25_11.03-UncivilPrejudicePilot2 (Prej versus Uncivil)

Design

Participants read an email exchange where a man (Paul) said something sexist: “No idea, but it’s a leadership position so I doubt very many women will apply. And the women who do apply probably won’t be very strong.” And then another man (Jeff) responded.

Manipulations

Manipulation Text
Uncivil (retinciv2) Shut up, Paul. No one wants to hear what you have to say.
Neutral (nonresponse) Keep me updated
Civil (civil) Please don’t say that, Paul.

Items

status

Item label Item text - 3 0 3
posstat1 After his response back to Paul, I think Jeff is worthy of…: -3. A lot of disrespect 0. Neither disrespect nor respect 3. A lot of respect
posstat2 After his response back to Paul, I hold Jeff… -3. In very low regard 0. In neither low regard nor high regard 3. In very high regard
posstat3 After his response back to Paul, in terms of being like Jeff…: -3. I want to be very different from him -3. A lot of disrespect 0. I don’t want to be like him, or different from him

rewards

Do you think that Jeff should experience any of the following changes after his response to Paul?

Item label Item text - 3 0 3
reward1 change in his salary: -3. should definitely be decreased 0. would keep the same 3. should definitely be increased
reward2 change in his job rank: -3. should definitely be demoted 0. would keep the same 3. should definitely be promoted
reward3 change in visibility of his project assignments: -3. Should be assigned to projects with very low visibility 0. Should remain on projects with the same visibility as before 3. Should be assigned to projects with high visibility
reward4 change in his public recognition: -3. Should definitely be decreased 0. Should be kept the same 3. Should definitely be increased

socrewards

Do you think that Jeff should experience any of the following changes after his response to Paul?

Item label Item text - 3 0 3
socreward1 at the next work event: -3. I would avoid Jeff 0. I would neither avoid nor approach Jeff 3. I would approach Jeff
socreward2 how much closer did you feel to Jeff?: -3. I felt much more distant from him 0. The amount of closeness I felt towards him did not change 3. I felt much closer to him
socreward3 how would the amount of time that you want to spend with Jeff change?: -3. I would want to spend much less time with him 0. I would not want to change the amount of time I spend with him 3. I would want to spend much more time with him

agency

When Jeff responded to Paul, did you think that Jeff was… (1 = not at all, 4 = somewhat, 7 = very much so)

  • confident
  • skillful
  • competitive
  • powerful
  • capable
  • agentic

Inhibition

  • Uninhibited
  • not scared to initiate conflict with wrongdoers

Perceptions of Paul

When Jeff responded to Paul, did you feel…

  • Uncomfortable
  • Protected
  • Empowered
  • Worried
  • Embarrassed
  • Nervous
  • Anxious
  • Distracted
  • Nervous
  • Anxious
  • Conspicuous
  • Lonely
  • Self-conscious
  • Singled out
  • Uncomfortable
  • Bored
  • Interested
  • Confused
  • Happy
  • Proud
  • Activated
  • Stimulated
  • Stirred up

deter/learn uncivil

When Jeff responded to Paul, did you think that Paul… (1 = not at all, 4 = somewhat, 7 = very much so)

  • learnuncivil1: would be uncivil in the future?
  • learnuncivil2: feel intimidated?
  • learnuncivil3: learned his lesson?

Rudeness evaluations

I asked participants the extent to which they saw the instigator’s comment as rude, and the respondent’s comment as rude (even though I didn’t tell them the exact language of the comment)

Respondent rudeness

Means of RESPONDENT rudeness across conditions

Comparing within context, but between response types

Comparing between contexts, but within response types

Instigator

Means of instigator rudeness across conditions

Comparing within context, but between response types

Comparing between contexts, but within response types

Analyses

Across all conditions

Correlations

Means

Effect sizes and differences

Focused analyses: comparing civility, incivility, and nonresponses within traditional and prejudice conditions

NS differences btwn uncivil/civil conditions

(+) differences btwn uncivil/civil conditions (ref: uncivil)

