2025-11-10
\[ \text{maximize CI} = \color{Red}{W_1 \times \text{Biodiversity}} + \color{Purple}{W_2 \times \text{Carbon}} \times \color{Blue}{W_3 \times\text{Contiguity}_n} \]
## Rows: 15 Columns: 16 ## ── Column specification ──────────────────────────────────────────────────────── ## Delimiter: "," ## dbl (16): weight, Biodiversity, CarbonRaw, CarbonWeighted, Contiguity, Obj, ... ## ## ℹ Use `spec()` to retrieve the full column specification for this data. ## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
We are being very conservative
Sørensen and Jaccard weigh overlap differently but here they agree on the elbow near w≈0.4.
Interpretation: around that weight you still retain high between-site distinctness while boosting carbon—after that, extra carbon comes with rapidly diminishing \(\beta\) diversity.
Window A (2026–2045): No‑additional‑warming guardrail at national land‑use scale.
Window B (2046–2075): consolidation & scaling of nature networks; continue decarbonization and stabilize land carbon.
Window C (2076–2100): resilience under residual climate change; maintain connectivity, hydrology, and evolutionary potential.
Rationale: aligns near‑term with global 1.5 °C pathways and mid‑/late‑century with EU nature restoration ambitions. (Exact dates are modeling choices; see Feedback slide.)
Curves parameterized from meta-analyses: * peatland enhanced revegetation timelines from Allan et al. 2023; * grassland passive vs seeding from Ladouceur et al. 2023 and a 2023 synthesis of restoration methods * forest restoration trajectories from Crouzeilles et al. 2016, 2020; * wetland recovery context from Moreno-Mateos et al. 2012.
Carbon floor 20y: Keeps only trajectories whose minimum carbon over years 0–20 is ≥ carbon_floor_20 (default 0 tCO₂e/ha). Why: enforce “no near-term net carbon loss.”
Climate veil (top 50% @H): focus on long-run climate-robust futures.
Biodiv veil (top 50% @H): emphasize long-run biodiversity performance. Effect: hides the lower half of biodiversity outcomes at the horizon.
All three filters Intersection of all the above: passes the 20-year floor and is above-median in both carbon and biodiversity at H_sel. Why: strict shortlist of futures that are near-term safe and long-term strong on both axes.
Atkinson, J., Bonn, A., Stott, I., et al. (2022). Terrestrial ecosystem restoration increases biodiversity and ecosystem services. Nature Communications, 13, 8043. https://doi.org/10.1038/s41467-022-35224-2. (PMC)
Cain, M., Lynch, J., Allen, M. R., et al. (2019). Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Climate and Atmospheric Science, 2, 29. https://doi.org/10.1038/s41612-019-0086-4. (Nature)
Crouzeilles, R., Ferreira, M. S., Chazdon, R. L., et al. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications, 7, 11666. https://doi.org/10.1038/ncomms11666. (Nature)
Crouzeilles, R., Ferreira, M. S., Chazdon, R. L., et al. (2017). Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 3(11), e1701345. https://doi.org/10.1126/sciadv.1701345. (PMC)
Günther, A., Barthelmes, A., Huth, V., et al. (2020). Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications, 11, 1644. https://doi.org/10.1038/s41467-020-15499-z. (PubMed)
IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use (Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K., Eds.). IGES. (See Ch. 4, Forest Land). https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html. (ipcc-nggip.iges.or.jp)
IPCC. (2013). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Hiraishi, T., Krug, T., Tanabe, K., et al., Eds.). IPCC. https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/. (IPCC)
IPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Calvo Buendia, E., Tanabe, K., Kranjc, A., et al., Eds.). IPCC. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
Jost, E., Schönhart, M., Skalský, R., Balkovič, J., Schmid, E., & Mitter, H. (2021). Dynamic soil functions assessment employing land use and climate scenarios at regional scale. Journal of Environmental Management, 287, 112318. https://doi.org/10.1016/j.jenvman.2021.112318. (PubMed)
Kalhori, A. A., Wilson, D., Günther, A., et al. (2024). Time matters for quantifying the climate change mitigation potential of rewetting peatlands. Communications Earth & Environment, 5, 62. https://doi.org/10.1038/s43247-024-01326-1. (Source data used for rewetting time series; Fig2.csv).
Ladouceur, E., Isbell, F., Wilsey, B., et al. (2023). The recovery of plant community composition following passive restoration across spatial scales. Journal of Ecology, 111(7), 1465–1480. https://doi.org/10.1111/1365-2745.14063. (BES Journals)
Lynch, J., Cain, M., Pierrehumbert, R., & Allen, M. R. (2020). Demonstrating GWP: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environmental Research Letters, 15*(4), 044023. https://doi.org/10.1088/1748-9326/ab6d7e. (PubMed)
Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biology, 12(1), 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x. (Wiley)
Moreno-Mateos, D., Power, M. E., Comín, F. A., & Yockteng, R. (2012). Structural and functional loss in restored wetland ecosystems. PLOS Biology, 10(1), e1001247. https://doi.org/10.1371/journal.pbio.1001247.
Neubauer, S. C., & Megonigal, J. P. (2015). Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems, 18(6), 1000–1013. https://doi.org/10.1007/s10021-015-9879-4.
Poeplau, C., Don, A., Vesterdal, L., et al. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Global Change Biology, 17(7), 2415–2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x.
Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290–300. https://doi.org/10.1093/jxb/10.2.290.
Wilson, D., Blain, D., Couwenberg, J., et al. (2016). Greenhouse gas emission factors associated with rewetting of organic soils. Mires and Peat, 17, Article 04. https://doi.org/10.19189/MaP.2016.OMB.222. (Mires & Peat)