# =========================================================
# EGARCH(1,1) + Mean–VaR Optimization with DEoptim
# Extended: Simulasi Max Risk
# =========================================================
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(stringr)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(tseries)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
library(lmtest)
library(PortfolioAnalytics)
## Loading required package: foreach
## Registered S3 method overwritten by 'PortfolioAnalytics':
## method from
## print.constraint ROI
library(DEoptim)
## Loading required package: parallel
##
## DEoptim package
## Differential Evolution algorithm in R
## Authors: D. Ardia, K. Mullen, B. Peterson and J. Ulrich
library(reshape2)
library(ggplot2)
library(quadprog)
library(quantmod)
## Loading required package: TTR
library(rugarch) # Untuk EGARCH
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(tidyr)
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
##
## smiths
library(tibble)
# 1. Data
# Import BI Rate data
birate <- read_excel("Database/bi_rate.xlsx")
colnames(birate) <- c("date","bi_rate")
head(birate); tail(birate)
## # A tibble: 6 × 2
## date bi_rate
## <chr> <chr>
## 1 18 Desember 2024 6.00
## 2 20 November 2024 6.00
## 3 16 Oktober 2024 6.00
## 4 18 September 2024 6.00
## 5 21 Agustus 2024 6.25
## 6 17 Juli 2024 6.25
## # A tibble: 6 × 2
## date bi_rate
## <chr> <chr>
## 1 22 September 2016 5.00
## 2 19 Agustus 2016 5.25
## 3 21 Juli 2016 5.25
## 4 16 Juni 2016 5.25
## 5 19 Mei 2016 5.50
## 6 21 April 2016 5.50
Sys.setlocale("LC_TIME", "id_ID.UTF-8")
## [1] "id_ID.UTF-8"
birate <- birate %>%
mutate(date = dmy(date))
birate$bi_rate <- as.numeric(birate$bi_rate)
birate <- birate[order(birate$date), ]
head(birate)
## # A tibble: 6 × 2
## date bi_rate
## <date> <dbl>
## 1 2016-04-21 5.5
## 2 2016-05-19 5.5
## 3 2016-06-16 5.25
## 4 2016-07-21 5.25
## 5 2016-08-19 5.25
## 6 2016-09-22 5
# Import 10-year bond data
bond10 <- read.csv("Database/bond10 new.csv")
bond10 <- bond10[, c("Date", "Price")]
colnames(bond10) <- c("date", "bond10")
library(lubridate)
bond10$date <- ymd(as.Date(bond10$date))
str(bond10)
## 'data.frame': 234 obs. of 2 variables:
## $ date : Date, format: "2025-04-30" "2025-03-27" ...
## $ bond10: num 99.1 97.4 98.7 98.4 97.3 ...
# Filter data antara 2014-01-01 dan 2024-12-31
bond10 <- bond10 %>%
filter(date >= as.Date("2014-01-01") & date <= as.Date("2024-12-31"))
bond10 <- bond10[order(bond10$date), ]
head(bond10)
## date bond10
## 132 2014-01-30 96.883
## 131 2014-02-28 99.809
## 130 2014-03-28 102.600
## 129 2014-04-30 102.700
## 128 2014-05-30 102.150
## 127 2014-06-30 100.800
# Import Bitcoin data
btc_usd <- read.csv("Database/btc_usd.csv",sep=",")
btc_usd <- btc_usd[, c("Tanggal", "Terakhir")]
colnames(btc_usd) <- c("date", "btc")
btc_usd <- btc_usd %>%
mutate(date = dmy(date))
btc_usd <- btc_usd[order(btc_usd$date), ]
btc_usd <- btc_usd %>%
mutate(btc = as.numeric(gsub(",", "", btc)))
head(btc_usd)
## date btc
## 4015 2014-01-01 7403
## 4014 2014-01-02 7750
## 4013 2014-01-03 8121
## 4012 2014-01-04 8018
## 4011 2014-01-05 9040
## 4010 2014-01-06 9345
# Import CPI data
cpi <- read_excel("Database/inflation.xlsx")
colnames(cpi) <- c("date", "cpi")
bulan_id <- c("Januari","Februari","Maret","April","Mei","Juni",
"Juli","Agustus","September","Oktober","November","Desember")
bulan_en <- c("January","February","March","April","May","June",
"July","August","September","October","November","December")
# Ubah nama bulan ke bahasa Inggris, lalu parse jadi date
cpi <- cpi %>%
mutate(date = str_replace_all(date, setNames(bulan_en, bulan_id)),
date = parse_date_time(date, orders = "my"),
date = as.Date(date))
cpi <- cpi[order(cpi$date), ]
cpi$cpi <- as.numeric(cpi$cpi)
head(cpi)
## # A tibble: 6 × 2
## date cpi
## <date> <dbl>
## 1 2014-01-01 8.22
## 2 2014-02-01 7.75
## 3 2014-03-01 7.32
## 4 2014-04-01 7.25
## 5 2014-05-01 7.32
## 6 2014-06-01 6.7
# Import JKSE data
jkse <- read.csv("Database/jkse.csv")
jkse <- jkse[, c("Tanggal", "Terakhir")]
colnames(jkse) <- c("date", "jkse")
jkse <- jkse %>%
mutate(date = dmy(date))
jkse <- jkse[order(jkse$date), ]
jkse <- jkse %>%
mutate(
jkse = str_replace_all(jkse, "\\.", ""), # hapus titik (pemisah ribuan)
jkse = str_replace_all(jkse, ",", "."), # ubah koma jadi titik (desimal)
jkse = as.numeric(jkse) # ubah jadi numeric
)
head(jkse)
## date jkse
## 2681 2014-01-01 4274.18
## 2680 2014-01-02 4327.27
## 2679 2014-01-03 4257.66
## 2678 2014-01-06 4202.81
## 2677 2014-01-07 4175.81
## 2676 2014-01-08 4200.59
# Import IDR exchange rate data
kurs_idr <- read.csv("Database/idr_kurs.csv")
kurs_idr <- kurs_idr[, c("Tanggal", "Terakhir")]
colnames(kurs_idr) <- c("date", "kurs_idr")
kurs_idr <- kurs_idr %>%
mutate(date = dmy(date))
kurs_idr <- kurs_idr[order(kurs_idr$date), ]
kurs_idr <- kurs_idr %>%
mutate(
kurs_idr = str_replace_all(kurs_idr, "\\.", ""), # hapus titik (pemisah ribuan)
kurs_idr = str_replace_all(kurs_idr, ",", "."), # ubah koma jadi titik (desimal)
kurs_idr = as.numeric(kurs_idr) # ubah jadi numeric
)
head(kurs_idr)
## date kurs_idr
## 2815 2014-01-01 12170.0
## 2814 2014-01-02 12160.0
## 2813 2014-01-03 12170.0
## 2812 2014-01-06 12180.0
## 2811 2014-01-07 12237.5
## 2810 2014-01-08 12235.0
# Gold data
gold <- read.csv("Database/gold.csv")
gold <- gold[, c("Tanggal", "Terakhir")]
colnames(gold) <- c("date", "gold")
gold <- gold %>%
mutate(date = dmy(date))
gold <- gold[order(gold$date), ]
gold <- gold %>%
mutate(
gold = str_replace_all(gold, "\\.", ""), # hapus titik (pemisah ribuan)
gold = str_replace_all(gold, ",", "."), # ubah koma jadi titik (desimal)
gold = as.numeric(gold) # ubah jadi numeric
)
head(gold)
## date gold
## 2816 2014-01-02 1225.2
## 2815 2014-01-03 1238.6
## 2814 2014-01-06 1238.0
## 2813 2014-01-07 1229.6
## 2812 2014-01-08 1225.5
## 2811 2014-01-09 1229.4
## Monthly Data Aggregation and Preprocessing
birate_monthly <- birate %>%
mutate(year_month = floor_date(date, "month")) %>%
group_by(year_month) %>%
summarise(bi_rate = mean(bi_rate, na.rm = TRUE)) %>%
rename(date = year_month)
bond10_monthly <- bond10 %>%
mutate(date = floor_date(date, "month"))
btc_monthly <- btc_usd %>%
mutate(year_month = floor_date(date, "month")) %>%
group_by(year_month) %>%
summarise(btc = mean(btc, na.rm = TRUE)) %>%
rename(date = year_month)
jkse_monthly <- jkse %>%
mutate(year_month = floor_date(date, "month")) %>%
group_by(year_month) %>%
summarise(jkse = mean(jkse, na.rm = TRUE)) %>%
rename(date = year_month)
kurs_idr_monthly <- kurs_idr %>%
mutate(year_month = floor_date(date, "month")) %>%
group_by(year_month) %>%
summarise(kurs_idr = mean(kurs_idr, na.rm = TRUE)) %>%
rename(date = year_month)
gold_monthly <- gold %>%
mutate(year_month = floor_date(date, "month")) %>%
group_by(year_month) %>%
summarise(gold = mean(gold, na.rm = TRUE)) %>%
rename(date = year_month)
cpi_monthly <- cpi %>%
mutate(year_month = floor_date(date, "month")) %>%
group_by(year_month) %>%
summarise(cpi = mean(cpi, na.rm = TRUE)) %>%
rename(date = year_month)
# Merge all datasets
merged_data <- birate_monthly %>%
full_join(bond10_monthly, by = "date") %>%
full_join(btc_monthly, by = "date") %>%
full_join(cpi_monthly, by = "date") %>%
full_join(jkse_monthly, by = "date") %>%
full_join(kurs_idr_monthly, by = "date") %>%
full_join(gold_monthly, by = "date")
# Sort by date
merged_data <- merged_data %>% arrange(date)
# Check the result
head(merged_data)
## # A tibble: 6 × 8
## date bi_rate bond10 btc cpi jkse kurs_idr gold
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2014-01-01 NA 96.9 8194. 8.22 4350. 12158. 1244.
