Understanding relationships between variables
2025-11-09
Understanding relationships between variables
We model the relationship between a dependent variable \(Y\) and an independent variable \(X\):
\[ Y = \beta_0 + \beta_1 X + \varepsilon \]
## mpg cyl disp hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
## `geom_smooth()` using formula = 'y ~ x'
After fitting the model, we obtain coefficients \(\hat{\beta}_0\) and \(\hat{\beta}_1\):
\[ \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X \]
## ## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2': ## ## last_plot
## The following object is masked from 'package:stats': ## ## filter
## The following object is masked from 'package:graphics': ## ## layout
## ## Call: ## lm(formula = mpg ~ wt, data = mtcars) ## ## Residuals: ## Min 1Q Median 3Q Max ## -4.5432 -2.3647 -0.1252 1.4096 6.8727 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 37.2851 1.8776 19.858 < 2e-16 *** ## wt -5.3445 0.5591 -9.559 1.29e-10 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.046 on 30 degrees of freedom ## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446 ## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
Residual plots help visualize how well the regression model fits the data.
The coefficient of determination \(R^2\) measures how well the regression line explains the variability of the data:
\[ R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} \]
Higher \(R^2\) values indicate a better model fit, meaning the model explains a larger proportion of the variance in \(Y\).
Linear regression estimates how Y changes with changes in X
Residuals indicate model fit
Tools like ggplot2 and plotly help visualize data beautifully