NS differences btwn uncivil/nonresponse conditions

(+) differences btwn uncivil/nonresponse conditions (ref: uncivil)

Comparing Prejudice to General

Mediation (retaliatory incivility type on status, rewards, social rewards)

Within prejudice condition

Controlling for instigator’s rudeness

Effect sizes and differences

Graphs

## $status

## 
## $rewards

## 
## $socialrewards

## 
## $agency

## 
## $deter

## 
## $confident

## 
## $skillful

## 
## $competitive

## 
## $powerful

## 
## $capable

## 
## $agentic

## 
## $uninhibited

## 
## $conflictinit

## 
## $uncomfortable

## 
## $protected

## 
## $empowered

## 
## $worried

## 
## $embarrassed

## 
## $nervous

## 
## $anxious

## 
## $distracted

## 
## $conspicuous

## 
## $lonely

## 
## $selfconscious

## 
## $singledout

Interacting condition with instigator’s rudeness

Effect sizes and differences

Exploratory

Rudeness: 3-way

Status

## 
## Call:
## lm(formula = status ~ manipulation_label * rudeness_2 * instigation_type, 
##     data = uncivilpilot3_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.620 -0.678  0.068  0.857  3.439 
## 
## Coefficients:
##                                                                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                                                          0.3538     0.2720    1.30  0.19420    
## manipulation_labelCivil                                              0.1693     0.4563    0.37  0.71089    
## manipulation_labelNonResponse                                       -0.8962     0.3331   -2.69  0.00747 ** 
## rudeness_2                                                           0.4222     0.1218    3.47  0.00059 ***
## instigation_typeprejudice                                            0.8510     0.3255    2.61  0.00931 ** 
## manipulation_labelCivil:rudeness_2                                  -0.0165     0.1943   -0.09  0.93216    
## manipulation_labelNonResponse:rudeness_2                             0.1166     0.1736    0.67  0.50220    
## manipulation_labelCivil:instigation_typeprejudice                   -0.8980     0.6593   -1.36  0.17400    
## manipulation_labelNonResponse:instigation_typeprejudice             -1.3492     0.4062   -3.32  0.00099 ***
## rudeness_2:instigation_typeprejudice                                 0.1044     0.1569    0.67  0.50629    
## manipulation_labelCivil:rudeness_2:instigation_typeprejudice         0.1432     0.2795    0.51  0.60867    
## manipulation_labelNonResponse:rudeness_2:instigation_typeprejudice  -0.1772     0.2250   -0.79  0.43162    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.23 on 361 degrees of freedom
## Multiple R-squared:  0.519,  Adjusted R-squared:  0.504 
## F-statistic: 35.4 on 11 and 361 DF,  p-value: <0.0000000000000002

Social Rewards

## 
## Call:
## lm(formula = socialrewards ~ manipulation_label * rudeness_2 * 
##     instigation_type, data = uncivilpilot3_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.463 -0.741  0.083  0.873  3.195 
## 
## Coefficients:
##                                                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                                                        -0.1315315  0.2768416   -0.48  0.63499    
## manipulation_labelCivil                                            -0.0769949  0.4644479   -0.17  0.86843    
## manipulation_labelNonResponse                                      -0.7183892  0.3390787   -2.12  0.03480 *  
## rudeness_2                                                          0.3093093  0.1239982    2.49  0.01306 *  
## instigation_typeprejudice                                           1.0291490  0.3313151    3.11  0.00204 ** 
## manipulation_labelCivil:rudeness_2                                 -0.0000724  0.1977410    0.00  0.99971    
## manipulation_labelNonResponse:rudeness_2                            0.0181087  0.1767133    0.10  0.91844    
## manipulation_labelCivil:instigation_typeprejudice                  -1.0455303  0.6710641   -1.56  0.12011    
## manipulation_labelNonResponse:instigation_typeprejudice            -1.4902077  0.4134877   -3.60  0.00036 ***
## rudeness_2:instigation_typeprejudice                                0.0940829  0.1596963    0.59  0.55614    
## manipulation_labelCivil:rudeness_2:instigation_typeprejudice        0.2975865  0.2845330    1.05  0.29632    
## manipulation_labelNonResponse:rudeness_2:instigation_typeprejudice -0.0358946  0.2290578   -0.16  0.87556    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.26 on 361 degrees of freedom
## Multiple R-squared:  0.428,  Adjusted R-squared:  0.411 
## F-statistic: 24.6 on 11 and 361 DF,  p-value: <0.0000000000000002