## 2 2014-02-01 NA 99.8 6605. 7.75 4515. 11918. 1301.
## 3 2014-03-01 NA 103. 5929. 7.32 4720. 11416. 1337.
## 4 2014-04-01 NA 103. 4620. 7.25 4871. 11431. 1299.
## 5 2014-05-01 NA 102. 4829. 7.32 4925. 11536. 1288.
## 6 2014-06-01 NA 101. 6179. 6.7 4898. 11892. 1283.
tail(merged_data)
## # A tibble: 6 × 8
## date bi_rate bond10 btc cpi jkse kurs_idr gold
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2024-07-01 6.25 97.9 62.9 2.13 7258. 16238. 2398.
## 2 2024-08-01 6.25 100. 60.0 2.12 7417. 15735. 2474.
## 3 2024-09-01 6 101. 60.5 1.84 7740. 15318. 2579.
## 4 2024-10-01 6 98.6 65.7 1.71 7621. 15558. 2695.
## 5 2024-11-01 6 98.1 86.5 1.55 7269. 15813. 2656.
## 6 2024-12-01 6 97.3 98.3 1.57 7216. 16036. 2650.
# Check for missing values
colSums(is.na(merged_data))
## date bi_rate bond10 btc cpi jkse kurs_idr gold
## 0 27 0 0 0 0 0 0
# Data with non NA values
non_na_data <- merged_data %>%
filter(complete.cases(.))
# Check the non NA data
head(non_na_data)
## # A tibble: 6 × 8
## date bi_rate bond10 btc cpi jkse kurs_idr gold
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-04-01 5.5 105. 4352. 3.6 4853. 13172. 1244.
## 2 2016-05-01 5.5 104. 4617. 3.33 4770. 13417. 1261.
## 3 2016-06-01 5.25 106. 6445. 3.45 4871. 13338. 1279.
## 4 2016-07-01 5.25 110. 6616. 3.21 5166. 13114. 1339.
## 5 2016-08-01 5.25 109. 5858. 2.79 5401. 13160. 1344.
## 6 2016-09-01 5 110. 6083. 3.07 5337. 13110. 1330.
tail(non_na_data)
## # A tibble: 6 × 8
## date bi_rate bond10 btc cpi jkse kurs_idr gold
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2024-07-01 6.25 97.9 62.9 2.13 7258. 16238. 2398.
## 2 2024-08-01 6.25 100. 60.0 2.12 7417. 15735. 2474.
## 3 2024-09-01 6 101. 60.5 1.84 7740. 15318. 2579.
## 4 2024-10-01 6 98.6 65.7 1.71 7621. 15558. 2695.
## 5 2024-11-01 6 98.1 86.5 1.55 7269. 15813. 2656.
## 6 2024-12-01 6 97.3 98.3 1.57 7216. 16036. 2650.
nrow(non_na_data)
## [1] 105
# Convert BTC to IDR
btc_idr <- non_na_data %>%
mutate(btc_idr = btc * kurs_idr) %>%
dplyr::select(date, btc_idr)
# Convert Gold to IDR
gold_idr <- non_na_data %>%
mutate(gold_idr = gold * kurs_idr) %>%
dplyr::select(date, gold_idr)
# Add BTC_IDR and Gold_IDR to the dataset
non_na_data <- non_na_data %>%
left_join(btc_idr, by = "date")
non_na_data <- non_na_data %>%
left_join(gold_idr, by = "date")
# Select final set of variables
non_na_data <- non_na_data %>%
dplyr::select(date, bi_rate, bond10, btc_idr, cpi, jkse, kurs_idr, gold_idr)
# Display the final dataset
head(non_na_data); tail(non_na_data)
## # A tibble: 6 × 8
## date bi_rate bond10 btc_idr cpi jkse kurs_idr gold_idr
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-04-01 5.5 105. 57318032. 3.6 4853. 13172. 16383543.
## 2 2016-05-01 5.5 104. 61939403. 3.33 4770. 13417. 16912360.
## 3 2016-06-01 5.25 106. 85965931. 3.45 4871. 13338. 17061819.
## 4 2016-07-01 5.25 110. 86769238. 3.21 5166. 13114. 17561010.
## 5 2016-08-01 5.25 109. 77097435. 2.79 5401. 13160. 17693830.
## 6 2016-09-01 5 110. 79744103. 3.07 5337. 13110. 17430969.
## # A tibble: 6 × 8
## date bi_rate bond10 btc_idr cpi jkse kurs_idr gold_idr
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2024-07-01 6.25 97.9 1021903. 2.13 7258. 16238. 38941212.
## 2 2024-08-01 6.25 100. 944448. 2.12 7417. 15735. 38926254.
## 3 2024-09-01 6 101. 926531. 1.84 7740. 15318. 39502303.
## 4 2024-10-01 6 98.6 1021507. 1.71 7621. 15558. 41930732.
## 5 2024-11-01 6 98.1 1368402. 1.55 7269. 15813. 42000372.
## 6 2024-12-01 6 97.3 1576530. 1.57 7216. 16036. 42502040.
# Calculate returns and changes for each variable
non_na_data$bi_rate <- as.numeric(non_na_data$bi_rate)
apt_data <- non_na_data %>%
arrange(date) %>%
mutate(
jkse_return = c(NA, diff(log(jkse))),
bond_return = c(NA, diff(log(bond10))),
btc_return = c(NA, diff(log(btc_idr))),
gold_return = c(NA, diff(log(gold_idr))), # Add gold returns calculation
birate_change = c(NA, diff(bi_rate)),
cpi_change = c(NA, diff(cpi) / cpi[-length(cpi)]),
kurs_change = c(NA, diff(kurs_idr) / kurs_idr[-length(kurs_idr)])
) %>%
na.omit()
# Create risk-free rate variable from BI Rate
apt_data$rf_rate <- apt_data$bi_rate / 12 / 100 # Convert annual BI Rate to monthly
# Calculate excess returns
apt_data$excess_jkse <- apt_data$jkse_return - apt_data$rf_rate
apt_data$excess_bond <- apt_data$bond_return - apt_data$rf_rate
apt_data$excess_btc <- apt_data$btc_return - apt_data$rf_rate
apt_data$excess_gold <- apt_data$gold_return - apt_data$rf_rate # Add excess returns for gold
# Check the data
head(apt_data)
## # A tibble: 6 × 20
## date bi_rate bond10 btc_idr cpi jkse kurs_idr gold_idr jkse_return
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-05-01 5.5 104. 61939403. 3.33 4770. 13417. 16912360. -0.0173
## 2 2016-06-01 5.25 106. 85965931. 3.45 4871. 13338. 17061819. 0.0210
## 3 2016-07-01 5.25 110. 86769238. 3.21 5166. 13114. 17561010. 0.0589
## 4 2016-08-01 5.25 109. 77097435. 2.79 5401. 13160. 17693830. 0.0445
## 5 2016-09-01 5 110. 79744103. 3.07 5337. 13110. 17430969. -0.0120
## 6 2016-10-01 4.75 109. 83963283. 3.31 5406. 13018. 16481679. 0.0128
## # ℹ 11 more variables: bond_return <dbl>, btc_return <dbl>, gold_return <dbl>,
## # birate_change <dbl>, cpi_change <dbl>, kurs_change <dbl>, rf_rate <dbl>,
## # excess_jkse <dbl>, excess_bond <dbl>, excess_btc <dbl>, excess_gold <dbl>
summary(apt_data)
## date bi_rate bond10 btc_idr
## Min. :2016-05-01 Min. :3.500 Min. : 83.80 Min. : 16779
## 1st Qu.:2018-06-23 1st Qu.:4.188 1st Qu.: 97.23 1st Qu.: 118135
## Median :2020-08-16 Median :4.750 Median :100.53 Median : 342069
## Mean :2020-08-15 Mean :4.886 Mean : 99.82 Mean : 8297702
## 3rd Qu.:2022-10-08 3rd Qu.:5.750 3rd Qu.:102.90 3rd Qu.: 724748
## Max. :2024-12-01 Max. :6.250 Max. :110.16 Max. :110728567
## cpi jkse kurs_idr gold_idr
## Min. :1.320 Min. :4599 Min. :13018 Min. :15468115
## 1st Qu.:2.167 1st Qu.:5853 1st Qu.:13954 1st Qu.:18062115
## Median :3.060 Median :6237 Median :14345 Median :25328121
## Mean :2.997 Mean :6248 Mean :14459 Mean :24420591
## 3rd Qu.:3.490 3rd Qu.:6843 3rd Qu.:15057 3rd Qu.:28087431
## Max. :5.950 Max. :7740 Max. :16335 Max. :42502040
## jkse_return bond_return btc_return
## Min. :-0.201493 Min. :-0.0828848 Min. :-6.89749
## 1st Qu.:-0.012833 1st Qu.:-0.0143272 1st Qu.:-0.06265
## Median : 0.008020 Median :-0.0021093 Median : 0.02405
## Mean : 0.003815 Mean :-0.0007608 Mean :-0.03455
## 3rd Qu.: 0.020662 3rd Qu.: 0.0113273 3rd Qu.: 0.14451
## Max. : 0.086305 Max. : 0.1371552 Max. : 0.65514
## gold_return birate_change cpi_change
## Min. :-0.062174 Min. :-0.250000 Min. :-0.302752
## 1st Qu.:-0.009984 1st Qu.: 0.000000 1st Qu.:-0.077589
## Median : 0.007048 Median : 0.000000 Median :-0.013377
## Mean : 0.009166 Mean : 0.004808 Mean :-0.002132
## 3rd Qu.: 0.026680 3rd Qu.: 0.000000 3rd Qu.: 0.068724
## Max. : 0.100150 Max. : 0.625000 Max. : 0.314394
## kurs_change rf_rate excess_jkse
## Min. :-0.054480 Min. :0.002917 Min. :-0.2052429
## 1st Qu.:-0.006061 1st Qu.:0.003490 1st Qu.:-0.0176251
## Median : 0.001096 Median :0.003958 Median : 0.0038237
## Mean : 0.002065 Mean :0.004072 Mean :-0.0002566
## 3rd Qu.: 0.011865 3rd Qu.:0.004792 3rd Qu.: 0.0164970
## Max. : 0.102563 Max. :0.005208 Max. : 0.0831804
## excess_bond excess_btc excess_gold
## Min. :-0.086635 Min. :-6.90145 Min. :-0.066132
## 1st Qu.:-0.017855 1st Qu.:-0.06723 1st Qu.:-0.013795
## Median :-0.005789 Median : 0.01946 Median : 0.001944
## Mean :-0.004832 Mean :-0.03862 Mean : 0.005095
## 3rd Qu.: 0.008181 3rd Qu.: 0.14029 3rd Qu.: 0.022617
## Max. : 0.132155 Max. : 0.65159 Max. : 0.094941
min(apt_data$date)
