Úvod

V tomto cvičení budem pracovať s databázou economics.csv, ktorá obsahuje makroekonomické časové rady USA od roku 1967. Cieľom je analyzovať faktory ovplyvňujúce osobnú spotrebu (pce).

Premenné: - pce: osobná spotreba (Personal Consumption Expenditures) - pop: populácia - psavert: miera úspor (percento) - uempmed: mediánová dĺžka nezamestnanosti (v týždňoch) - unemploy: počet nezamestnaných (v tisícoch)

Stanovenie hypotéz

Budem modelovať vzťah:

\[ pce_i = \beta_0 + \beta_1 unemploy_i + \beta_2 psavert_i + \beta_3 uempmed_i + \varepsilon_i \]

Hypotézy: - H₀: Koeficienty \(\beta_j = 0\) (žiadny vplyv) - H₁: Aspoň jeden koeficient je štatisticky významný - Očakávam negatívny vplyv nezamestnanosti a pozitívny vplyv úspor na spotrebu.

Príprava dát

library(zoo)
library(tseries)
library(lmtest)
library(sandwich)
library(car)
library(ggplot2)
library(dplyr)

rm(list = ls())
setwd(getwd())

data <- read.csv("economics.csv", header = TRUE)

# odstránime nepotrebný index
data <- data[, !names(data) %in% c("Unnamed..0")]

# kontrola chýbajúcich údajov
colSums(is.na(data))
       X     date      pce      pop  psavert  uempmed unemploy 
       0        0        0        0        0        0        0 
# nahradíme chýbajúce hodnoty mediánom
for (col in names(data)) {

Quitting from Cvicenie6_economics.Rmd:34-62 [setup]
  if (is.numeric(data[[col]])) {
    data[[col]][is.na(data[[col]])] <- median(data[[col]], na.rm = TRUE)
  }
}

summary(data)
       X             date                pce               pop            psavert      
 Min.   :  1.0   Length:574         Min.   :  506.7   Min.   :198712   Min.   : 2.200  
 1st Qu.:144.2   Class :character   1st Qu.: 1578.3   1st Qu.:224896   1st Qu.: 6.400  
 Median :287.5   Mode  :character   Median : 3936.8   Median :253060   Median : 8.400  
 Mean   :287.5                      Mean   : 4820.1   Mean   :257160   Mean   : 8.567  
 3rd Qu.:430.8                      3rd Qu.: 7626.3   3rd Qu.:290291   3rd Qu.:11.100  
 Max.   :574.0                      Max.   :12193.8   Max.   :320402   Max.   :17.300  
    uempmed          unemploy    
 Min.   : 4.000   Min.   : 2685  
 1st Qu.: 6.000   1st Qu.: 6284  
 Median : 7.500   Median : 7494  
 Mean   : 8.609   Mean   : 7771  
 3rd Qu.: 9.100   3rd Qu.: 8686  
 Max.   :25.200   Max.   :15352  

Vizualizácia údajov

pairs(data[, c("pce", "unemploy", "psavert", "uempmed")],
      main = "Vzťahy medzi premennými")

Odhad lineárneho modelu

model <- lm(pce ~ unemploy + psavert + uempmed, data = data)
summary(model)

Call:
lm(formula = pce ~ unemploy + psavert + uempmed, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-4039.1  -770.1   -80.3   647.2  5173.8 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 7915.52973  262.80237  30.120  < 2e-16 ***
unemploy      -0.18838    0.03966  -4.749 2.58e-06 ***
psavert     -751.70486   18.47682 -40.684  < 2e-16 ***
uempmed      558.56555   25.65874  21.769  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1238 on 570 degrees of freedom
Multiple R-squared:  0.8795,    Adjusted R-squared:  0.8789 
F-statistic:  1387 on 3 and 570 DF,  p-value: < 2.2e-16

Diagnostika modelu

# Normalita rezíduí
shapiro.test(residuals(model))

    Shapiro-Wilk normality test

data:  residuals(model)
W = 0.95121, p-value = 7.823e-13
# Heteroskedasticita
bptest(model)

    studentized Breusch-Pagan test

data:  model
BP = 58.513, df = 3, p-value = 1.221e-12
# Autokorelácia
dwtest(model)

    Durbin-Watson test

data:  model
DW = 0.26131, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0
# Reziduálne grafy
par(mfrow = c(2, 2))
plot(model)

Interpretácia výsledkov

Záver

Na základe modelu môžem zhodnotiť, ktoré faktory najviac ovplyvňujú osobnú spotrebu v ekonomike USA.