Agency

## 
## Call:
## lm(formula = agency ~ manipulation_label * rudeness_2 * instigation_type, 
##     data = uncivilpilot3_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.123 -0.638  0.051  0.716  3.661 
## 
## Coefficients:
##                                                                    Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                                          4.6297     0.2523   18.35 < 0.0000000000000002 ***
## manipulation_labelCivil                                             -0.9463     0.4233   -2.24               0.0260 *  
## manipulation_labelNonResponse                                       -0.9660     0.3090   -3.13               0.0019 ** 
## rudeness_2                                                           0.5064     0.1130    4.48              0.00001 ***
## instigation_typeprejudice                                            0.1481     0.3019    0.49               0.6241    
## manipulation_labelCivil:rudeness_2                                  -0.0280     0.1802   -0.16               0.8768    
## manipulation_labelNonResponse:rudeness_2                            -0.0957     0.1610   -0.59               0.5529    
## manipulation_labelCivil:instigation_typeprejudice                   -0.0166     0.6115   -0.03               0.9783    
## manipulation_labelNonResponse:instigation_typeprejudice             -0.4732     0.3768   -1.26               0.2100    
## rudeness_2:instigation_typeprejudice                                -0.1753     0.1455   -1.20               0.2291    
## manipulation_labelCivil:rudeness_2:instigation_typeprejudice         0.1823     0.2593    0.70               0.4824    
## manipulation_labelNonResponse:rudeness_2:instigation_typeprejudice   0.0641     0.2087    0.31               0.7591    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 361 degrees of freedom
## Multiple R-squared:  0.328,  Adjusted R-squared:  0.308 
## F-statistic:   16 on 11 and 361 DF,  p-value: <0.0000000000000002

Deter

## 
## Call:
## lm(formula = deter ~ manipulation_label * rudeness_2 * instigation_type, 
##     data = uncivilpilot3_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0913 -0.4502 -0.0642  0.4224  2.8816 
## 
## Coefficients:
##                                                                    Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                                          4.0919     0.1734   23.60 <0.0000000000000002 ***
## manipulation_labelCivil                                             -0.5802     0.2909   -1.99              0.0468 *  
## manipulation_labelNonResponse                                       -0.6417     0.2124   -3.02              0.0027 ** 
## rudeness_2                                                           0.1914     0.0777    2.47              0.0142 *  
## instigation_typeprejudice                                           -0.3214     0.2075   -1.55              0.1223    
## manipulation_labelCivil:rudeness_2                                  -0.0930     0.1238   -0.75              0.4529    
## manipulation_labelNonResponse:rudeness_2                            -0.2944     0.1107   -2.66              0.0082 ** 
## manipulation_labelCivil:instigation_typeprejudice                    0.1832     0.4203    0.44              0.6631    
## manipulation_labelNonResponse:instigation_typeprejudice             -0.0917     0.2590   -0.35              0.7233    
## rudeness_2:instigation_typeprejudice                                -0.1178     0.1000   -1.18              0.2397    
## manipulation_labelCivil:rudeness_2:instigation_typeprejudice         0.1725     0.1782    0.97              0.3338    
## manipulation_labelNonResponse:rudeness_2:instigation_typeprejudice   0.1936     0.1435    1.35              0.1780    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.786 on 361 degrees of freedom
## Multiple R-squared:  0.137,  Adjusted R-squared:  0.11 
## F-statistic:  5.2 on 11 and 361 DF,  p-value: 0.000000133