## [1] "2016-05-01"
max(apt_data$date)
## [1] "2024-12-01"
#Figure 1. Monthly Closing Price of Assets
# Prepare data for plotting
price_data <- non_na_data %>%
dplyr::select(date, jkse, bond10, btc_idr, gold_idr) %>%
mutate(
log_jkse = log(jkse),
log_bond10 = log(bond10),
log_btc_idr = log(btc_idr),
log_gold = log(gold_idr)
) %>%
dplyr::select(date, log_jkse, log_bond10, log_btc_idr, log_gold)
# Reshape for ggplot
price_long <- melt(price_data, id.vars = "date", variable.name = "Asset", value.name = "LogPrice")
asset_labels <- c(
log_jkse = "JKSE",
log_bond10 = "Bond 10Y",
log_btc_idr = "Bitcoin (IDR)",
log_gold = "Gold"
)
price_long$Asset <- factor(price_long$Asset, levels = names(asset_labels), labels = asset_labels)
# Plot
ggplot(price_long, aes(x = date, y = LogPrice, color = Asset)) +
geom_line(linewidth = 1) +
labs(title = "Monthly Log Closing Price of Assets",
x = "Date", y = "Log Price",
color = "Asset") +
theme_minimal() +
theme(legend.position = "bottom")

# 2. Hitung Surprise Faktor (kurs, cpi, birate)
compute_surprise_ses <- function(series, series_name = NULL) {
m <- forecast::ses(series, h = 1)
res_raw <- as.numeric(residuals(m))
fit_val <- as.numeric(fitted(m))
if (!is.null(series_name) && tolower(series_name) %in% c("cpi", "kurs_idr")) {
res_adj <- res_raw / as.numeric(series)
} else {
res_adj <- res_raw
}
list(
res = res_adj,
fit = fit_val
)
}
apt_data <- apt_data %>%
mutate(
surprise_kurs = compute_surprise_ses(kurs_idr)$res,
surprise_cpi = compute_surprise_ses(cpi)$res,
surprise_birate = compute_surprise_ses(bi_rate)$res,
birate_forecast = compute_surprise_ses(bi_rate)$fit,
cpi_forecast = compute_surprise_ses(cpi)$fit,
kurs_forecast= compute_surprise_ses(kurs_idr)$fit
) %>%
drop_na()
apt_data <- na.omit(apt_data)
# Rate plot
p1 <- ggplot(apt_data, aes(x = 1:nrow(apt_data))) +
geom_line(aes(y = bi_rate, color = "Actual"), linewidth = 1) +
geom_line(aes(y = birate_forecast, color = "Forecast"), size = 1) +
labs(title = "BI Rate: Actual vs Forecast", x = "Time", y = "Rate") +
scale_color_manual(values = c("blue", "red")) +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# CPI plot
p2 <- ggplot(apt_data, aes(x = 1:nrow(apt_data))) +
geom_line(aes(y = cpi, color = "Actual"), size = 1) +
geom_line(aes(y = cpi_forecast, color = "Forecast"), size = 1) +
labs(title = "CPI: Actual vs Forecast", x = "Time", y = "Rate") +
scale_color_manual(values = c("blue", "red")) +
theme_minimal()
# Exchange Rate plot
p3 <- ggplot(apt_data, aes(x = 1:nrow(apt_data))) +
geom_line(aes(y = kurs_idr, color = "Actual"), size = 1) +
geom_line(aes(y = kurs_forecast, color = "Forecast"), size = 1) +
labs(title = "Exchange Rate: Actual vs Forecast", x = "Time", y = "IDR/USD") +
scale_color_manual(values = c("blue", "red")) +
theme_minimal()
# Show plots
library(gridExtra)
grid.arrange(p1, p2, p3, ncol = 1)

# desctiptive table exxess for macroeconomic variables
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## The following object is masked from 'package:car':
##
## logit
macro_vars <- apt_data %>%
dplyr::select(surprise_birate, surprise_cpi, surprise_kurs
)
describe(macro_vars)
## vars n mean sd median trimmed mad min max
## surprise_birate 1 104 0.00 0.16 0.00 -0.01 0.00 -0.25 0.63
## surprise_cpi 2 104 -0.02 0.33 -0.03 -0.03 0.31 -0.99 1.26
## surprise_kurs 3 104 26.51 272.41 15.68 32.73 190.96 -855.85 1412.00
## range skew kurtosis se
## surprise_birate 0.88 1.10 2.86 0.02
## surprise_cpi 2.25 0.59 1.81 0.03
## surprise_kurs 2267.85 0.61 6.23 26.71
summary(macro_vars)
## surprise_birate surprise_cpi surprise_kurs
## Min. :-0.250025 Min. :-0.98998 Min. :-855.85
## 1st Qu.: 0.000000 1st Qu.:-0.24248 1st Qu.: -92.02
## Median : 0.000000 Median :-0.02996 Median : 15.68
## Mean : 0.004815 Mean :-0.01692 Mean : 26.51
## 3rd Qu.: 0.000000 3rd Qu.: 0.17250 3rd Qu.: 159.20
## Max. : 0.625038 Max. : 1.25997 Max. :1412.00
# Uji Stasioneritas
# Daftar variabel yang akan diuji stasioneritasnya
variables_to_test <- c(
"excess_jkse", "excess_bond", "excess_btc", "excess_gold",
"surprise_birate", "surprise_cpi", "surprise_kurs"
)
# Lakukan PP test untuk setiap variabel
stationarity_results <- lapply(variables_to_test, function(var_name) {
if (var_name %in% colnames(apt_data)) {
x <- apt_data[[var_name]]
x <- as.numeric(x)
x <- na.omit(x)
# Jalankan pp.test dengan tryCatch untuk hindari error
test_result <- tryCatch(
pp.test(x, alternative = "stationary"),
error = function(e) NULL
)
if (!is.null(test_result)) {
data.frame(
Variable = var_name,
PP_Statistic = test_result$statistic,
P_Value = test_result$p.value,
Stationary = ifelse(test_result$p.value < 0.05, "Yes", "No")
)
} else {
data.frame(
Variable = var_name,
PP_Statistic = NA,
P_Value = NA,
Stationary = "Error or non-numeric data"
)
}
} else {
data.frame(
Variable = var_name,
PP_Statistic = NA,
P_Value = NA,
Stationary = "Variable not found"
)
}
})
## Warning in pp.test(x, alternative = "stationary"): p-value smaller than printed
## p-value
## Warning in pp.test(x, alternative = "stationary"): p-value smaller than printed
## p-value
## Warning in pp.test(x, alternative = "stationary"): p-value smaller than printed
## p-value
## Warning in pp.test(x, alternative = "stationary"): p-value smaller than printed
## p-value
## Warning in pp.test(x, alternative = "stationary"): p-value smaller than printed
## p-value
## Warning in pp.test(x, alternative = "stationary"): p-value smaller than printed
## p-value
## Warning in pp.test(x, alternative = "stationary"): p-value smaller than printed
## p-value
# Gabungkan hasil
stationarity_summary <- do.call(rbind, stationarity_results)
print(stationarity_summary)