LS0tCnRpdGxlOiAiSGV0ZXJvc2tlZGFzdGljaXRhIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKYXV0aG9yOiAiQWxpY2EgVHZyZMOhIgotLS0KCiMgw5p2b2QKClYgdG9tdG8gY3ZpxI1lbsOtIGJ1ZGVtIHByYWNvdmHFpSBzIGRhdGFiw6F6b3UgYGVjb25vbWljcy5jc3ZgLCBrdG9yw6Egb2JzYWh1amUgbWFrcm9la29ub21pY2vDqSDEjWFzb3bDqSByYWR5IFVTQSBvZCByb2t1IDE5NjcuIApDaWXEvm9tIGplIGFuYWx5em92YcWlIGZha3Rvcnkgb3ZwbHl2xYh1asO6Y2Ugb3NvYm7DuiBzcG90cmVidSAoYHBjZWApLgoKKipQcmVtZW5uw6k6KioKLSBgcGNlYDogb3NvYm7DoSBzcG90cmViYSAoUGVyc29uYWwgQ29uc3VtcHRpb24gRXhwZW5kaXR1cmVzKQotIGBwb3BgOiBwb3B1bMOhY2lhCi0gYHBzYXZlcnRgOiBtaWVyYSDDunNwb3IgKHBlcmNlbnRvKQotIGB1ZW1wbWVkYDogbWVkacOhbm92w6EgZMS6xb5rYSBuZXphbWVzdG5hbm9zdGkgKHYgdMO9xb5kxYhvY2gpCi0gYHVuZW1wbG95YDogcG/EjWV0IG5lemFtZXN0bmFuw71jaCAodiB0aXPDrWNvY2gpCgojIFN0YW5vdmVuaWUgaHlwb3TDqXoKCkJ1ZGVtIG1vZGVsb3ZhxaUgdnrFpWFoOgoKJCQKcGNlX2kgPSBcYmV0YV8wICsgXGJldGFfMSB1bmVtcGxveV9pICsgXGJldGFfMiBwc2F2ZXJ0X2kgKyBcYmV0YV8zIHVlbXBtZWRfaSArIFx2YXJlcHNpbG9uX2kKJCQKCioqSHlwb3TDqXp5OioqCi0gSOKCgDogS29lZmljaWVudHkgXChcYmV0YV9qID0gMFwpICjFvmlhZG55IHZwbHl2KQotIEjigoE6IEFzcG/FiCBqZWRlbiBrb2VmaWNpZW50IGplIMWhdGF0aXN0aWNreSB2w716bmFtbsO9Ci0gT8SNYWvDoXZhbSBuZWdhdMOtdm55IHZwbHl2IG5lemFtZXN0bmFub3N0aSBhIHBveml0w612bnkgdnBseXYgw7pzcG9yIG5hIHNwb3RyZWJ1LgoKIyBQcsOtcHJhdmEgZMOhdAoKYGBge3Igc2V0dXAsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkoem9vKQpsaWJyYXJ5KHRzZXJpZXMpCmxpYnJhcnkobG10ZXN0KQpsaWJyYXJ5KHNhbmR3aWNoKQpsaWJyYXJ5KGNhcikKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGRwbHlyKQoKcm0obGlzdCA9IGxzKCkpCnNldHdkKGdldHdkKCkpCgpkYXRhIDwtIHJlYWQuY3N2KCJlY29ub21pY3MuY3N2IiwgaGVhZGVyID0gVFJVRSkKCiMgb2RzdHLDoW5pbSBuZXBvdHJlYm7DvSBpbmRleApkYXRhIDwtIGRhdGFbLCAhbmFtZXMoZGF0YSkgJWluJSBjKCJVbm5hbWVkLi4wIildCgojIGtvbnRyb2xhIGNow71iYWrDumNpY2ggw7pkYWpvdgpjb2xTdW1zKGlzLm5hKGRhdGEpKQoKIyBuYWhyYWTDrW0gY2jDvWJhasO6Y2UgaG9kbm90eSBtZWRpw6Fub20KZm9yIChjb2wgaW4gbmFtZXMoZGF0YSkpIHsKICBpZiAoaXMubnVtZXJpYyhkYXRhW1tjb2xdXSkpIHsKICAgIGRhdGFbW2NvbF1dW2lzLm5hKGRhdGFbW2NvbF1dKV0gPC0gbWVkaWFuKGRhdGFbW2NvbF1dLCBuYS5ybSA9IFRSVUUpCiAgfQp9CgpzdW1tYXJ5KGRhdGEpCmBgYAoKIyBWaXp1YWxpesOhY2lhIMO6ZGFqb3YKCmBgYHtyfQpwYWlycyhkYXRhWywgYygicGNlIiwgInVuZW1wbG95IiwgInBzYXZlcnQiLCAidWVtcG1lZCIpXSwKICAgICAgbWFpbiA9ICJWesWlYWh5IG1lZHppIHByZW1lbm7DvW1pIikKYGBgCgojIE9kaGFkIGxpbmXDoXJuZWhvIG1vZGVsdQoKYGBge3J9Cm1vZGVsIDwtIGxtKHBjZSB+IHVuZW1wbG95ICsgcHNhdmVydCArIHVlbXBtZWQsIGRhdGEgPSBkYXRhKQpzdW1tYXJ5KG1vZGVsKQpgYGAKCiMgRGlhZ25vc3Rpa2EgbW9kZWx1CgpgYGB7cn0KIyBOb3JtYWxpdGEgcmV6w61kdcOtCnNoYXBpcm8udGVzdChyZXNpZHVhbHMobW9kZWwpKQoKIyBIZXRlcm9za2VkYXN0aWNpdGEKYnB0ZXN0KG1vZGVsKQoKIyBBdXRva29yZWzDoWNpYQpkd3Rlc3QobW9kZWwpCgojIFJlemlkdcOhbG5lIGdyYWZ5CnBhcihtZnJvdyA9IGMoMiwgMikpCnBsb3QobW9kZWwpCmBgYAoKIyBJbnRlcnByZXTDoWNpYSB2w71zbGVka292CgotIEFrIHPDuiBwLWhvZG5vdHkgPCAwLjA1LCBwcsOtc2x1xaFuw6EgcHJlbWVubsOhIG3DoSDFoXRhdGlzdGlja3kgdsO9em5hbW7DvSB2cGx5diBuYSBgcGNlYC4KLSBabmFtZW5rbyBrb2VmaWNpZW50dSB1a2F6dWplIHNtZXIgdnBseXZ1OgogIC0gcG96aXTDrXZueSDihpIgdnnFocWhaWEgaG9kbm90YSBwcmVtZW5uZWogenZ5xaF1amUgc3BvdHJlYnUsCiAgLSBuZWdhdMOtdm55IOKGkiB2ecWhxaFpYSBob2Rub3RhIHByZW1lbm5laiB6bmnFvnVqZSBzcG90cmVidS4KLSBEaWFnbm9zdGlja8OpIHRlc3R5IGtvbnRyb2x1asO6IHBsYXRub3PFpSBwcmVkcG9rbGFkb3YgT0xTLgoKIyBaw6F2ZXIKCk5hIHrDoWtsYWRlIG1vZGVsdSBtw7TFvmVtIHpob2Rub3RpxaUsIGt0b3LDqSBmYWt0b3J5IG5hanZpYWMgb3ZwbHl2xYh1asO6IG9zb2Juw7ogc3BvdHJlYnUgdiBla29ub21pa2UgVVNBLgo=