1 Problem Statement

An article in Quality Progress (May 2011, pp. 42–48) describes the use of factorial experiments to improve a silver powder production process. This product is used in conductive pastes to manufacture a wide variety of products ranging from silicon wafers to elastic membrane switches. We consider powder density (g/cm2)(g/cm2) as the response variable and critical characteristics of this product.

1.1 part a

Write the model equation for the full factorial model

\[{y_{ijkl}} = \mu + {\tau _i} + {\beta _j} + {\gamma _k} + {(\tau \beta )_{ij}} + {(\tau \gamma )_{ik}} + {(\beta \gamma )_{jk}} + {(\tau \beta \gamma )_{ijk}} + {\varepsilon _{ijkl}}\]

1.2 part b

What factors are deemed significant, using α=.05 as a guide. Report the final p-values of significant factors (and interaction plots if necessary).

library(readr)
PowderProduction <- read_csv("PowderProduction.csv")
## Rows: 16 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (4): Ammonium, StirRate, Temperature, Density
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#View(PowderProduction)
data.frame(PowderProduction$Ammonium,PowderProduction$StirRate,PowderProduction$Temperature,PowderProduction$Density)
##    PowderProduction.Ammonium PowderProduction.StirRate
## 1                          2                       100
## 2                          2                       100
## 3                         30                       100
## 4                         30                       100
## 5                          2                       150
## 6                          2                       150
## 7                         30                       150
## 8                         30                       150
## 9                          2                       100
## 10                         2                       100
## 11                        30                       100
## 12                        30                       100
## 13                         2                       150
## 14                         2                       150
## 15                        30                       150
## 16                        30                       150
##    PowderProduction.Temperature PowderProduction.Density
## 1                             8                    14.68
## 2                             8                    15.18
## 3                             8                    15.12
## 4                             8                    17.48
## 5                             8                     7.54
## 6                             8                     6.66
## 7                             8                    12.46
## 8                             8                    12.62
## 9                            40                    10.95
## 10                           40                    17.68
## 11                           40                    12.65
## 12                           40                    15.96
## 13                           40                     8.03
## 14                           40                     8.84
## 15                           40                    14.96
## 16                           40                    14.96
ammonium<-GAD::as.fixed(PowderProduction$Ammonium)
stir_rate<-GAD::as.fixed(PowderProduction$StirRate)
temperature<-GAD::as.fixed(PowderProduction$Temperature)
model_prob1<-aov(PowderProduction$Density~ammonium+stir_rate+temperature+(ammonium*stir_rate)
                 +(ammonium*temperature)+(stir_rate*temperature)+(ammonium*stir_rate*temperature))
GAD::gad(model_prob1)
## $anova
## Analysis of Variance Table
## 
## Response: PowderProduction$Density
##                                Df Sum Sq Mean Sq F value   Pr(>F)   
## ammonium                        1 44.389  44.389 11.1803 0.010175 * 
## stir_rate                       1 70.686  70.686 17.8037 0.002918 **
## temperature                     1  0.328   0.328  0.0826 0.781170   
## ammonium:stir_rate              1 28.117  28.117  7.0817 0.028754 * 
## ammonium:temperature            1  0.022   0.022  0.0055 0.942808   
## stir_rate:temperature           1 10.128  10.128  2.5510 0.148890   
## ammonium:stir_rate:temperature  1  1.519   1.519  0.3826 0.553412   
## Residuals                       8 31.762   3.970                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.3 Conclusion

From the p-values of this output we can see that the ammonium and stir rate are both significant. The combination of ammonium and stir rate would also be significant to this process.

2 Problem 2

A horticultural researcher wants to investigate how three controllable factors affect tomato yield in a greenhouse environment. You will use R and the agricolae package to create the experimental layout for this study.

Experimental Factors:

Factor Description Levels A Fertilizer Type A₁ = Organic compost, A₂ = Chemical fertilizer B Irrigation Frequency B₁ = Once per day, B₂ = Twice per day C Temperature Setting C₁ = 22°C, C₂ = 28°C

The experimenter wants to run a full factorial design (2³ = 8 treatments) with three replications arranged in a randomized complete block design (RCBD) to control for variation between blocks (e.g., differences among greenhouse benches). Use the design.ab() function from the agricolae package to create a 2³ factorial design with a unique seed. Display the layout with $book.

# factorial 2 x 2 x 2 with 5 replications in completely randomized design.
trt<-c(2,2,2)
outdesign<-agricolae::design.ab(trt, r=3, seed=23, design="rcbd")
book<-outdesign$book
print(book)
##    plots block A B C
## 1    101     1 1 2 1
## 2    102     1 1 2 2
## 3    103     1 2 2 2
## 4    104     1 2 1 2
## 5    105     1 2 2 1
## 6    106     1 1 1 1
## 7    107     1 1 1 2
## 8    108     1 2 1 1
## 9    109     2 1 2 2
## 10   110     2 1 2 1
## 11   111     2 2 1 1
## 12   112     2 1 1 2
## 13   113     2 2 1 2
## 14   114     2 2 2 1
## 15   115     2 2 2 2
## 16   116     2 1 1 1
## 17   117     3 2 1 1
## 18   118     3 1 2 2
## 19   119     3 2 2 1
## 20   120     3 1 2 1
## 21   121     3 2 1 2
## 22   122     3 1 1 1
## 23   123     3 1 1 2
## 24   124     3 2 2 2