## Variable PP_Statistic P_Value Stationary
## Dickey-Fuller Z(alpha) excess_jkse -65.85094 0.01 Yes
## Dickey-Fuller Z(alpha)1 excess_bond -102.95927 0.01 Yes
## Dickey-Fuller Z(alpha)2 excess_btc -106.53823 0.01 Yes
## Dickey-Fuller Z(alpha)3 excess_gold -72.91623 0.01 Yes
## Dickey-Fuller Z(alpha)4 surprise_birate -48.99106 0.01 Yes
## Dickey-Fuller Z(alpha)5 surprise_cpi -111.55318 0.01 Yes
## Dickey-Fuller Z(alpha)6 surprise_kurs -61.99687 0.01 Yes
# Interpretasi:
# P-value < 0.05 menunjukkan bahwa kita menolak hipotesis nol (data tidak stasioner)
# dan menyimpulkan bahwa data stasioner.
# 3. Fungsi fit EGARCH(1,1) (EGARCH dengan mxreg di mean)
fit_egarch <- function(returns, exog_matrix = NULL, asset_name = NULL) {
dist_model <- ifelse(tolower(asset_name) == "gold_return", "norm", "sstd")
# Spesifikasi model EGARCH
spec <- ugarchspec(
variance.model = list(
model = "eGARCH",
garchOrder = c(1, 1)),
mean.model = list(
armaOrder = c(1, 0),
include.mean = TRUE,
external.regressors = exog_matrix
),
distribution.model = dist_model
)
# Estimasi model
tryCatch(
ugarchfit(
spec,
data = returns,
solver = "hybrid",
fit.control = list(scale = TRUE)
),
error = function(e) {
message("ugarchfit error on ", asset_name, ": ", conditionMessage(e))
return(NULL)
}
)
}
# 4. Fit tiap aset
assets <- c("gold_return", "btc_return", "jkse_return", "bond_return")
# Di sini: mxreg1 = surprise_birate, mxreg2 = surprise_kurs, mxreg3 = surprise_cpi
exog_mat <- as.matrix(
apt_data %>% dplyr::select(surprise_birate, surprise_kurs, surprise_cpi)
)
# Fit model untuk tiap aset
fits <- lapply(assets, function(a) {
fit_egarch(apt_data[[a]], exog_mat, asset_name = a)
})
names(fits) <- assets
print(fits)
## $gold_return
##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : eGARCH(1,1)
## Mean Model : ARFIMA(1,0,0)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.003433 0.000000 7566.05 0
## ar1 0.098363 0.000170 578.13 0
## mxreg1 0.024825 0.000016 1536.37 0
## mxreg2 0.000043 0.000000 73226.77 0
## mxreg3 -0.014181 0.000004 -3340.85 0
## omega -0.933725 0.000146 -6377.46 0
## alpha1 0.060376 0.000077 780.00 0
## beta1 0.867555 0.000159 5447.26 0
## gamma1 -0.474343 0.000127 -3721.17 0
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.003433 0.000006 546.67 0
## ar1 0.098363 0.001568 62.75 0
## mxreg1 0.024825 0.000179 138.60 0
## mxreg2 0.000043 0.000000 2420.37 0
## mxreg3 -0.014181 0.000020 -700.31 0
## omega -0.933725 0.000156 -5981.46 0
## alpha1 0.060376 0.000312 193.26 0
## beta1 0.867555 0.003732 232.46 0
## gamma1 -0.474343 0.000980 -484.24 0
##
## LogLikelihood : 227.4726
##
## Information Criteria
## ------------------------------------
##
## Akaike -4.2014
## Bayes -3.9726
## Shibata -4.2148
## Hannan-Quinn -4.1087
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.6784 0.4101
## Lag[2*(p+q)+(p+q)-1][2] 1.2028 0.6146
## Lag[4*(p+q)+(p+q)-1][5] 2.1563 0.6660
## d.o.f=1
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.5136 0.4736
## Lag[2*(p+q)+(p+q)-1][5] 0.9593 0.8688
## Lag[4*(p+q)+(p+q)-1][9] 1.6754 0.9400
## d.o.f=2
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[3] 0.4370 0.500 2.000 0.5086
## ARCH Lag[5] 0.8614 1.440 1.667 0.7745
## ARCH Lag[7] 1.2720 2.315 1.543 0.8657
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 4.7519
## Individual Statistics:
## mu 0.02586
## ar1 0.02587
## mxreg1 0.02869
## mxreg2 0.02571
## mxreg3 0.02629
## omega 0.02621
## alpha1 0.02687
## beta1 0.21093
## gamma1 0.02348
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 2.1 2.32 2.82
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.1777 0.8593
## Negative Sign Bias 0.2011 0.8410
## Positive Sign Bias 0.7983 0.4266
## Joint Effect 1.7763 0.6201
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 29.08 0.06478
## 2 30 35.04 0.20328
## 3 40 47.54 0.16395
## 4 50 67.15 0.04345
##
##
## Elapsed time : 0.3040121
##
##
## $btc_return
##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : eGARCH(1,1)
## Mean Model : ARFIMA(1,0,0)
## Distribution : sstd
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu -0.029252 0.020567 -1.42231 0.154936
## ar1 0.412938 0.091477 4.51413 0.000006
## mxreg1 0.037333 0.054610 0.68362 0.494214
## mxreg2 -0.000069 0.000035 -1.94616 0.051636
## mxreg3 0.071033 0.037384 1.90011 0.057418
## omega -0.358160 0.294055 -1.21800 0.223223
## alpha1 -0.067014 0.442766 -0.15135 0.879697
## beta1 0.768022 0.065701 11.68971 0.000000
## gamma1 0.573664 0.485592 1.18137 0.237456
## skew 0.614367 0.105380 5.83001 0.000000
## shape 2.242386 0.299932 7.47631 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu -0.029252 0.014746 -1.98381 0.047278
## ar1 0.412938 0.094356 4.37639 0.000012
## mxreg1 0.037333 0.054883 0.68022 0.496366
## mxreg2 -0.000069 0.000035 -1.98190 0.047491
## mxreg3 0.071033 0.052755 1.34648 0.178148
## omega -0.358160 0.224133 -1.59798 0.110048
## alpha1 -0.067014 0.596326 -0.11238 0.910523
## beta1 0.768022 0.072225 10.63368 0.000000
## gamma1 0.573664 0.610196 0.94013 0.347151
## skew 0.614367 0.149360 4.11334 0.000039
## shape 2.242386 0.240032 9.34203 0.000000
##
## LogLikelihood : 21.00604
##
## Information Criteria
## ------------------------------------
##
## Akaike -0.192424
## Bayes 0.087271
## Shibata -0.212071
## Hannan-Quinn -0.079111
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.1545 0.6943041
## Lag[2*(p+q)+(p+q)-1][2] 4.9372 0.0005084
## Lag[4*(p+q)+(p+q)-1][5] 8.1652 0.0065511
## d.o.f=1
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.02086 0.8851
## Lag[2*(p+q)+(p+q)-1][5] 2.77110 0.4504
## Lag[4*(p+q)+(p+q)-1][9] 3.12292 0.7385
## d.o.f=2
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[3] 0.02502 0.500 2.000 0.8743
## ARCH Lag[5] 0.06211 1.440 1.667 0.9933
## ARCH Lag[7] 0.09475 2.315 1.543 0.9994
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 1.9495
## Individual Statistics:
## mu 0.05348
## ar1 0.04748
## mxreg1 0.23875
## mxreg2 0.12635
## mxreg3 0.25299
## omega 0.08934
## alpha1 0.02861
## beta1 0.09992
## gamma1 0.02630
## skew 0.14485
## shape 0.07326
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 2.49 2.75 3.27
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.39081 0.6968
## Negative Sign Bias 0.04354 0.9654
## Positive Sign Bias 0.30200 0.7633
## Joint Effect 0.36653 0.9471
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 14.85 0.7323
## 2 30 26.96 0.5738
## 3 40 42.92 0.3067
## 4 50 46.96 0.5561
##
##
## Elapsed time : 1.244549
##
##
## $jkse_return
##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : eGARCH(1,1)
## Mean Model : ARFIMA(1,0,0)
## Distribution : sstd
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.007848 0.003039 2.58232 0.009814
## ar1 0.192558 0.108727 1.77102 0.076558
## mxreg1 0.001982 0.016646 0.11904 0.905244
## mxreg2 -0.000070 0.000009 -7.42673 0.000000
## mxreg3 -0.004875 0.006485 -0.75172 0.452218
## omega -3.258470 1.461876 -2.22896 0.025816
## alpha1 -0.156942 0.160079 -0.98040 0.326888
## beta1 0.566165 0.194773 2.90679 0.003652
## gamma1 0.914650 0.448701 2.03844 0.041506
## skew 0.947749 0.145720 6.50393 0.000000
## shape 59.999999 127.398405 0.47096 0.637667
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.007848 0.004072 1.927318 0.053940
