BÀI TẬP ANOVA

01-ANTIFUNGAL DATASET

## # A tibble: 6 × 4
##      No Temperature Carbon     Y
##   <dbl> <fct>       <fct>  <dbl>
## 1     1 25          2       25.8
## 2     2 30          2       51.9
## 3     3 37          2       41.1
## 4     4 25          5       20.5
## 5     5 30          5       41.1
## 6     6 37          5       32.6

##                    Df Sum Sq Mean Sq F value Pr(>F)  
## Temperature         2   8147    4073   5.155  0.017 *
## Carbon              2   1073     536   0.679  0.520  
## Temperature:Carbon  4    126      32   0.040  0.997  
## Residuals          18  14224     790                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(antifungal_anova_model)
## W = 0.91751, p-value = 0.0344
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  8  0.4664 0.8639
##       18
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Y ~ Temperature * Carbon, data = antifungal_df)
## 
## $Temperature
##            diff        lwr      upr     p adj
## 30-25  41.76889   7.948276 75.58950 0.0145052
## 37-25  27.90667  -5.913946 61.72728 0.1167143
## 37-30 -13.86222 -47.682835 19.95839 0.5584470
## 
## $Carbon
##             diff       lwr      upr     p adj
## 5-2   -14.937778 -48.75839 18.88283 0.5102518
## 7.5-2 -10.853333 -44.67395 22.96728 0.6963576
## 7.5-5   4.084444 -29.73617 37.90506 0.9491272
## 
## $`Temperature:Carbon`
##                        diff        lwr       upr     p adj
## 30:2-25:2      3.800333e+01  -42.41974 118.42641 0.7637706
## 37:2-25:2      2.250667e+01  -57.91641 102.92974 0.9831308
## 25:5-25:2     -1.703333e+01  -97.45641  63.38974 0.9972300
## 30:5-25:2      2.250667e+01  -57.91641 102.92974 0.9831308
## 37:5-25:2      1.022333e+01  -70.19974  90.64641 0.9999313
## 25:7.5-25:2   -1.792333e+01  -98.34641  62.49974 0.9960892
## 30:7.5-25:2    2.984000e+01  -50.58307 110.26307 0.9187441
## 37:7.5-25:2    1.603333e+01  -64.38974  96.45641 0.9981742
## 37:2-30:2     -1.549667e+01  -95.91974  64.92641 0.9985605
## 25:5-30:2     -5.503667e+01 -135.45974  25.38641 0.3411162
## 30:5-30:2     -1.549667e+01  -95.91974  64.92641 0.9985605
## 37:5-30:2     -2.778000e+01 -108.20307  52.64307 0.9438076
## 25:7.5-30:2   -5.592667e+01 -136.34974  24.49641 0.3226330
## 30:7.5-30:2   -8.163333e+00  -88.58641  72.25974 0.9999877
## 37:7.5-30:2   -2.197000e+01 -102.39307  58.45307 0.9854497
## 25:5-37:2     -3.954000e+01 -119.96307  40.88307 0.7266250
## 30:5-37:2     -2.842171e-14  -80.42307  80.42307 1.0000000
## 37:5-37:2     -1.228333e+01  -92.70641  68.13974 0.9997298
## 25:7.5-37:2   -4.043000e+01 -120.85307  39.99307 0.7043767
## 30:7.5-37:2    7.333333e+00  -73.08974  87.75641 0.9999946
## 37:7.5-37:2   -6.473333e+00  -86.89641  73.94974 0.9999980
## 30:5-25:5      3.954000e+01  -40.88307 119.96307 0.7266250
## 37:5-25:5      2.725667e+01  -53.16641 107.67974 0.9492429
## 25:7.5-25:5   -8.900000e-01  -81.31307  79.53307 1.0000000
## 30:7.5-25:5    4.687333e+01  -33.54974 127.29641 0.5364661
## 37:7.5-25:5    3.306667e+01  -47.35641 113.48974 0.8675409
## 37:5-30:5     -1.228333e+01  -92.70641  68.13974 0.9997298
## 25:7.5-30:5   -4.043000e+01 -120.85307  39.99307 0.7043767
## 30:7.5-30:5    7.333333e+00  -73.08974  87.75641 0.9999946
## 37:7.5-30:5   -6.473333e+00  -86.89641  73.94974 0.9999980
## 25:7.5-37:5   -2.814667e+01 -108.56974  52.27641 0.9397777
## 30:7.5-37:5    1.961667e+01  -60.80641 100.03974 0.9929001
## 37:7.5-37:5    5.810000e+00  -74.61307  86.23307 0.9999991
## 30:7.5-25:7.5  4.776333e+01  -32.65974 128.18641 0.5134518
## 37:7.5-25:7.5  3.395667e+01  -46.46641 114.37974 0.8509353
## 37:7.5-30:7.5 -1.380667e+01  -94.22974  66.61641 0.9993667

