Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
We will analyze performance from 2012-12-31 to 2017-12-31.
symbols <- c("NVDA", "INTC", "GOOG", "AMD", "AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
head(prices)
## # A tibble: 6 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NVDA 2012-12-31 0.301 0.308 0.301 0.306 326460000 0.283
## 2 NVDA 2013-01-02 0.314 0.318 0.313 0.318 478836000 0.293
## 3 NVDA 2013-01-03 0.318 0.322 0.315 0.318 298888000 0.294
## 4 NVDA 2013-01-04 0.319 0.330 0.318 0.329 524968000 0.303
## 5 NVDA 2013-01-07 0.329 0.329 0.317 0.319 610732000 0.295
## 6 NVDA 2013-01-08 0.320 0.321 0.310 0.312 466424000 0.288
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
head(asset_returns_tbl)
## # A tibble: 6 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AAPL 2013-03-28 -0.178
## 2 AAPL 2013-06-28 -0.103
## 3 AAPL 2013-09-30 0.191
## 4 AAPL 2013-12-31 0.169
## 5 AAPL 2014-03-31 -0.0383
## 6 AAPL 2014-06-30 0.198
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
weights <- c(0.20, 0.15, 0.15, 0.30, 0.20)
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.2
## 2 AMD 0.15
## 3 GOOG 0.15
## 4 INTC 0.3
## 5 NVDA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
head(portfolio_returns_tbl)
## # A tibble: 6 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0216
## 2 2013-06-28 0.118
## 3 2013-09-30 0.0349
## 4 2013-12-31 0.120
## 5 2014-03-31 0.0212
## 6 2014-06-30 0.115
# Portfolio Standard Deviation
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0722 0.0722
# Portfolio Mean Return
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.07085562
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
## Adding missing grouping variables: `asset`
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AAPL 0.045 0.119
## 2 AMD 0.0727 0.274
## 3 GOOG 0.0544 0.0905
## 4 INTC 0.0483 0.0948
## 5 NVDA 0.141 0.134
## 6 Portfolio 0.0709 0.0722
# Plot
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point(size = 3) +
geom_text(aes(label = asset), vjust = 1.5, hjust = 0.5, size = 4) +
labs(title = "Expected Returns vs Risk (2012–2017)",
x = "Standard Deviation (Risk)",
y = "Mean Quarterly Return") +
theme_minimal()
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 8,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
scale_y_continuous(labels = scales::percent_format()) +
labs(x = NULL,
y = NULL,
title = "8-Quarter Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))
The visualization shows the trade-off between expected return and risk for each stock and the overall portfolio.