Healthy Cities GIS Assignment

Author

Christian Estrada

Load the libraries and set the working directory

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.1.0     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyr)
library(leaflet)
Warning: package 'leaflet' was built under R version 4.5.2
setwd("C:/Users/chris/Downloads/DATA 110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
Rows: 810103 Columns: 24
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (17): StateAbbr, StateDesc, CityName, GeographicLevel, DataSource, Categ...
dbl  (6): Year, Data_Value, Low_Confidence_Limit, High_Confidence_Limit, Cit...
num  (1): PopulationCount

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data(cities500)
Warning in data(cities500): data set 'cities500' not found

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017) |>
  filter(StateAbbr == "CT") |>
  filter(Category == "Unhealthy Behaviors")

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “latlong_clean2” is a manageable dataset now.

For your assignment, work with a cleaned dataset where you perform your own cleaning and filtering.

1. Once you run the above code and filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations through some inclusion/exclusion criteria.

Filter chunk here (you may need multiple chunks)

subset_ct <- latlong_clean2 |>
  filter(
    str_detect(Measure, "Current smoking") |
    str_detect(Measure, "Physical inactivity")
  ) |>
  filter(
    CityName == "Hartford" |
    CityName == "New Haven" |
    CityName == "Bridgeport" |
    CityName == "Stamford"
  )
nrow(subset_ct)
[1] 138

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

ggplot(subset_ct, aes(x = CityName, y = Data_Value, fill = Measure)) +
  geom_col(position = "dodge") +
  labs(
    title = "Unhealthy Behaviors in Major Connecticut Cities (2017)",
    caption = "Source: https://www.cdc.gov/places/about/500-cities-2016-2019/index.html",
    x = "City",
    y = "Crude Prevalence (%)",
    fill = "Measure"
  ) +
  theme_minimal()

3. Now create a map of your subsetted dataset.

First map chunk here

subset_ct |>
  leaflet() |>
  addTiles() |>
  addMarkers(
    lng = ~long,
    lat = ~lat,
    clusterOptions = markerClusterOptions(),
    popup = ~paste0(
      "<b>", CityName, "</b><br>",
      "Measure: ", Measure, "<br>",
      "Prevalence: ", Data_Value, "%"
    ),
    label = ~paste0(CityName, " — ", round(Data_Value, 1), "%")
  )

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

subset_ct |>
  leaflet() |>
  addTiles() |>
  addCircleMarkers(
    lng = ~long,
    lat = ~lat,
    color = ~ifelse(Measure == "Current smoking", "blue", "green"),
    radius = 8,
    fillOpacity = 0.8,
    stroke = TRUE,
    weight = 1,
    popup = ~paste0(
      "<b>", CityName, "</b><br>",
      "Measure: ", Measure, "<br>",
      "Prevalence: ", Data_Value, "%"
    ),
    label = ~paste0(CityName, " — ", round(Data_Value, 1), "%")
  )

5. Write a paragraph

The bar chart shows that Hartford and Bridgeport have the highest prevalence of both current smoking and physical inactivity, while Stamford shows the lowest. The interactive map allows users to explore these cities geographically. Clicking or hovering over markers displays each city’s prevalence values, similar to the NYC complaint maps. The clustering and interactive labeling make the visualization clean and easy to interpret.