## ar1 0.192558 0.120079 1.603598 0.108803
## mxreg1 0.001982 0.023349 0.084869 0.932366
## mxreg2 -0.000070 0.000011 -6.189266 0.000000
## mxreg3 -0.004875 0.007948 -0.613297 0.539680
## omega -3.258470 1.942930 -1.677091 0.093525
## alpha1 -0.156942 0.164123 -0.956244 0.338949
## beta1 0.566165 0.256998 2.202991 0.027595
## gamma1 0.914650 0.661761 1.382146 0.166927
## skew 0.947749 0.136674 6.934366 0.000000
## shape 59.999999 32.928953 1.822105 0.068439
##
## LogLikelihood : 241.1869
##
## Information Criteria
## ------------------------------------
##
## Akaike -4.4267
## Bayes -4.1470
## Shibata -4.4463
## Hannan-Quinn -4.3134
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.3442 0.5574
## Lag[2*(p+q)+(p+q)-1][2] 0.3577 0.9889
## Lag[4*(p+q)+(p+q)-1][5] 0.3939 0.9971
## d.o.f=1
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.2063 0.6497
## Lag[2*(p+q)+(p+q)-1][5] 1.2001 0.8130
## Lag[4*(p+q)+(p+q)-1][9] 2.6872 0.8093
## d.o.f=2
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[3] 0.7994 0.500 2.000 0.3713
## ARCH Lag[5] 1.6861 1.440 1.667 0.5448
## ARCH Lag[7] 2.8582 2.315 1.543 0.5407
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 1.2069
## Individual Statistics:
## mu 0.06875
## ar1 0.13024
## mxreg1 0.08484
## mxreg2 0.05903
## mxreg3 0.13090
## omega 0.14384
## alpha1 0.05225
## beta1 0.14241
## gamma1 0.02756
## skew 0.03593
## shape 0.31267
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 2.49 2.75 3.27
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.6634 0.5086
## Negative Sign Bias 0.9653 0.3368
## Positive Sign Bias 0.3694 0.7126
## Joint Effect 1.0842 0.7809
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 11.77 0.8953
## 2 30 18.31 0.9378
## 3 40 29.85 0.8540
## 4 50 31.58 0.9748
##
##
## Elapsed time : 0.8888948
##
##
## $bond_return
##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : eGARCH(1,1)
## Mean Model : ARFIMA(1,0,0)
## Distribution : sstd
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu -0.000127 0.000000 -2109.9 0
## ar1 -0.026193 0.000003 -10070.3 0
## mxreg1 0.002407 0.000000 4871.4 0
## mxreg2 -0.000046 0.000000 -6607.3 0
## mxreg3 -0.010674 0.000003 -3320.5 0
## omega -0.075180 0.000009 -8118.0 0
## alpha1 -0.273544 0.000020 -13544.0 0
## beta1 0.988314 0.000109 9106.5 0
## gamma1 -0.314347 0.000021 -14757.8 0
## skew 0.837184 0.000203 4116.5 0
## shape 3.463854 0.000430 8062.4 0
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu -0.000127 0.000191 -0.66189 0.508043
## ar1 -0.026193 0.022386 -1.17005 0.241983
## mxreg1 0.002407 0.001624 1.48164 0.138435
## mxreg2 -0.000046 0.000020 -2.30235 0.021315
## mxreg3 -0.010674 0.000695 -15.36640 0.000000
## omega -0.075180 0.023055 -3.26087 0.001111
## alpha1 -0.273544 0.151313 -1.80780 0.070637
## beta1 0.988314 0.440155 2.24538 0.024744
## gamma1 -0.314347 0.172832 -1.81880 0.068941
## skew 0.837184 0.263013 3.18305 0.001457
## shape 3.463854 1.078664 3.21124 0.001322
##
## LogLikelihood : 263.564
##
## Information Criteria
## ------------------------------------
##
## Akaike -4.8570
## Bayes -4.5773
## Shibata -4.8766
## Hannan-Quinn -4.7437
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.2866 0.5924
## Lag[2*(p+q)+(p+q)-1][2] 0.3406 0.9908
## Lag[4*(p+q)+(p+q)-1][5] 0.4512 0.9955
## d.o.f=1
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 2.053 0.1519
## Lag[2*(p+q)+(p+q)-1][5] 2.798 0.4451
## Lag[4*(p+q)+(p+q)-1][9] 3.439 0.6848
## d.o.f=2
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[3] 0.8213 0.500 2.000 0.3648
## ARCH Lag[5] 1.1492 1.440 1.667 0.6892
## ARCH Lag[7] 1.2471 2.315 1.543 0.8704
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 2791837
## Individual Statistics:
## mu 0.03148
## ar1 0.03154
## mxreg1 0.03152
## mxreg2 0.03158
## mxreg3 0.03143
## omega 0.03150
## alpha1 0.03147
## beta1 1.40275
## gamma1 0.03140
## skew 0.03167
## shape 0.03152
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 2.49 2.75 3.27
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.3051 0.7610
## Negative Sign Bias 0.8326 0.4071
## Positive Sign Bias 1.0472 0.2975
## Joint Effect 1.8829 0.5971
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 17.92 0.52758
## 2 30 22.35 0.80558
## 3 40 39.85 0.43228
## 4 50 66.19 0.05126
##
##
## Elapsed time : 0.765763
extract_egarch_stats <- function(model, asset_name) {
if (is.null(model)) {
return(data.frame(
Asset = asset_name, Convergence = "Failed",
Mean_Intercept = NA, Mean_Intercept_SE = NA, Mean_Intercept_p = NA,
Beta_BIRate = NA, Beta_BIRate_SE = NA, Beta_BIRate_p = NA,
Beta_Exchange = NA, Beta_Exchange_SE = NA, Beta_Exchange_p = NA,
Beta_Inflation = NA, Beta_Inflation_SE = NA, Beta_Inflation_p = NA,
AR1 = NA, AR1_SE = NA, AR1_p = NA,
GARCH_Alpha1 = NA, GARCH_Alpha1_SE = NA, GARCH_Alpha1_p = NA,
GARCH_Beta1 = NA, GARCH_Beta1_SE = NA, GARCH_Beta1_p = NA,
Persistence = NA, Log_Likelihood = NA,
stringsAsFactors = FALSE
))
}
# convergence slot
conv_code <- tryCatch(model@fit$convergence, error = function(e) NA)
conv <- ifelse(!is.na(conv_code) && conv_code == 0, "Success", "Failed")
coefs <- tryCatch(coef(model), error = function(e) NULL)
ll <- tryCatch(model@fit$LLH, error = function(e) NA)
matc <- tryCatch(model@fit$matcoef, error = function(e) NULL)
if (conv == "Failed" || is.null(coefs) || is.null(matc)) {
return(data.frame(
Asset = asset_name, Convergence = conv,
Mean_Intercept = NA, Mean_Intercept_SE = NA, Mean_Intercept_p = NA,
Beta_BIRate = NA, Beta_BIRate_SE = NA, Beta_BIRate_p = NA,
Beta_Exchange = NA, Beta_Exchange_SE = NA, Beta_Exchange_p = NA,
Beta_Inflation = NA, Beta_Inflation_SE = NA, Beta_Inflation_p = NA,
AR1 = NA, AR1_SE = NA, AR1_p = NA,
GARCH_Alpha1 = NA, GARCH_Alpha1_SE = NA, GARCH_Alpha1_p = NA,
GARCH_Beta1 = NA, GARCH_Beta1_SE = NA, GARCH_Beta1_p = NA,
Persistence = NA, Log_Likelihood = ll,
stringsAsFactors = FALSE
))
}
# helper untuk ambil nilai aman
safe_extract <- function(name, col) {
if (!is.null(matc) && name %in% rownames(matc)) {
return(matc[name, col])
} else {
return(NA_real_)
}
}
data.frame(
Asset = asset_name,
Convergence = conv,
# Mean equation
Mean_Intercept = safe_extract("mu", 1),
Mean_Intercept_SE = safe_extract("mu", 2),
Mean_Intercept_p = safe_extract("mu", 4),
Beta_BIRate = safe_extract("mxreg1", 1),
Beta_BIRate_SE = safe_extract("mxreg1", 2),
Beta_BIRate_p = safe_extract("mxreg1", 4),
Beta_Exchange = safe_extract("mxreg2", 1),
Beta_Exchange_SE = safe_extract("mxreg2", 2),
Beta_Exchange_p = safe_extract("mxreg2", 4),
Beta_Inflation = safe_extract("mxreg3", 1),
Beta_Inflation_SE = safe_extract("mxreg3", 2),
Beta_Inflation_p = safe_extract("mxreg3", 4),
# AR term
AR1 = safe_extract("ar1", 1),
AR1_SE = safe_extract("ar1", 2),
AR1_p = safe_extract("ar1", 4),
# Variance model parameters
GARCH_Alpha1 = safe_extract("alpha1", 1),
GARCH_Alpha1_SE = safe_extract("alpha1", 2),
GARCH_Alpha1_p = safe_extract("alpha1", 4),
GARCH_Beta1 = safe_extract("beta1", 1),
GARCH_Beta1_SE = safe_extract("beta1", 2),
GARCH_Beta1_p = safe_extract("beta1", 4),
# Derived stats
Persistence = sum(c(safe_extract("alpha1", 1), safe_extract("beta1", 1)), na.rm = TRUE),
Log_Likelihood = ll,
stringsAsFactors = FALSE
)
}
egarch_stats <- do.call(rbind, lapply(names(fits), function(asset) {
extract_egarch_stats(fits[[asset]], asset)
}))
print(egarch_stats)