Rudeness as a mediator

Moderated mediation

DV: Status

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model ID : 7
## Model Type : Moderated Mediation
## -    Outcome (Y) : status
## -  Predictor (X) : instigation_type (recoded: =0, traditional=1, prejudice=0)
## -  Mediators (M) : rudeness_2
## - Moderators (W) : manipulation_label
## - Covariates (C) : -
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    rudeness_2 ~ instigation_type*manipulation_label
## Formula of Outcome:
## -    status ~ instigation_type + manipulation_label + rudeness_2
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect be interpreted as "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────
##                                                 (1) status   (2) rudeness_2  (3) status 
## ────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                       0.405 ***   -1.317 ***       1.124 ***
##                                                  (0.091)      (0.116)         (0.141)   
## instigation_type                                  0.185        1.050 ***       0.224    
##                                                  (0.181)      (0.233)         (0.130)   
## manipulation_labelCivil                                        3.593 ***      -0.433    
##                                                               (0.164)         (0.236)   
## manipulation_labelNonResponse                                  1.676 ***      -1.727 ***
##                                                               (0.165)         (0.178)   
## instigation_type:manipulation_labelCivil                      -0.900 **                 
##                                                               (0.329)                   
## instigation_type:manipulation_labelNonResponse                -1.889 ***                
##                                                               (0.330)                   
## rudeness_2                                                                     0.548 ***
##                                                                               (0.048)   
## ────────────────────────────────────────────────────────────────────────────────────────
## R^2                                               0.003        0.587           0.495    
## Adj. R^2                                          0.000        0.581           0.489    
## Num. obs.                                       373          373             373        
## ────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.1), ‘interactions’ (v1.2.0)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 373
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "instigation_type" (X) ==> "status" (Y)
## ────────────────────────────────────────────────────────────
##              Effect    S.E.     t     p             [95% CI]
## ────────────────────────────────────────────────────────────
## Direct (c')   0.224 (0.130) 1.724  .086 .   [-0.032,  0.480]
## ────────────────────────────────────────────────────────────
## 
## Interaction Effect on "rudeness_2" (M)
## ──────────────────────────────────────────────────────────────
##                                            F df1 df2     p    
## ──────────────────────────────────────────────────────────────
## instigation_type * manipulation_label  16.39   2 367 <.001 ***
## ──────────────────────────────────────────────────────────────
## 
## Simple Slopes: "instigation_type" (X) ==> "rudeness_2" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────────
##  "manipulation_label" Effect    S.E.      t     p             [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  Civil                 0.150 (0.232)  0.647  .518     [-0.306,  0.606]
##  NonResponse          -0.840 (0.234) -3.588 <.001 *** [-1.300, -0.380]
##  Uncivil               1.050 (0.233)  4.508 <.001 *** [ 0.592,  1.507]
## ──────────────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "instigation_type" (X) ==> "rudeness_2" (M) ==> "status" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────────
##  "manipulation_label" Effect    S.E.      z     p        [Boot 95% CI]
## ──────────────────────────────────────────────────────────────────────
##  Civil                 0.082 (0.096)  0.856  .392     [-0.110, 0.275] 
##  NonResponse          -0.460 (0.152) -3.034  .002 **  [-0.766, -0.179]
##  Uncivil               0.575 (0.169)  3.399 <.001 *** [ 0.267, 0.932] 
## ──────────────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 5000 Bootstrap samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

