering.

1. Once you run the above code and filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations through some inclusion/exclusion criteria.

Filter chunk here (you may need multiple chunks)

lat_long_clean <- latlong |>
  filter(Data_Value_Type == "Crude prevalence")|>
  filter(Year == 2017)|>
  filter(StateAbbr == "TN")|>
  filter(CityName == "Nashville")|>
  filter(Category == "Unhealthy Behaviors")
head(lat_long_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc CityName  GeographicLevel DataSource Category       
  <dbl> <chr>     <chr>     <chr>     <chr>           <chr>      <chr>          
1  2017 TN        Tennessee Nashville Census Tract    BRFSS      Unhealthy Beha…
2  2017 TN        Tennessee Nashville Census Tract    BRFSS      Unhealthy Beha…
3  2017 TN        Tennessee Nashville Census Tract    BRFSS      Unhealthy Beha…
4  2017 TN        Tennessee Nashville Census Tract    BRFSS      Unhealthy Beha…
5  2017 TN        Tennessee Nashville Census Tract    BRFSS      Unhealthy Beha…
6  2017 TN        Tennessee Nashville Census Tract    BRFSS      Unhealthy Beha…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
names(lat_long_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       
lat_long_clean_2 <- lat_long_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(lat_long_clean_2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc CityName  GeographicLevel Category  UniqueID Measure
  <dbl> <chr>     <chr>     <chr>     <chr>           <chr>     <chr>    <chr>  
1  2017 TN        Tennessee Nashville Census Tract    Unhealth… 4752006… Binge …
2  2017 TN        Tennessee Nashville Census Tract    Unhealth… 4752006… No lei…
3  2017 TN        Tennessee Nashville Census Tract    Unhealth… 4752006… Obesit…
4  2017 TN        Tennessee Nashville Census Tract    Unhealth… 4752006… Curren…
5  2017 TN        Tennessee Nashville Census Tract    Unhealth… 4752006… No lei…
6  2017 TN        Tennessee Nashville Census Tract    Unhealth… 4752006… Binge …
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

ggplot(lat_long_clean_2, aes(x = Data_Value, y = reorder(Measure, Data_Value))) +
  geom_point(size = 1, color = "red") +
  labs(
    title = "Crude Prevalence of Unhealthy Behaviors by Measure in Nashville, TN (2017)",
    x = "Crude Prevalence (%)",
    y = "Health Measure",
    color = "Measure Type",
    caption = "Source: 500 Cities Local Health Indicators (CDC)"
  ) +
  theme_bw() 
Ignoring unknown labels:
• colour : "Measure Type"

3. Now create a map of your subsetted dataset.

First map chunk here

# leaflet()
leaflet(lat_long_clean_2) |>
  setView(lng = -86.78, lat = 36.16, zoom = 10) |> 
  addProviderTiles("CartoDB.Positron") |>
  addCircles(
    radius = ~Data_Value * 50, 
    color = "darkred" ,
    fillColor = "red",
    fillOpacity = 0.005,
    stroke = TRUE
  )
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

popup_health <- paste0(
  "<b>Measure: </b>", lat_long_clean_2$Measure, "<br>",
  "<b>Prevalence: </b>", lat_long_clean_2$Data_Value, "%"
)


leaflet(lat_long_clean_2) |>
  setView(lng = -86.78, lat = 36.16, zoom = 10) |> 
  addProviderTiles("Esri.WorldStreetMap") |>
  addCircles(
    lng = ~long,
    lat = ~lat,
    radius = ~Data_Value * 50, 
    color = "darkblue",
    fillColor = "blue", 
    fillOpacity = 0.05,
    stroke = FALSE,
    popup = popup_health 
  )

5. Write a paragraph

For my tutorial, I decided to look at the crude prevalence of unhealthy behaviors in Nashville, TN in 2017. For the filtering I just got data for the year (2017), State (Tennessee), City (Nashville), Category (Unhealthy behavior), and data type (Crude Prevalance). For graph 2, some insights I can take away is that obesity and not getting enough exercise are the 2 bigger variables in comparison to smoking and binge drinking. I can also see that obesity and not getting enough exercise is pretty similar leading me to think there is a correlation and possibly even causation since the 2 go hand and hand basically. For the other 2 graphs, the only major insight I can see is that in the inner city, the unhealthy behaviors are more common and as you start going to the outskirts, it slowly stops becoming as prevelant.