## Asset Convergence Mean_Intercept Mean_Intercept_SE Mean_Intercept_p
## 1 gold_return Success 0.0034330150 4.537395e-07 0.000000000
## 2 btc_return Success -0.0292524116 2.056684e-02 0.154936332
## 3 jkse_return Success 0.0078477633 3.039037e-03 0.009813872
## 4 bond_return Success -0.0001266298 6.001585e-08 0.000000000
## Beta_BIRate Beta_BIRate_SE Beta_BIRate_p Beta_Exchange Beta_Exchange_SE
## 1 0.024824823 1.615813e-05 0.0000000 4.308827e-05 5.884224e-10
## 2 0.037332644 5.461005e-02 0.4942137 -6.906498e-05 3.548792e-05
## 3 0.001981561 1.664630e-02 0.9052444 -7.048693e-05 9.490980e-06
## 4 0.002406544 4.940176e-07 0.0000000 -4.598114e-05 6.959156e-09
## Beta_Exchange_p Beta_Inflation Beta_Inflation_SE Beta_Inflation_p AR1
## 1 0.000000e+00 -0.014181419 4.244858e-06 0.0000000 0.09836299
## 2 5.163614e-02 0.071033389 3.738380e-02 0.0574185 0.41293775
## 3 1.112443e-13 -0.004874587 6.484557e-03 0.4522180 0.19255787
## 4 0.000000e+00 -0.010673921 3.214536e-06 0.0000000 -0.02619269
## AR1_SE AR1_p GARCH_Alpha1 GARCH_Alpha1_SE GARCH_Alpha1_p
## 1 1.701398e-04 0.000000e+00 0.06037582 7.740449e-05 0.0000000
## 2 9.147671e-02 6.357724e-06 -0.06701425 4.427656e-01 0.8796966
## 3 1.087272e-01 7.655771e-02 -0.15694166 1.600791e-01 0.3268883
## 4 2.600994e-06 0.000000e+00 -0.27354436 2.019678e-05 0.0000000
## GARCH_Beta1 GARCH_Beta1_SE GARCH_Beta1_p Persistence Log_Likelihood
## 1 0.8675545 0.0001592644 0.000000000 0.9279304 227.47256
## 2 0.7680217 0.0657006896 0.000000000 0.7010075 21.00604
## 3 0.5661650 0.1947731149 0.003651552 0.4092234 241.18688
## 4 0.9883142 0.0001085290 0.000000000 0.7147699 263.56395
# 5. Forecast mu dan sigma (1-step ahead)
last_exog <- matrix(tail(exog_mat, 1), nrow = 1) # 1 x n_mxreg
get_forecast <- function(fit, exog) {
if (is.null(fit)) return(list(mu = NA_real_, sigma = NA_real_))
f <- tryCatch(
ugarchforecast(fit, n.ahead = 1,
external.forecasts = list(mregfor = exog, vregfor = exog)),
error = function(e) {
message("ugarchforecast error: ", conditionMessage(e))
return(NULL)
}
)
if (is.null(f)) return(list(mu = NA_real_, sigma = NA_real_))
# forecast slots: f@forecast$seriesFor, f@forecast$sigmaFor
list(
mu = as.numeric(f@forecast$seriesFor[1, ]),
sigma = as.numeric(f@forecast$sigmaFor[1, ])
)
}
forecasts <- lapply(fits, get_forecast, exog = last_exog)
# Ambil mu dan sigma, fallback ke mean/sd historis dari apt_data jika forecast gagal
mu_vec <- sapply(seq_along(assets), function(i) {
fmu <- forecasts[[i]]$mu
if (is.na(fmu)) mean(apt_data[[assets[i]]], na.rm = TRUE) else fmu
})
sigma_vec <- sapply(seq_along(assets), function(i) {
fs <- forecasts[[i]]$sigma
if (is.na(fs)) sd(apt_data[[assets[i]]], na.rm = TRUE) else fs
})
names(mu_vec) <- assets
names(sigma_vec) <- assets
# 6. Setup Parameter Mean–VaR Optimization
alpha <- 0.05
lambda <- 10
n_sim <- 20000
# 7. Fungsi Objective (dengan target_return)
objective_mean_var <- function(w_raw, max_risk = NA, target_return = NA) {
w <- pmax(0, w_raw)
if (sum(w) == 0) w <- rep(1 / length(w), length(w))
w <- w / sum(w)
# Simulasi returns (asumsi normal independen)
sims <- matrix(
rnorm(n_sim * length(assets),
mean = rep(mu_vec, each = n_sim),
sd = rep(sigma_vec, each = n_sim)),
ncol = length(assets)
)
port_rets <- sims %*% w
mean_p <- mean(port_rets)
sd_p <- sd(port_rets)
var_p <- quantile(port_rets, probs = alpha, type = 7)
penalty_risk <- 0
if (!is.na(max_risk) && sd_p > max_risk) {
penalty_risk <- 1e4 * (sd_p - max_risk)^2
}
penalty_return <- 0
if (!is.na(target_return)) {
penalty_return <- 1e4 * (mean_p - target_return)^2
}
obj <- -mean_p + lambda * abs(var_p) + penalty_risk + penalty_return
return(obj)
}
# 8. Fungsi Optimasi DEoptim (dengan target_return)
optimize_portfolio <- function(max_risk = NA, target_return = NA) {
lower <- rep(0, length(assets))
upper <- rep(1, length(assets))
res <- DEoptim(
fn = function(w) objective_mean_var(w, max_risk, target_return),
lower = lower, upper = upper,
control = DEoptim.control(NP = 60, itermax = 150, trace = FALSE)
)
best_w <- pmax(0, res$optim$bestmem)
best_w <- best_w / sum(best_w)
# Hitung ulang metrik hasil terbaik
sims <- matrix(
rnorm(n_sim * length(assets),
mean = rep(mu_vec, each = n_sim),
sd = rep(sigma_vec, each = n_sim)),
ncol = length(assets)
)
port_rets <- sims %*% best_w
mean_p <- mean(port_rets)
sd_p <- sd(port_rets)
var_p <- quantile(port_rets, probs = alpha, type = 7)
tibble(
max_risk = ifelse(is.na(max_risk), "No Limit", sprintf("%.2f", max_risk)),
target_return = ifelse(is.na(target_return), "None", round(target_return, 6)),
Mean = mean_p,
SD = sd_p,
VaR = var_p,
t(best_w)
)
}
# 9. Hitung target_return dari equal-weighted portfolio
equal_w <- rep(1 / length(assets), length(assets))
target_return_eq <- sum(equal_w * mu_vec)
cat("Target Return (Equal-Weighted):", round(target_return_eq, 6), "\n")
## Target Return (Equal-Weighted): 0.006824
# 10. Simulasi Max Risk + Target Return
max_risk_values <- c(NA, 0.02, 0.04, 0.06, 0.08)
results <- lapply(max_risk_values, function(r) optimize_portfolio(r, target_return_eq))
# Ambil best solution dari scenario tanpa batas risiko (pertama)
w_opt <- as.numeric(results[[1]]$`t(best_w)`)
# fallback jika tidak tersedia
if (is.null(w_opt) || any(is.na(w_opt))) {
w_opt <- equal_w
}
# Simpan equal weight vector
w_eq <- equal_w
# 11. Evaluasi kinerja kedua portofolio
return_matrix <- do.call(cbind, lapply(assets, function(a) apt_data[[a]]))
colnames(return_matrix) <- assets
# helper functions
calculate_portfolio_return <- function(w, ret_matrix) {
sum(w * colMeans(ret_matrix, na.rm = TRUE))
}
calculate_portfolio_var <- function(w, ret_matrix) {
covm <- cov(ret_matrix, use = "pairwise.complete.obs")
sqrt(as.numeric(t(w) %*% covm %*% w))
}
eval_portfolio <- function(w, mu, cov_matrix, alpha = 0.05) {
mu_p <- sum(w * mu)
sigma_p <- sqrt(as.numeric(t(w) %*% cov_matrix %*% w))
VaR_p <- mu_p + qnorm(alpha) * sigma_p
ES_p <- mu_p + (dnorm(qnorm(alpha)) / alpha) * sigma_p
return(c(mu_p, sigma_p, VaR_p, ES_p))
}
mu_hist <- colMeans(return_matrix, na.rm = TRUE)
cov_matrix <- cov(return_matrix, use = "pairwise.complete.obs")
perf_opt <- eval_portfolio(w_opt, mu_hist, cov_matrix)
perf_eq <- eval_portfolio(w_eq, mu_hist, cov_matrix)
comparison <- data.frame(
Portfolio = c("Mean–VaR (EGARCH+DEOptim)", "Equal-Weighted"),
Mean_Return = c(perf_opt[1], perf_eq[1]),
Volatility = c(perf_opt[2], perf_eq[2]),
VaR_5pct = c(perf_opt[3], perf_eq[3]),
ES_5pct = c(perf_opt[4], perf_eq[4])
)
print(comparison)
## Portfolio Mean_Return Volatility VaR_5pct ES_5pct
## 1 Mean–VaR (EGARCH+DEOptim) 0.006220608 0.0222710 -0.03041192 0.05215928
## 2 Equal-Weighted -0.005582913 0.1794807 -0.30080243 0.36463427
weights_df <- data.frame(
Asset = assets,
GARCH_MeanVaR = w_opt,
Equal_Weighted = w_eq,
stringsAsFactors = FALSE
)
melted_weights <- reshape2::melt(weights_df, id.vars = "Asset")
ggplot(melted_weights, aes(x = Asset, y = value, fill = variable)) +
geom_bar(stat = "identity", position = "dodge") +
geom_text(aes(label = round(value, 3)),
vjust = -0.5, size = 3.5, position = position_dodge(0.9)) +
labs(
title = "Perbandingan Bobot Portofolio: Mean–VaR (EGARCH+DEOptim) vs Equal-Weighted",
x = "Aset",
y = "Bobot",
fill = "Metode"
) +
theme_minimal()

# 12. Backtesting
# Utility untuk conditional mean/vol
extract_conditional_mean <- function(egarch_model) {
if (is.null(egarch_model)) return(NULL)
if (egarch_model@fit$convergence != 0) return(NULL)
fitted(egarch_model)
}
extract_conditional_volatility <- function(egarch_model) {
if (is.null(egarch_model)) return(NULL)
if (egarch_model@fit$convergence != 0) return(NULL)
