# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("XOM", "SHEL", "BP", "CVX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
#symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "BP" "CVX" "SHEL" "XOM"
#weights
weights <- c(0.25,0.25,0.25,0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 BP 0.25
## 2 CVX 0.25
## 3 SHEL 0.25
## 4 XOM 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0477
## 2 2013-02-28 -0.0292
## 3 2013-03-28 0.0150
## 4 2013-04-30 0.0213
## 5 2013-05-31 0.00575
## 6 2013-06-28 -0.0263
## 7 2013-07-31 0.0401
## 8 2013-08-30 -0.0338
## 9 2013-09-30 0.00754
## 10 2013-10-31 0.0360
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "XLE",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to monthly returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl, portfolio_returns_tbl, "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.806
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE, size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
With a beta of 0.806 this portfolio is only about 80% as sensitive to variation as its overall industry. Meaning if the oil-based energy market should gain 100 basis points within a month, this portfolio would be expected to gain 80.6 basis points within the same period of time.