Introduction

A Dorling cartogram is a type of map that replaces geographic shapes with proportional circles, preserving spatial relationships while emphasizing data values. In this tutorial, we’ll walk through how to build a Dorling cartogram using census tract data for Minneapolis–Saint Paul, focusing on median home value (MHV) and neighborhood clustering.

Setup and Packages

Load and Prepare Spatial Data

# Define ACS variables
vars <- c(
  income = "B19013_001",
  education = "B15003_022",
  total_edu = "B15003_001",
  white = "B02001_002",
  black = "B02001_003",
  hispanic = "B03003_003",
  total_pop = "B03003_001"
)

# Download ACS data for Hennepin and Ramsey counties
mn_data <- get_acs(
  geography = "tract",
  variables = vars,
  state = "MN",
  county = c("Hennepin", "Ramsey"),
  geometry = TRUE,
  year = 2021
)
##   |                                                                              |                                                                      |   0%  |                                                                              |                                                                      |   1%  |                                                                              |=                                                                     |   2%  |                                                                              |==                                                                    |   3%  |                                                                              |===                                                                   |   4%  |                                                                              |===                                                                   |   5%  |                                                                              |====                                                                  |   5%  |                                                                              |====                                                                  |   6%  |                                                                              |=====                                                                 |   8%  |                                                                              |======                                                                |   8%  |                                                                              |======                                                                |   9%  |                                                                              |=======                                                               |  10%  |                                                                              |========                                                              |  11%  |                                                                              |========                                                              |  12%  |                                                                              |=========                                                             |  13%  |                                                                              |==========                                                            |  15%  |                                                                              |============                                                          |  17%  |                                                                              |=============                                                         |  18%  |                                                                              |==============                                                        |  20%  |                                                                              |===============                                                       |  21%  |                                                                              |================                                                      |  23%  |                                                                              |=================                                                     |  24%  |                                                                              |==================                                                    |  26%  |                                                                              |===================                                                   |  28%  |                                                                              |====================                                                  |  29%  |                                                                              |======================                                                |  31%  |                                                                              |=======================                                               |  32%  |                                                                              |========================                                              |  34%  |                                                                              |=========================                                             |  36%  |                                                                              |==========================                                            |  37%  |                                                                              |===========================                                           |  39%  |                                                                              |============================                                          |  40%  |                                                                              |=============================                                         |  42%  |                                                                              |==============================                                        |  43%  |                                                                              |================================                                      |  45%  |                                                                              |=================================                                     |  47%  |                                                                              |==================================                                    |  48%  |                                                                              |===================================                                   |  50%  |                                                                              |====================================                                  |  51%  |                                                                              |=====================================                                 |  53%  |                                                                              |======================================                                |  55%  |                                                                              |=======================================                               |  56%  |                                                                              |========================================                              |  58%  |                                                                              |==========================================                            |  59%  |                                                                              |===========================================                           |  61%  |                                                                              |============================================                          |  63%  |                                                                              |=============================================                         |  64%  |                                                                              |==============================================                        |  66%  |                                                                              |===============================================                       |  67%  |                                                                              |================================================                      |  69%  |                                                                              |=================================================                     |  71%  |                                                                              |==================================================                    |  72%  |                                                                              |====================================================                  |  74%  |                                                                              |=====================================================                 |  75%  |                                                                              |======================================================                |  77%  |                                                                              |=======================================================               |  79%  |                                                                              |========================================================              |  80%  |                                                                              |=========================================================             |  82%  |                                                                              |==========================================================            |  83%  |                                                                              |===========================================================           |  85%  |                                                                              |=============================================================         |  86%  |                                                                              |==============================================================        |  88%  |                                                                              |===============================================================       |  90%  |                                                                              |================================================================      |  91%  |                                                                              |=================================================================     |  93%  |                                                                              |==================================================================    |  94%  |                                                                              |===================================================================   |  96%  |                                                                              |====================================================================  |  98%  |                                                                              |===================================================================== |  99%  |                                                                              |======================================================================| 100%