sigma(egarch_model)
}
# calculate_egarch_var returns time series of VaR estimates (negative numbers)
calculate_egarch_var <- function(egarch_model, confidence_level = 0.95) {
if (is.null(egarch_model)) return(NULL)
if (egarch_model@fit$convergence != 0) return(NULL)
cond_mean <- fitted(egarch_model)
cond_vol <- sigma(egarch_model)
df <- tryCatch(coef(egarch_model)["shape"], error = function(e) NA)
if (is.na(df) || df <= 2) df <- 5
t_critical <- qt(1 - confidence_level, df = df)
# VaR per time: negative sign so exceedances measured as actual_loss > VaR
vaR_ts <- -(cond_mean + t_critical * cond_vol)
return(vaR_ts)
}
perform_egarch_var_backtesting <- function(returns_vec, egarch_model, confidence_level = 0.95) {
if (is.null(egarch_model) || egarch_model@fit$convergence != 0) {
return(list(exceedances = NA, dates = NA, var_estimates = NA, n = NA))
}
var_estimates <- calculate_egarch_var(egarch_model, confidence_level)
# align lengths - tail to match returns length (if needed)
n <- min(length(var_estimates), length(returns_vec))
var_estimates <- tail(var_estimates, n)
returns_vec <- tail(returns_vec, n)
exceedances <- ifelse(-returns_vec > var_estimates, 1, 0)
list(var_estimates = var_estimates, exceedances = exceedances, dates = NULL, n = n)
}
kupiec_test <- function(exceedances, total_obs, confidence_level) {
alpha <- 1 - confidence_level
x <- sum(exceedances, na.rm = TRUE)
p_hat <- x / total_obs
if (x == 0) {
lr_stat <- -2 * log((1 - alpha)^total_obs)
} else if (x == total_obs) {
lr_stat <- -2 * log(alpha^total_obs)
} else {
lr_stat <- -2 * (log((1 - alpha)^(total_obs - x) * alpha^x) -
log((1 - p_hat)^(total_obs - x) * p_hat^x))
}
p_value <- 1 - pchisq(lr_stat, df = 1)
list(
exceptions = x,
total_obs = total_obs,
expected_rate = alpha,
actual_rate = p_hat,
lr_stat = lr_stat,
p_value = p_value,
result = ifelse(p_value > 0.05, "Accept H0", "Reject H0")
)
}
returns_list <- list(
gold_return = apt_data$excess_gold,
btc_return = apt_data$excess_btc,
jkse_return = apt_data$excess_jkse,
bond_return = apt_data$excess_bond
)
egarch_backtest_results <- list()
egarch_kupiec_results <- list()
for (asset_name in names(returns_list)) {
model <- fits[[asset_name]]
backtest <- perform_egarch_var_backtesting(returns_list[[asset_name]], model, confidence_level = 0.95)
egarch_backtest_results[[asset_name]] <- backtest
if (!is.na(backtest$n)) {
kupiec <- kupiec_test(backtest$exceedances, backtest$n, confidence_level = 0.95)
egarch_kupiec_results[[asset_name]] <- kupiec
}
}
egarch_kupiec_summary <- do.call(rbind, lapply(names(egarch_kupiec_results), function(asset) {
result <- egarch_kupiec_results[[asset]]
if (is.null(result)) return(NULL)
data.frame(
Asset = asset,
Observations = result$total_obs,
Exceptions = result$exceptions,
Expected_Rate = result$expected_rate,
Actual_Rate = result$actual_rate,
LR_Statistic = result$lr_stat,
P_Value = result$p_value,
Result = result$result,
stringsAsFactors = FALSE
)
}))
print(egarch_kupiec_summary)
## Asset Observations Exceptions Expected_Rate Actual_Rate LR_Statistic
## 1 gold_return 104 2 0.05 0.01923077 2.6804968
## 2 btc_return 104 2 0.05 0.01923077 2.6804968
## 3 jkse_return 104 11 0.05 0.10576923 5.2305575
## 4 bond_return 104 7 0.05 0.06730769 0.5945158
## P_Value Result
## 1 0.10158404 Accept H0
## 2 0.10158404 Accept H0
## 3 0.02219342 Reject H0
## 4 0.44067817 Accept H0
# 13. Compare Mean–VaR and Equal-weighted Portfolio Performance
dates <- as.Date(apt_data$date)
# Hitung return portofolio berdasarkan bobot optimal dan equal-weight
apt_data$portfolio_return_egarch <- as.numeric(return_matrix %*% w_opt)
apt_data$portfolio_return_equal <- as.numeric(return_matrix %*% w_eq)
# Hitung cumulative returns (mulai dari 1)
egarch_cumulative <- cumprod(1 + apt_data$portfolio_return_egarch)
equal_cumulative <- cumprod(1 + apt_data$portfolio_return_equal)
jkse_cumulative <- cumprod(1 + apt_data$jkse_return)
bond_cumulative <- cumprod(1 + apt_data$bond_return)
btc_cumulative <- cumprod(1 + apt_data$btc_return)
gold_cumulative <- cumprod(1 + apt_data$gold_return)
plot(
dates, egarch_cumulative, type = "l", col = "red", lwd = 2,
xlab = "Date", ylab = "Cumulative Return (Start = 1)",
main = "Cumulative Performance Comparison",
ylim = c(
min(0.5, min(egarch_cumulative, equal_cumulative, na.rm = TRUE) * 0.9),
max(egarch_cumulative, equal_cumulative, btc_cumulative, na.rm = TRUE) * 1.1
)
)
lines(dates, equal_cumulative, col = "blue", lwd = 2, lty = 2)
lines(dates, jkse_cumulative, col = "darkgreen", lwd = 1)
lines(dates, bond_cumulative, col = "purple", lwd = 1)
lines(dates, btc_cumulative, col = "black", lwd = 1)
lines(dates, gold_cumulative, col = "goldenrod1", lwd = 1)
legend(
"topleft",
legend = c("Mean–VaR+EGARCH", "Equal-Weight", "JKSE", "Bond", "BTC", "Gold"),
col = c("red", "blue", "darkgreen", "purple", "black", "goldenrod1"),
lwd = c(2, 2, 1, 1, 1, 1),
lty = c(1, 2, 1, 1, 1, 1),
cex = 0.8
)

# Rolling Metrics (24-month window)
window <- 24
assets_returns <- cbind(
apt_data$portfolio_return_egarch,
apt_data$portfolio_return_equal,
apt_data$jkse_return,
apt_data$bond_return,
apt_data$btc_return,
apt_data$gold_return
)
colnames(assets_returns) <- c("MeanVar_EGARCH", "Equal", "JKSE", "Bond", "BTC", "Gold")
rolling_returns <- rolling_volatility <- rolling_sharpe <- rolling_var <-
matrix(NA, nrow = nrow(assets_returns) - window, ncol = ncol(assets_returns))
for (i in 1:(nrow(assets_returns) - window)) {
window_data <- assets_returns[i:(i + window - 1), , drop = FALSE]
rolling_returns[i, ] <- colMeans(window_data, na.rm = TRUE)
rolling_volatility[i, ] <- apply(window_data, 2, sd, na.rm = TRUE)
rolling_sharpe[i, ] <- rolling_returns[i, ] / rolling_volatility[i, ]
rolling_var[i, ] <- apply(window_data, 2, function(x) -quantile(x, 0.05, na.rm = TRUE))
}
# Plot Rolling Sharpe Ratio
par(mfrow = c(2, 1))
plot(
dates[(window + 1):length(dates)], rolling_sharpe[, 1],
type = "l", col = "red", lwd = 2,
xlab = "Date", ylab = "Sharpe Ratio",
main = "Rolling 24-Month Sharpe Ratio",
ylim = range(rolling_sharpe[, 1:2], na.rm = TRUE) * c(0.9, 1.1)
)
lines(dates[(window + 1):length(dates)], rolling_sharpe[, 2], col = "blue", lwd = 2, lty = 2)
abline(h = 0, lty = 2, col = "gray")
legend(
"bottomright",
legend = c("Mean–VaR+EGARCH", "Equal-Weight"),
col = c("red", "blue"),
lwd = 2, lty = c(1, 2), cex = 0.8
)
# Plot Rolling VaR
plot(
dates[(window + 1):length(dates)], rolling_var[, 1],
type = "l", col = "red", lwd = 2,
xlab = "Date", ylab = "Value-at-Risk (95%)",
main = "Rolling 24-Month VaR (95%)",
ylim = range(rolling_var[, 1:2], na.rm = TRUE) * c(0.9, 1.1)
)
lines(dates[(window + 1):length(dates)], rolling_var[, 2], col = "blue", lwd = 2, lty = 2)
legend(
"topright",
legend = c("Mean–VaR+EGARCH", "Equal-Weight"),
col = c("red", "blue"),
lwd = 2, lty = c(1, 2), cex = 0.8
)

par(mfrow = c(1, 1))
# Summary Statistics
return_stats <- data.frame(
Mean_Return = colMeans(assets_returns, na.rm = TRUE) * 100,
Volatility = apply(assets_returns, 2, sd, na.rm = TRUE) * 100,
Sharpe = colMeans(assets_returns, na.rm = TRUE) /
apply(assets_returns, 2, sd, na.rm = TRUE),
VaR_95 = apply(assets_returns, 2, function(x) -quantile(x, 0.05, na.rm = TRUE)) * 100,
Max_Drawdown = apply(assets_returns, 2, function(x) {
cumu <- cumprod(1 + x)
peak <- cumu[1]
maxDD <- 0
for (i in 2:length(cumu)) {
if (cumu[i] > peak) peak <- cumu[i]