02-IRIS DATASET

## # A tibble: 6 × 5
##   S.Length S.Width P.Length P.Width Species 
##      <dbl>   <dbl>    <dbl>   <dbl> <fct>   
## 1      5.1     3.5      1.4     0.2 I.setosa
## 2      4.9     3        1.4     0.2 I.setosa
## 3      4.7     3.2      1.3     0.2 I.setosa
## 4      4.6     3.1      1.5     0.2 I.setosa
## 5      5       3.6      1.4     0.2 I.setosa
## 6      5.4     3.9      1.7     0.4 I.setosa

##              Df Sum Sq Mean Sq F value Pr(>F)    
## Species       2  63.21  31.606   119.3 <2e-16 ***
## Residuals   147  38.96   0.265                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(iris_anova_model)
## W = 0.9879, p-value = 0.2189
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value   Pr(>F)   
## group   2  6.3527 0.002259 **
##       147                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = S.Length ~ Species, data = iris_df)
## 
## $Species
##                           diff       lwr       upr p adj
## I.versicolor-I.setosa    0.930 0.6862273 1.1737727     0
## I.virginica-I.setosa     1.582 1.3382273 1.8257727     0
## I.virginica-I.versicolor 0.652 0.4082273 0.8957727     0

03-SURFACE_EXP DATASET

## # A tibble: 6 × 11
##   paint dry_time result ...4  ...5  ...6  ...7   ...8  ...9 ...10 ...11
##   <dbl> <fct>     <dbl> <lgl> <lgl> <lgl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1     1 20           74 NA    NA    NA    NA       NA    NA    NA    NA
## 2     1 20           64 NA    NA    NA    NA       NA    20    25    30
## 3     1 20           50 NA    NA    NA    NA        1    74    73    78
## 4     1 25           73 NA    NA    NA    NA       NA    64    61    85
## 5     1 25           61 NA    NA    NA    NA       NA    50    44    92
## 6     1 25           44 NA    NA    NA    NA        2    92    98    66

##                Df Sum Sq Mean Sq F value Pr(>F)  
## dry_time        2   27.4    13.7   0.073  0.930  
## paint           1  355.6   355.6   1.902  0.193  
## dry_time:paint  2 1878.8   939.4   5.026  0.026 *
## Residuals      12 2242.7   186.9                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(surface_exp_anova_model)
## W = 0.95127, p-value = 0.4452
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = result ~ dry_time * paint, data = surface_exp_df)
## 
## $dry_time
##           diff       lwr      upr     p adj
## 25-20 0.500000 -20.55691 21.55691 0.9977903
## 30-20 2.833333 -18.22358 23.89025 0.9318277
## 30-25 2.333333 -18.72358 23.39025 0.9531516

04-WEIGHTLIFTING DATASET

## # A tibble: 6 × 5
##     Age  Body Snatch Clean Total
##   <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1    26  163    210   262.  472.
## 2    30  141.   205   250   455 
## 3    22  161.   208.  240   448.
## 4    27  118.   200   240   440 
## 5    23  125.   195   242.  438.
## 6    31  140.   190   240   430

## 
## Call:
## lm(formula = Total ~ Body + Age, data = weightlifting_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -49.937 -21.925   1.228  22.260  36.889 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 237.3660    98.3805   2.413   0.0344 *
## Body          0.8120     0.6339   1.281   0.2266  
## Age           2.6810     1.9193   1.397   0.1900  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31.65 on 11 degrees of freedom
## Multiple R-squared:  0.262,  Adjusted R-squared:  0.1278 
## F-statistic: 1.952 on 2 and 11 DF,  p-value: 0.1881

## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(weightlifting_lm)
## W = 0.92897, p-value = 0.2952
## Analysis of Variance Table
## 
## Response: Total
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Body       1  1956.6  1956.6  1.9531 0.1898
## Age        1  1954.8  1954.8  1.9513 0.1900
## Residuals 11 11019.5  1001.8