# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("TSLA", "NVDA", "GOOGL", "ORCL", "JNJ")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type= "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GOOGL" "JNJ" "NVDA" "ORCL" "TSLA"
# weights
weight <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weight
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 5 × 2
## symbols weight
## <chr> <dbl>
## 1 GOOGL 0.25
## 2 JNJ 0.25
## 3 NVDA 0.2
## 4 ORCL 0.2
## 5 TSLA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset, returns_col = returns,
weights = w_tbl, rebalance_on = "months", col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0527
## 2 2013-02-28 0.0169
## 3 2013-03-28 0.0146
## 4 2013-04-30 0.0728
## 5 2013-05-31 0.0888
## 6 2013-06-28 -0.00817
## 7 2013-07-31 0.0626
## 8 2013-08-30 -0.00442
## 9 2013-09-30 0.0415
## 10 2013-10-31 0.0361
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "SPY",
ge = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type= "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl, portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns, performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.932
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns") +
# To set the limits (zoom window) for both the X and Y axes,
# forcing the plot to display only the range from 0 to 0.1 (or 0% to 10%) on both axes
coord_cartesian(xlim = c(0,0.1), ylim = c(0,0.1))
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated? In terms of how sensitive my portfolio is to the market, it’s very close to a beta of 1, with 0.932, making it slightly less volatile than the baseline market returns. The plot confirms this, as some of the points are above the line, with some below, and quite a few right on the line.