DD <- (peak - cumu[i]) / peak
if (DD > maxDD) maxDD <- DD
}
return(maxDD * 100)
})
)
return_stats$Portfolio <- rownames(return_stats)
return_stats <- return_stats[order(-return_stats$Sharpe), ]
print(return_stats)
## Mean_Return Volatility Sharpe VaR_95 Max_Drawdown
## Gold 0.91661033 3.194470 0.28693662 3.901653 14.46839
## MeanVar_EGARCH 0.62206080 2.227100 0.27931429 2.506825 15.11169
## JKSE 0.38148754 3.514663 0.10854170 4.619607 32.46521
## Bond -0.07608112 2.835834 -0.02682848 4.497432 24.83847
## Equal -0.55829126 17.948072 -0.03110592 7.463672 251.23308
## BTC -3.45518180 71.955272 -0.04801847 25.803555 145.02278
## Portfolio
## Gold Gold
## MeanVar_EGARCH MeanVar_EGARCH
## JKSE JKSE
## Bond Bond
## Equal Equal
## BTC BTC
# Visualisasi VaR backtesting GARCH-X untuk semua aset
par(mfrow=c(2,2))
confidence_level <- 0.95
for (asset_name in names(egarch_backtest_results)) {
backtest <- egarch_backtest_results[[asset_name]]
asset_returns <- returns_list[[asset_name]]
if (is.na(backtest$n)) next
plot_data <- data.frame(
Index = 1:length(asset_returns),
Return = asset_returns,
VaR = backtest$var_estimates,
Exceed = backtest$exceedances
)
plot_data$NegReturn <- -plot_data$Return
plot(plot_data$Index, plot_data$NegReturn, type = "l",
col = "black", xlab = "Observation", ylab = "Return/VaR",
main = paste0(asset_name, " GARCH-VaR (", confidence_level*100, "%)"),
ylim = c(min(c(plot_data$NegReturn, plot_data$VaR), na.rm=TRUE),
max(c(plot_data$NegReturn, plot_data$VaR), na.rm=TRUE) * 1.2))
lines(plot_data$Index, plot_data$VaR, col = "blue", lty = 2)
exceed_idx <- which(plot_data$Exceed == 1)
points(exceed_idx, plot_data$NegReturn[exceed_idx],
col = "red", pch = 19, cex = 0.8)
if (asset_name %in% names(egarch_kupiec_results)) {
result <- egarch_kupiec_results[[asset_name]]
legend_text <- paste0(
"Exceptions: ", result$exceptions, "/", result$total_obs, " (",
round(result$actual_rate * 100, 2), "%)\n",
"Expected: ", round(result$expected_rate * 100, 2), "%\n",
"p-value: ", round(result$p_value, 4), "\n",
"Result: ", result$result
)
} else {
legend_text <- "No Kupiec test results"
}
legend("topright", legend = legend_text, bty = "n", cex = 0.7)
}

# Basel traffic light test
basel_traffic_light <- function(exceptions, observations, confidence_level) {
if (confidence_level == 0.99) {
if (exceptions <= 4) return("Green Zone")
else if (exceptions <= 9) return("Yellow Zone")
else return("Red Zone")
} else if (confidence_level == 0.95) {
expected_exceptions <- observations * 0.05
if (exceptions <= expected_exceptions * 1.2) return("Green Zone")
else if (exceptions <= expected_exceptions * 1.6) return("Yellow Zone")
else return("Red Zone")
}
}
basel_results_egarch <- lapply(egarch_kupiec_results, function(result) {
if (is.null(result)) return(NULL)
zone <- basel_traffic_light(result$exceptions, result$total_obs, confidence_level)
data.frame(
Exceptions = result$exceptions,
Observations = result$total_obs,
Expected_Rate = result$expected_rate,
Actual_Rate = result$actual_rate,
Zone = zone
)
})
basel_egarch_summary <- do.call(rbind, lapply(names(basel_results_egarch), function(asset) {
result <- basel_results_egarch[[asset]]
if (is.null(result)) return(NULL)
result$Asset <- asset
return(result)
}))
if (!is.null(basel_egarch_summary) && nrow(basel_egarch_summary) > 0) {
basel_egarch_summary <- basel_egarch_summary[, c("Asset", "Exceptions", "Observations",
"Expected_Rate", "Actual_Rate", "Zone")]
print(basel_egarch_summary)
ggplot(basel_egarch_summary, aes(x = Asset, y = Actual_Rate * 100, fill = Zone)) +
geom_bar(stat = "identity") +
geom_hline(yintercept = 5, linetype = "dashed", color = "black") +
scale_fill_manual(values = c("Green Zone" = "darkgreen",
"Yellow Zone" = "gold",
"Red Zone" = "darkred")) +
theme_minimal() +
labs(title = "EGARCH-VaR Exceedance Rates by Asset with Basel Zones",
subtitle = paste0(confidence_level * 100, "% VaR"),
y = "Exceedance Rate (%)",
x = "Asset") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
}
## Asset Exceptions Observations Expected_Rate Actual_Rate Zone
## 1 gold_return 2 104 0.05 0.01923077 Green Zone
## 2 btc_return 2 104 0.05 0.01923077 Green Zone
## 3 jkse_return 11 104 0.05 0.10576923 Red Zone
## 4 bond_return 7 104 0.05 0.06730769 Yellow Zone

# Optional: Export Summary
if (!requireNamespace("writexl", quietly = TRUE)) install.packages("writexl")
writexl::write_xlsx(return_stats, "Portfolio_Performance_Comparison.xlsx")
result_df <- bind_rows(results)
result_df <- result_df[,-5]
assets_weight <- bind_rows(data.frame(results[[1]]$`t(best_w)`),data.frame(results[[2]]$`t(best_w)`),
data.frame(results[[3]]$`t(best_w)`),data.frame(results[[4]]$`t(best_w)`),
data.frame(results[[5]]$`t(best_w)`))
colnames(assets_weight) <- assets
result_df <- cbind(result_df,assets_weight)
writexl::write_xlsx(data.frame(result_df),"Comparison Data Frame.xlsx")
# 14. Tampilkan Seluruh Hasil Simulasi
cat("\n=== Hasil Simulasi Mean–VaR dengan Batas Risiko ===\n")
##
## === Hasil Simulasi Mean–VaR dengan Batas Risiko ===
print(result_df)
## max_risk target_return Mean SD t(best_w).1 t(best_w).2
## 1 No Limit 0.006824 0.005807126 0.02385533 0.648871049 0.015344526
## 2 0.02 0.006824 0.003459247 0.02116771 0.568386653 0.006398091
## 3 0.04 0.006824 0.005919191 0.02403277 0.672255436 0.005475364
## 4 0.06 0.006824 0.005850759 0.02422718 0.658157538 0.010952039
## 5 0.08 0.006824 0.005986990 0.02385796 0.651530392 0.007231788
## t(best_w).3 t(best_w).4 gold_return btc_return jkse_return bond_return
## 1 0.231361725 0.104422701 0.6488710 0.015344526 0.2313617 0.10442270
## 2 0.254423001 0.170792255 0.5683867 0.006398091 0.2544230 0.17079226
## 3 0.221513854 0.100755346 0.6722554 0.005475364 0.2215139 0.10075535
## 4 0.260483831 0.070406591 0.6581575 0.010952039 0.2604838 0.07040659
## 5 0.292464556 0.048773263 0.6515304 0.007231788 0.2924646 0.04877326
# 15. Visualisasi Perubahan Bobot
library(reshape2)
melted <- melt(result_df[, c("max_risk", assets)], id.vars = "max_risk")
ggplot(melted, aes(x = max_risk, y = value, fill = variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(
title = "Perubahan Bobot Portofolio terhadap Batas Risiko",
x = "Batas Risiko (SD Maksimum)",
y = "Bobot Aset",
fill = "Aset"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold"),
axis.text.x = element_text(size = 12)
)+
geom_text(
aes(label = round(value, 4)), # menampilkan nilai bobot
position = position_dodge(width = 0.9), # sejajar dengan batang
vjust = -0.3, # posisi sedikit di atas batang
size = 3.5 # ukuran teks
)

plot_pie <- function(risk_label, data) {
data_subset <- data %>% filter(max_risk == risk_label)
ggplot(data_subset, aes(x = "", y = value, fill = variable)) +
geom_col(width = 1, color = "white") +
coord_polar(theta = "y") +
labs(
title = paste("Distribusi Bobot Portofolio\nBatas Risiko:", risk_label),
fill = "Aset"
) +
geom_text(
aes(label = paste0(round(value * 100, 2), "%")),
position = position_stack(vjust = 0.5),
color = "white",
size = 4
) +
theme_void() +
theme(
plot.title = element_text(hjust = 0.5, size = 13, face = "bold"),
legend.title = element_text(size = 10),
legend.text = element_text(size = 9)
)
}
# Buat pie chart untuk tiap kondisi risiko
plots <- lapply(unique(melted$max_risk), function(risk) plot_pie(risk, melted))
# Tampilkan semua dalam grid (3 kolom)
do.call(grid.arrange, c(plots, ncol = 3))
