# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("TSLA", "AMZN", "AAPL", "NVDA", "PG")
prices <- tq_get(x = symbols,
get. = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "NVDA" "PG" "TSLA"
# weights
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
weights
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.2
## 2 AMZN 0.2
## 3 NVDA 0.2
## 4 PG 0.2
## 5 TSLA 0.2
#?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0226
## 2 2013-02-28 -0.0105
## 3 2013-03-28 0.0240
## 4 2013-04-30 0.0760
## 5 2013-05-31 0.146
## 6 2013-06-28 -0.00567
## 7 2013-07-31 0.103
## 8 2013-08-30 0.0473
## 9 2013-09-30 0.0486
## 10 2013-10-31 0.0208
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "^IXIC",
get. = "stock.prices",
from = "2012-12-31",
to = Sys.Date()) %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.08
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns") +
# To set the limits (zoom window) for both the X and Y axes,
# forcing the plot to display only the range from 0 to 0.1 (or 0% to 10%) on both axes
coord_cartesian(xlim = c(0,0.1), ylim = c(0,0.1))
The beta coefficient of 1.08 indicates that the portfolio is slightly more volatile than the overall market. In other words, for every 1% change in the market’s return, the portfolio’s return is expected to change by approximately 1.08%. This means the portfolio tends to amplify market movements, performing a bit better than the market in up periods and slightly worse in down periods.
The scatter plot supports this result. The positively sloped regression line shows a strong linear relationship between portfolio and market returns, with the points generally clustered around the line. The slope being greater than 1 visually confirms that the portfolio moves more aggressively than the market, consistent with the calculated beta of 1.08.