DV: Social rewards

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model ID : 7
## Model Type : Moderated Mediation
## -    Outcome (Y) : socialrewards
## -  Predictor (X) : instigation_type (recoded: =0, traditional=1, prejudice=0)
## -  Mediators (M) : rudeness_2
## - Moderators (W) : manipulation_label
## - Covariates (C) : -
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    rudeness_2 ~ instigation_type*manipulation_label
## Formula of Outcome:
## -    socialrewards ~ instigation_type + manipulation_label + rudeness_2
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect be interpreted as "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                 (1) socialrewards  (2) rudeness_2  (3) socialrewards
## ────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                      -0.055             -1.317 ***       0.699 ***      
##                                                  (0.084)            (0.116)         (0.145)         
## instigation_type                                  0.403 *            1.050 ***       0.448 ***      
##                                                  (0.168)            (0.233)         (0.134)         
## manipulation_labelCivil                                              3.593 ***      -0.579 *        
##                                                                     (0.164)         (0.242)         
## manipulation_labelNonResponse                                        1.676 ***      -1.682 ***      
##                                                                     (0.165)         (0.183)         
## instigation_type:manipulation_labelCivil                            -0.900 **                       
##                                                                     (0.329)                         
## instigation_type:manipulation_labelNonResponse                      -1.889 ***                      
##                                                                     (0.330)                         
## rudeness_2                                                                           0.442 ***      
##                                                                                     (0.050)         
## ────────────────────────────────────────────────────────────────────────────────────────────────────
## R^2                                               0.015              0.587           0.389          
## Adj. R^2                                          0.013              0.581           0.383          
## Num. obs.                                       373                373             373              
## ────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.1), ‘interactions’ (v1.2.0)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 373
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "instigation_type" (X) ==> "socialrewards" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.448 (0.134) 3.352 <.001 *** [0.185, 0.710]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "rudeness_2" (M)
## ──────────────────────────────────────────────────────────────
##                                            F df1 df2     p    
## ──────────────────────────────────────────────────────────────
## instigation_type * manipulation_label  16.39   2 367 <.001 ***
## ──────────────────────────────────────────────────────────────
## 
## Simple Slopes: "instigation_type" (X) ==> "rudeness_2" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────────
##  "manipulation_label" Effect    S.E.      t     p             [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  Civil                 0.150 (0.232)  0.647  .518     [-0.306,  0.606]
##  NonResponse          -0.840 (0.234) -3.588 <.001 *** [-1.300, -0.380]
##  Uncivil               1.050 (0.233)  4.508 <.001 *** [ 0.592,  1.507]
## ──────────────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "instigation_type" (X) ==> "rudeness_2" (M) ==> "socialrewards" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────────
##  "manipulation_label" Effect    S.E.      z     p        [Boot 95% CI]
## ──────────────────────────────────────────────────────────────────────
##  Civil                 0.066 (0.077)  0.862  .389     [-0.083, 0.220] 
##  NonResponse          -0.371 (0.130) -2.864  .004 **  [-0.646, -0.136]
##  Uncivil               0.464 (0.142)  3.263  .001 **  [0.210, 0.766]  
## ──────────────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 5000 Bootstrap samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Filtering on uncivil (versus civil) responses as the moderator

