Set the working directory:

  1. Download “StudentSurvey.csv” to your computer.
  2. Set Working directory to the folder you saved your file in.
  3. read the file using read.csv command.
#If your assignment does not render, you might need to install.packages("htmltools")

Instructions:

Read the StudentSurvey into this markdown and answers the following questions

#read the StudentSurvey.csv in here
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.2
## ✔ ggplot2   4.0.0     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
 setwd("C:/Users/vidhe/OneDrive/Desktop/Data 101")

student_survey <- read.csv("StudentSurvey.csv")

Check the data structure:

#check the head of the data set
head(student_survey)
##        Year Sex Smoke   Award HigherSAT Exercise TV Height Weight Siblings
## 1    Senior   M    No Olympic      Math       10  1     71    180        4
## 2 Sophomore   F   Yes Academy      Math        4  7     66    120        2
## 3 FirstYear   M    No   Nobel      Math       14  5     72    208        2
## 4    Junior   M    No   Nobel      Math        3  1     63    110        1
## 5 Sophomore   F    No   Nobel    Verbal        3  3     65    150        1
## 6 Sophomore   F    No   Nobel    Verbal        5  4     65    114        2
##   BirthOrder VerbalSAT MathSAT  SAT  GPA Pulse Piercings
## 1          4       540     670 1210 3.13    54         0
## 2          2       520     630 1150 2.50    66         3
## 3          1       550     560 1110 2.55   130         0
## 4          1       490     630 1120 3.10    78         0
## 5          1       720     450 1170 2.70    40         6
## 6          2       600     550 1150 3.20    80         4
#check the dimensions
dim(student_survey)
## [1] 79 17
#create a table of students'sex and "HigherSAT"

table(student_survey$Sex,student_survey$HigherSAT)
##    
##     Math Verbal
##   F   25     15
##   M   24     15
# Display summary statistics for VerbalSAT
summary(student_survey$VerbalSAT)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   420.0   550.0   580.0   583.2   630.0   720.0
#Find the average GPA of students
mean(student_survey$GPA)
## [1] 3.169114
#Create a new dataframe, call it "column_df". This new dataframe should contain students' weight and number of hours the exercise 


column_df <- data.frame(student_survey$Weight, student_survey$Exercise)
column_df
##    student_survey.Weight student_survey.Exercise
## 1                    180                      10
## 2                    120                       4
## 3                    208                      14
## 4                    110                       3
## 5                    150                       3
## 6                    114                       5
## 7                    128                      10
## 8                    235                      13
## 9                    115                      12
## 10                   140                      12
## 11                   135                       6
## 12                   110                      10
## 13                    99                       3
## 14                   165                       7
## 15                   120                       2
## 16                   154                      14
## 17                   110                      10
## 18                   145                      14
## 19                   195                      20
## 20                   200                       7
## 21                   167                      12
## 22                   175                      10
## 23                   155                       6
## 24                   185                      14
## 25                   190                      12
## 26                   165                      10
## 27                   175                       8
## 28                   126                       0
## 29                   187                      10
## 30                   170                       6
## 31                   158                       5
## 32                   119                      24
## 33                   205                       2
## 34                   129                      10
## 35                   145                       6
## 36                   130                       5
## 37                   215                       5
## 38                   135                      12
## 39                   145                       2
## 40                    98                       7
## 41                   150                      15
## 42                   159                       5
## 43                   174                       7
## 44                   160                      15
## 45                   165                       8
## 46                   161                      14
## 47                   130                       4
## 48                   175                      15
## 49                   255                       4
## 50                   160                      15
## 51                   160                       3
## 52                    95                       3
## 53                   115                      15
## 54                   120                      20
## 55                   135                       3
## 56                   180                       6
## 57                   155                      12
## 58                   110                       4
## 59                   215                      20
## 60                   140                      10
## 61                   195                      10
## 62                   185                       4
## 63                   185                       9
## 64                   209                      12
## 65                   145                       2
## 66                   180                       2
## 67                   170                       5
## 68                   135                       5
## 69                   165                       6
## 70                   137                      10
## 71                   147                       4
## 72                   150                       5
## 73                   155                      17
## 74                   160                       7
## 75                   130                       2
## 76                   180                       8
## 77                   150                       1
## 78                   205                      14
## 79                   115                      12
#Access the fourth element in the first column from the StudentSurvey's dataset.

student_survey[4,1]
## [1] "Junior"