Healthy Cities GIS Assignment

Author

Sajutee Mukrabine

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
setwd("C:/Users/sajut/OneDrive/Desktop/DATA_110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)
library(leaflet)
Warning: package 'leaflet' was built under R version 4.5.2
library(dplyr)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017) |>
  filter(StateAbbr == "CT") |>
  filter(Category == "Unhealthy Behaviors")
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc   CityName   GeographicLevel DataSource Category    
  <dbl> <chr>     <chr>       <chr>      <chr>           <chr>      <chr>       
1  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
2  2017 CT        Connecticut Danbury    City            BRFSS      Unhealthy B…
3  2017 CT        Connecticut Norwalk    Census Tract    BRFSS      Unhealthy B…
4  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
5  2017 CT        Connecticut Hartford   Census Tract    BRFSS      Unhealthy B…
6  2017 CT        Connecticut Waterbury  Census Tract    BRFSS      Unhealthy B…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “latlong_clean2” is a manageable dataset now.

For your assignment, work with a cleaned dataset where you perform your own cleaning and filtering.

1. Once you run the above code and filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations through some inclusion/exclusion criteria.

Filter chunk here (you may need multiple chunks)

latlong_clean2$Year <- as.numeric(latlong_clean2$Year)
subset_data <- latlong_clean2 |>
  filter(Year >= 2016 & Year <= 2019) |>
  filter(Category == "Unhealthy Behaviors") |>
  filter(!is.na(lat) & !is.na(long)) |>
  slice_head(n = 900) |>    
  mutate(label = paste(CityName, Measure, sep = " - "))

head(subset_data)
# A tibble: 6 × 19
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 11 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>,
#   Short_Question_Text <chr>, label <chr>

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

# non map plot

ggplot(subset_data, aes(x = CityName, y = Data_Value, color = Category)) +
  geom_point(alpha = 0.6, size = 3) +
  geom_jitter(width = 0.4, alpha = 0.8) +
  facet_wrap(~Category) +
  scale_color_viridis_d() +
  theme(axis.text.x = element_text(angle = 90))

  labs(
    title = "Health Indicators by Category and City (2016–2018)",
    x = "City",
    y = "Crude Prevalence (%)",
    caption = "Source: CDC 500 Cities Local Health Indicators"
  ) +
  theme_bw()
NULL

3. Now create a map of your subsetted dataset.

First map chunk here

# leaflet()
subset_data_clean <- subset_data |>   
  filter(!is.na(lat) & !is.na(long))

mypal <- colorNumeric(      #Set the palette       
  palette = "YlOrRd",
  domain = subset_data_clean$Data_Value
)

leaflet(subset_data_clean) |>
  addProviderTiles("CartoDB.Positron") |>
  addCircleMarkers(           #Help from https://www.youtube.com/watch?v=8MQ3DgFp6q4&t=120s
    lng = ~ long, 
    lat = ~ lat,
    radius = 5,
    color = ~ mypal(Data_Value),
    fillOpacity = 0.7,
    weight = 1
  )  |>
  addLegend(
    pal = mypal,
    values = subset_data_clean$Data_Value,
    position = "bottomright",
    title = "Crude Prevalence (%)"
  )

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

subset_data_clean <- subset_data |> 
  filter(!is.na(lat) & !is.na(long))

healthy_city_map <- subset_data_clean |>
  leaflet() |>
  addTiles() |>
  addMarkers(
    lng = ~long,
    lat = ~lat ,
    popup = ~paste(      #Help from https://stackoverflow.com/questions/41940403/popup-on-a-shape-using-tmap
      "City: ", CityName,
      "\nState: ", StateAbbr,
      "\nCrude Prevalence: ", Data_Value, "%"
    ),
    label = ~CityName,
    clusterOptions = markerClusterOptions()
  )

healthy_city_map

5. Write a paragraph

In a paragraph, describe the plots you created and the insights they show.

Paragraph: Description and Insights

The first plot shows the crude prevalence of unhealthy behaviors in selected Connecticut cities from 2016 to 2018. Each point represents a health indicator, colored by category, making it easy to compare behaviors across cities. The jittered points show that some cities, like Hartford and New Haven, have higher rates of unhealthy behaviors than others. The second plot is an interactive Leaflet map showing each city as a circle. Darker colors indicate higher prevalence rates, and the legend explains them. When it gives, it clicks on a city, and a pop-up shows its name, state, and data value. Together, these plots clearly show how health indicators vary by location and help identify cities with greater health concerns.