DV: Status

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model ID : 7
## Model Type : Moderated Mediation
## -    Outcome (Y) : status
## -  Predictor (X) : manipulation_label (recoded: Uncivil=0, Civil=1, NonResponse=0)
## -  Mediators (M) : rudeness_2
## - Moderators (W) : instigation_type
## - Covariates (C) : -
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    rudeness_2 ~ manipulation_label*instigation_type
## Formula of Outcome:
## -    status ~ manipulation_label + instigation_type + rudeness_2
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect be interpreted as "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                               (1) status   (2) rudeness_2  (3) status 
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                     0.929 ***    0.185           0.641 ***
##                                                (0.091)      (0.108)         (0.109)   
## manipulation_label                              1.551 ***    4.046 ***      -0.259    
##                                                (0.183)      (0.217)         (0.273)   
## instigation_typeprejudice                                    0.598 ***       0.603 ***
##                                                             (0.157)         (0.160)   
## manipulation_label:instigation_typeprejudice                -0.900 **                 
##                                                             (0.314)                   
## rudeness_2                                                                   0.500 ***
##                                                                             (0.062)   
## ──────────────────────────────────────────────────────────────────────────────────────
## R^2                                             0.226        0.694           0.447    
## Adj. R^2                                        0.222        0.691           0.440    
## Num. obs.                                     249          249             249        
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.1), ‘interactions’ (v1.2.0)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 249
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "manipulation_label" (X) ==> "status" (Y)
## ─────────────────────────────────────────────────────────────
##              Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────
## Direct (c')  -0.259 (0.273) -0.949  .344     [-0.798,  0.279]
## ─────────────────────────────────────────────────────────────
## 
## Interaction Effect on "rudeness_2" (M)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## manipulation_label * instigation_type  8.23   1 245  .004 ** 
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "manipulation_label" (X) ==> "rudeness_2" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "instigation_type" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  prejudice           3.147 (0.227) 13.889 <.001 *** [2.700, 3.593]
##  traditional         4.046 (0.217) 18.668 <.001 *** [3.619, 4.473]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "manipulation_label" (X) ==> "rudeness_2" (M) ==> "status" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "instigation_type" Effect    S.E.     z     p       [Boot 95% CI]
## ──────────────────────────────────────────────────────────────────
##  prejudice           1.572 (0.281) 5.597 <.001 *** [ 1.034, 2.138]
##  traditional         2.021 (0.372) 5.426 <.001 *** [ 1.280, 2.746]
## ──────────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 5000 Bootstrap samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

DV: Social rewards

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model ID : 7
## Model Type : Moderated Mediation
## -    Outcome (Y) : socialrewards
## -  Predictor (X) : manipulation_label (recoded: Uncivil=0, Civil=1, NonResponse=0)
## -  Mediators (M) : rudeness_2
## - Moderators (W) : instigation_type
## - Covariates (C) : -
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    rudeness_2 ~ manipulation_label*instigation_type
## Formula of Outcome:
## -    socialrewards ~ manipulation_label + instigation_type + rudeness_2
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect be interpreted as "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────
##                                               (1) socialrewards  (2) rudeness_2  (3) socialrewards
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                     0.419 ***          0.185           0.001          
##                                                (0.092)            (0.108)         (0.111)         
## manipulation_label                              1.022 ***          4.046 ***      -0.426          
##                                                (0.184)            (0.217)         (0.278)         
## instigation_typeprejudice                                          0.598 ***       0.875 ***      
##                                                                   (0.157)         (0.162)         
## manipulation_label:instigation_typeprejudice                      -0.900 **                       
##                                                                   (0.314)                         
## rudeness_2                                                                         0.399 ***      
##                                                                                   (0.063)         
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## R^2                                             0.111              0.694           0.349          
## Adj. R^2                                        0.108              0.691           0.341          
## Num. obs.                                     249                249             249              
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.1), ‘interactions’ (v1.2.0)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 249
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "manipulation_label" (X) ==> "socialrewards" (Y)
## ─────────────────────────────────────────────────────────────
##              Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────
## Direct (c')  -0.426 (0.278) -1.533  .127     [-0.974,  0.122]
## ─────────────────────────────────────────────────────────────
## 
## Interaction Effect on "rudeness_2" (M)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## manipulation_label * instigation_type  8.23   1 245  .004 ** 
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "manipulation_label" (X) ==> "rudeness_2" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "instigation_type" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  prejudice           3.147 (0.227) 13.889 <.001 *** [2.700, 3.593]
##  traditional         4.046 (0.217) 18.668 <.001 *** [3.619, 4.473]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "manipulation_label" (X) ==> "rudeness_2" (M) ==> "socialrewards" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "instigation_type" Effect    S.E.     z     p       [Boot 95% CI]
## ──────────────────────────────────────────────────────────────────
##  prejudice           1.256 (0.260) 4.835 <.001 *** [ 0.771, 1.794]
##  traditional         1.615 (0.337) 4.792 <.001 *** [ 0.982, 2.290]
## ──────────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 5000 Bootstrap samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Controls

Controlling for rudeness, response, age

Reference for uncivil factor: Uncivil; reference for context: prejudice