Healthy Cities GIS Assignment

Author

E Choi

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
setwd("C:/Users/enomc/OneDrive - montgomerycollege.edu/Documents/Data Science")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017) |>
  filter(StateAbbr == "CT") |>
  filter(Category == "Unhealthy Behaviors")
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc   CityName   GeographicLevel DataSource Category    
  <dbl> <chr>     <chr>       <chr>      <chr>           <chr>      <chr>       
1  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
2  2017 CT        Connecticut Danbury    City            BRFSS      Unhealthy B…
3  2017 CT        Connecticut Norwalk    Census Tract    BRFSS      Unhealthy B…
4  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
5  2017 CT        Connecticut Hartford   Census Tract    BRFSS      Unhealthy B…
6  2017 CT        Connecticut Waterbury  Census Tract    BRFSS      Unhealthy B…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “latlong_clean2” is a manageable dataset now.

For your assignment, work with a cleaned dataset where you perform your own cleaning and filtering.

1. Once you run the above code and filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations through some inclusion/exclusion criteria.

Filter chunk here (you may need multiple chunks) dont slice

latlong_CA <- latlong |>
  filter(StateDesc == "California") |>
  filter(Data_Value_Type == "Age-adjusted prevalence") |>
  filter(Year == 2017) |>
  filter(Category == "Unhealthy Behaviors") 
head(latlong_CA)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Indio     City            BRFSS      Unhealthy Beh…
2  2017 CA        California Corona    City            BRFSS      Unhealthy Beh…
3  2017 CA        California Fullerton City            BRFSS      Unhealthy Beh…
4  2017 CA        California Fullerton City            BRFSS      Unhealthy Beh…
5  2017 CA        California San Diego City            BRFSS      Unhealthy Beh…
6  2017 CA        California Tracy     City            BRFSS      Unhealthy Beh…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
ca_lon <- -119.4
ca_lat <- 36.8

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

## Non-map plot unhealthy behaviors across cities
ggplot(latlong_CA, aes(x = Data_Value, fill = Short_Question_Text )) +
  geom_histogram(color = "white") + # I wanted to make it white so that there's a little white space separating the types of unhealthy behavior
  theme_bw() +
  labs(
    title = "Distribution of Unhealthy Behavior Prevalence (California, 2017)",
    x = "Age-adjusted Prevalence (%)",
    y = "Number of Cities",
    fill = "Type of Unhealthy Behavior",
    caption = "Source: latlong_CA dataset"
  )
`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

3. Now create a map of your subsetted dataset.

First map chunk here

leaflet() |>
  setView(lng = -119.4, lat = 36.8, zoom =6.1) |>
  addProviderTiles("Esri.NatGeoWorldMap") |>
  addCircles(
    data = latlong_CA,
    radius =sqrt(1.75^latlong_CA$Data_Value) * 2,
  )
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

# Create popup or when you click on point to show info like Japan's tutorial
popup_CA <- paste0(
  "<b>City: </b>", latlong_CA$CityName, "<br>",
  "<b>Behavior: </b>", latlong_CA$Short_Question_Text, "<br>",
  "<b>Age-adjustedPrevalence: </b>", latlong_CA$Data_Value, "%<br>",
  "<b>Data Source: </b>", latlong_CA$DataSource
)
leaflet() |>
  setView(lng = -119.4, lat = 36.8, zoom =6.1) |>
  addProviderTiles("Esri.NatGeoWorldMap") |>
  addCircles(
    data = latlong_CA,
    radius =sqrt(1.75^latlong_CA$Data_Value) * 2,
    popup = popup_CA
  )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

For the first non-map plot, I decided to make a histogram showing how common behavior rates are across the cities in California 2017. The x-axis shows how common the rates are, the y-axis shows how many cities fall in each range, and then the colors show four different types of unhealthy behaviors. For question three I made an interactive map of California with circles for each city. Bigger circles mean higher prevalence of unhealthy behaviors. Mostly followed steps from japan’s tutorial and then switching up for my own dataset, variable names etc. For question four I added popups or mouse tool tips so when you click a circle it shows city, behavior, prevalence, and the data source. For the radius of the circles on the map, I started with the formula from the tutorial but adjusted it to fit my dataset.