Select Variables and Scale

mn_wide <- mn_data %>%
  select(GEOID, NAME, variable, estimate) %>%
  pivot_wider(names_from = variable, values_from = estimate) %>%
  mutate(
    pct_white = white / total_pop,
    pct_black = black / total_pop,
    pct_hispanic = hispanic / total_pop,
    pct_bachelors = education / total_edu
  ) %>%
  drop_na(pct_white, pct_black, pct_hispanic, pct_bachelors, income)

️ Build the Dorling Cartogram

mn_sf_proj <- st_transform(mn_wide, crs = 3857)
mn_sf_proj$income_w <- mn_sf_proj$income / 10000
mn_dorling <- cartogram_dorling(mn_sf_proj, "income_w", k = 0.8)

Add Clustering

cluster_df <- st_drop_geometry(mn_sf_proj) %>%
  select(income, pct_white, pct_black, pct_hispanic, pct_bachelors)

cluster_scaled <- scale(cluster_df)
pam_result <- pam(cluster_scaled, k = 5)
mn_dorling$cluster <- factor(pam_result$clustering)

Add Census Model Variables

# Load harmonized LTDB data
URL1 <- "https://github.com/DS4PS/cpp-529-fall-2020/raw/main/LABS/data/rodeo/LTDB-2000.rds"
URL2 <- "https://github.com/DS4PS/cpp-529-fall-2020/raw/main/LABS/data/rodeo/LTDB-2010.rds"
URLmd <- "https://github.com/DS4PS/cpp-529-fall-2020/raw/main/LABS/data/rodeo/LTDB-META-DATA.rds"

d1 <- readRDS(gzcon(url(URL1))) %>% select(-year)
d2 <- readRDS(gzcon(url(URL2))) %>% select(-year)
md <- readRDS(gzcon(url(URLmd)))

d <- merge(d1, d2, by = "tractid") %>%
  merge(md, by = "tractid")

# Standardize GEOID
d$tractid2 <- as.numeric(gsub("-", "", gsub("fips", "", d$tractid)))

# Merge with spatial object
mn_dorling$GEOID_num <- as.numeric(mn_dorling$GEOID)
mn_dorling <- merge(mn_dorling, d, by.x = "GEOID_num", by.y = "tractid2", all.x = TRUE)

Create Model Variables

mn_dorling <- mn_dorling %>%
  mutate(
    p.col = 100 * col00 / ag25up00,
    p.vacant = 100 * vac00 / hu00,
    p.prof = 100 * prof00 / empclf00,
    mhv.00 = mhmval00 * 1.28855,
    mhv.10 = mhmval12,
    mhv.change = mhv.10 - mhv.00,
    mhv.growth = 100 * (mhv.change / mhv.00),
    log.p.col = log(p.col + 1),
    log.p.vacant = log(p.vacant + 1),
    log.p.prof = log(p.prof + 1)
  )

Save Final GeoJSON

# Convert to sp object
mn_sp <- as_Spatial(mn_dorling)
row.ids <- sapply(slot(mn_sp, "polygons"), function(x) slot(x, "ID"))
row.names(mn_sp) <- row.ids

# Reproject to lat-long
mn_sp <- spTransform(mn_sp, CRS("+proj=longlat +datum=WGS84"))

# Save to file
geojson_write(mn_sp, file = "mn_final.geojson", geometry = "polygon")
## <geojson-file>
##   Path:       mn_final.geojson
##   From class: SpatialPolygonsDataFrame

Conclusion

This tutorial demonstrated how to build a Dorling cartogram using R. We scaled census predictors, applied PAM clustering, and visualized the results with proportional circles. Cartograms are powerful tools for communicating spatial patterns in urban data, especially when paired with interactive dashboards or policy analysis.